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Abstract Under some plausible assumptions, we find that
the dual formulation of linearized gravity in D =5 can be
nontrivially coupled to the topological BF model in such a
way that the interacting theory exhibits a deformed gauge
algebra and some deformed, on-shell reducibility relations.
Moreover, the tensor field with the mixed symmetry (2, 1)
gains some shift gauge transformations with parameters
from the BF sector.

PACS 11.10.Ef

1 Introduction

Topological field theories [1, 2] are important in view of
the fact that certain interacting, non-Abelian versions are re-
lated to a Poisson structure algebra [3] present in various
versions of Poisson sigma models [4—10], which are known
to be useful at the study of two-dimensional gravity [11-20]
(for a detailed approach, see [21]). It is well known that pure
three-dimensional gravity is just a BF theory. Moreover, in
higher dimensions general relativity and supergravity in the
Ashtekar formalism may also be formulated as topological
BF theories with some extra constraints [22-25]. In view
of these results, it is important to know the self-interactions
in BF theories as well as the couplings between BF mod-
els and other theories. This problem has been considered
in the literature in relation with self-interactions in various
classes of BF models [26—-33] and couplings to other (mat-
ter or gauge) fields [34-38] by using the powerful BRST
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cohomological reformulation of the problem of construct-
ing consistent interactions within the Lagrangian [39, 40]
or the Hamiltonian [41] setting, based on the computation
of local BRST cohomology [42-44]. Other aspects concern-
ing interacting, topological BF models can be found in [45]
and [46].

On the other hand, tensor fields in “exotic” representa-
tions of the Lorentz group, characterized by a mixed Young
symmetry type [47-53], held the attention lately on some
important issues, like the dual formulation of field theories
of spin two or higher [54-61], the impossibility of consis-
tent cross-interactions in the dual formulation of linearized
gravity [62], a Lagrangian first-order approach [63, 64] to
some classes of massless or partially massive mixed sym-
metry type tensor gauge fields, suggestively resembling to
the tetrad formalism of General Relativity, or the derivation
of some exotic gravitational interactions [65, 66]. An impor-
tant matter related to mixed symmetry type tensor fields is
the study of their consistent interactions, among themselves
as well as with other gauge theories [67-80].

The purpose of this paper is to investigate the consistent
interactions in D = 5 between a massless tensor gauge field
with the mixed symmetry of a two-column Young diagram
of type (2,1) and an Abelian BF model with a maximal
field spectrum (a scalar field, two sorts of one-forms, two
types of two-forms and a three-form). It is worth mention-
ing the duality of a free massless tensor gauge field with the
mixed symmetry (2, 1) to the Pauli—Fierz theory in D =5
dimensions. In view of this feature, we can state that our
paper searches the consistent couplings in D = 5 between
the dual formulation of linearized gravity and a topologi-
cal BF model. Our analysis relies on the deformation of the
solution to the master equation by means of cohomological
techniques with the help of the local BRST cohomology. We
mention that the self-interactions in the (2, 1) sector have
been investigated in [62] and the couplings in D =5 that

@ Springer


mailto:bizdadea@central.ucv.ro
mailto:manache@central.ucv.ro
mailto:adanehkar01@qub.ac.uk
mailto:osaliu@central.ucv.ro
mailto:scsararu@central.ucv.ro

492

Eur. Phys. J. C (2009) 63: 491-519

can be added to an Abelian BF model with a maximal field
spectrum have been constructed in [32].

Under the hypotheses of analyticity in the coupling con-
stant, spacetime locality, Lorentz covariance, and Poincaré
invariance of the deformations, combined with the preser-
vation of the number of derivatives on each field, we find a
deformation of the solution to the master equation that pro-
vides nontrivial cross-couplings. The emerging Lagrangian
action contains mixing-component terms of order one in the
coupling constant that couple the massless tensor field with
the mixed symmetry (2, 1) mainly to one of the two-forms
and to the three-form from the BF sector. Also, it is inter-
esting to note the appearance of some self-interactions in
the BF sector at order two in the coupling constant that are
strictly due to the presence of the tensor field with the mixed
symmetry (2, 1) (they all vanish in its absence). The gauge
transformations of all fields are deformed and, in addition,
some of them include gauge parameters from the comple-
mentary sector. This is the first known case where the gauge
transformations of the tensor field with the mixed symmetry
(2, 1) do change with respect to the free ones (by shifts in
some of the BF gauge parameters). The gauge algebra and
the reducibility structure of the coupled model are strongly
modified during the deformation procedure, becoming open
and respectively on-shell, by contrast to the free theory,
whose gauge algebra is Abelian and the reducibility rela-
tions hold off-shell. Our result is important because dual for-
mulations of linearized gravity have proved to be extremely
rigid in allowing consistent interactions to themselves as
well as to many matter or gauge theories. Actually, we think
that this is the first time when a massless tensor field with the
mixed symmetry (k, 1) allows consistent interactions that
fulfill all the working hypotheses precisely in the dimension
D =k + 3 where it becomes dual to the Pauli-Fierz theory.

2 The free theory: Lagrangian, gauge symmetries and
BRST differential

The starting point is a free theory in D =5, whose La-
grangian action is written as the sum between the La-
grangian action of an Abelian BF model with a maximal
field spectrum (a single scalar field, ¢, two types of one-
forms, H* and V,,, two kinds of two-forms, B/¥ and ¢,
and one three-form, K*"?) and the Lagrangian action of a
free, massless tensor field with the mixed symmetry (2, 1)
fuvje (Meaning it is antisymmetric in its first two indices
fuvle = —tvuje and fulfills the identity #,,o) = 0)

1
Sg[e*] = /de [H“aw + 5 B0V

1
+ 3 K" 0l
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1
- E(Fﬂv,olaprla - 3F#UFW)i|

/ & (CBF 4 L)), )
where we used the notations

@Gl() — ((p’ H,u’ ‘//’v’ B,LLV’ ¢,u\)’ KMW), t,uv‘(){)» (2)

Fuvpla = Oputvpllas Fuy = UpaFuvp\a- 3)

Everywhere in this paper the notations [uv---p] and
(nv--- p) signify complete antisymmetry and respectively
complete symmetry with respect to the (Lorentz) indices
between brackets, with the conventions that the minimum
number of terms is always used and the result is never di-
vided by the number of terms. It is convenient to work
with the Minkowski metric tensor of ‘mostly plus’ signa-
ture o,y = o*¥ = diag(— + + + +) and with the five-
dimensional Levi—Civita symbol ¢*"**° defined according
to the convention 91234 = — g 1234 = —1.

Action (1) is found to be invariant under the gauge trans-
formations

809 =0, SoH" =20,e"”, 4)
82V =0y¢, S B" = —303,e", 5)
Sabuy = kv, So KM =49, M0 (6)
82tuvia = Oubvia + O uXvie — 200 Xuv, @)

where all the gauge parameters are bosonic, with €#¥, e**P,
gMvPX and Xuv completely antisymmetric and 6, symmet-
ric. By £2 we denoted collectively all the gauge parameters
as

Qal = (6,’“}’ €, GMV)O’ Ell.v E,LLV,O)\’ Q/AVa XMU)' (8)

The gauge transformations given by (4)—(7) are off-shell re-
ducible of order three (the reducibility relations hold every-
where in the space of field history, and not only on the sta-
tionary surface of field equations). This means that:

1. There exist some transformations of the gauge parame-
ters (8)

Y s QU — QUi (‘(}012)7 9)

such that the gauge transformations of all fields vanish
strongly (first-order reducibility relations)

S5y @™ =0. (10)

2. There exist some transformations of the first-order re-
ducibility parameters §2%2

2% — Q% = Q% (2%), (11)
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such that the gauge parameters vanish strongly (second-  and transformations (13) can be chosen of the form
order reducibility relations) A
g;wp)\ (Qa4) — _Saaé\;wpka ,
2%1(2%(23)) =0. (12) (24)

3. There exist some transformations of the second-order re-
ducibility parameters £2%3

2% — 2% = Q% (2*), (13)

such that the first-order reducibility parameters vanish
strongly (third-order reducibility relations)

2°2(£2%(24)) = 0. (14)

4. There is no nontrivial transformation of the third-order
reducibility parameters 2% that annihilates all the
second-order reducibility parameters

2B(R4) =0 & 2%=0. (15)

This is indeed the case for the model under study. In this
situation a complete set of first-order reducibility parameters
£2°? is given by

Q02 = (eMvr ehvrr g EWPI g ), (16)
and transformations (9) have the form

MV (£2°2) = —38,e"”,

- - (17)
€(29) =0,  "P(2%2) =49,e",
£,(2) = 0,&,
u( ) " ] as)
%-;wpk(gaz) — _Sagsul)p)»o'7
0,00 (£2%%) = 393(,0,),
uv( ) (1Y) (19)

Xuv (Qaz) = a[,LLO_U]s

with ervP, érverand EXVPA completely antisymmetric.
Further, a complete set of second-order reducibility parame-
ters £2%3 can be taken as

203 = (enveh gnvera) (20)
and transformations (11) are

e (£2%9) = 48, 8"

éuvpk(ém) — —SBUEMUPAU, 21
é Q% =0, EHvpAo (503 —0,

(om) =0, gun(@) .
GM(QM) =0,

where both é*'°* and é*"P*° are some arbitrary, bosonic,
completely antisymmetric tensors. Next, a complete set of
third-order reducibility parameters £2% is represented by

Q04 = (emrh), (23)

g;,wpko (Qm;) =0,

with é#YP29 an arbitrary, completely antisymmetric ten-
sor. Finally, it is easy to check (15). Indeed, we work in
D =5, such that 9,é*"°*° = ( implies €' = const.
Since é1VP*% are arbitrary smooth functions that effectively
depend on the spacetime coordinates, it follows that the only
possible choice is é#"P*7 = (.

We observe that the free theory under study is a usual lin-
ear gauge theory (its field equations are linear in the fields),
whose generating set of gauge transformations is third-order
reducible, such that we can define in a consistent manner its
Cauchy order, which is found to be equal to five.

In order to construct the BRST symmetry of this free the-
ory, we introduce the field/ghost and antifield spectra (2) and

7 = (. 1™, Cp GHP* Sy A, 25)
N = (C/wp’ n/wp)»’ C, guvpka’ Su)’ (26)
n% = (Cuvp)»7 nuvp)»a)’ N = (Cuvpxo) . 27)
Pgy = (0" Hi VI By, 67 Ky, £90%),(28)
U;I _ (C;iw n*, 77;1),0’ cH, g;up)” SEY A*’w), (29)
N = (Chvpr Mavpr> € Gpiupror $™) (30)
Moy = (Chvpas Mpwpra)s My = (Chipio)- 31)

The fermionic ghosts (25) correspond to the bosonic gauge
parameters (8), and therefore C*¥, n**P, GHPAand Ay
are completely antisymmetric and S, is symmetric. The
bosonic ghosts for ghosts (26) are respectively associated
with the first-order reducibility parameters (16), such that
CHvP | phvPh - and GHVPAO are completely antisymmetric.
Along the same line, the fermionic ghosts for ghosts for
ghosts n*3 from (27) correspond to the second-order re-
ducibility parameters (20). As a consequence, the ghost
fields C#P* and nP*? are again completely antisymmet-
ric. Finally, the bosonic ghosts for ghosts for ghosts for
ghosts n*4 from (27) are associated with the third-order re-
ducibility parameters (23), so C*"?*? is also completely an-
tisymmetric. The star variables represent the antifields of
the corresponding fields/ghosts. Their Grassmann parities
are obtained via the usual rule e(x}}) = (e(x?) + 1)mod 2,

where we employed the notations
x4 = (2%, ™, n*2, ™, ™), )
XZ = (d):xko’ 17:!1 ’ n;ktz’ 77:;3’ nfm)

It is understood that the antifields are endowed with the same
symmetry/antisymmetry properties like those of the corre-
sponding fields/ghosts.
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Since both the gauge generators and the reducibility func-
tions are field-independent, it follows that the BRST dif-
ferential reduces to s = 6 + y, where § is the Koszul-Tate
differential, and y means the exterior longitudinal deriva-
tive. The Koszul-Tate differential is graded in terms of the
antighost number (agh, agh (§) = —1, agh (y) = 0) and en-
forces a resolution of the algebra of smooth functions de-
fined on the stationary surface of field equations for action
(1), C*® ), X SS(I)J/SCD"‘O = 0. The exterior longitudinal
derivative is graded in terms of the pure ghost number (pgh,
pgh(y) =1, pgh(8) = 0) and is correlated with the origi-
nal gauge symmetry via its cohomology in pure ghost num-
ber zero computed in C* (X'), which is isomorphic to the
algebra of physical observables for this free theory. These
two degrees of generators (2) and (25)—(31) from the BRST
complex are valued like

pgh(®*) =0,  pgh(n*")=m,
. . (33)
pgh(®;,) = pgh(ng, ) =0.
agh(®%°) = agh(n®*") =0, agh(®* ) =1,
gh(®*) = agh(y™") gh(e;,)) .
agh(ny )=m+1,

for m = 1, 4. The actions of the differentials 8 and y on the
above generators read

(5(150(0 — O’ anam — 0, m :L—4) 8XA = O, (35)

Se* =09, H", SH; = —0,9,

—

36

SV* = 3, BMY, (30
1
8By = =50V, 8¢ =0,KM,
| (37)
8K;up = _58[M¢VP]’
kv |o 1 V] of vp]

§e* =—Eap<FW — ol P),

(38)
(SCZU = a[MH;k],
St =V, Sk, = Bl )
SCHH = 29,¢*,
8G s = 0Ky 85 = =9, (40)
SAY =39, 0P,
SCZU,O = _a[MC:p]’ Sn;tvp)\ = _alﬂntpk]’ @n
8C* =9,C**,
‘Sg;jvp)»o = _a[ug:pka]’ 42)
8™ =20, (3™ + A1) =28,C*0H,
3CZUpA = 8[U— ijk]’ SnvaAa = a[M n:p)»a]’ 43
5C* =—0;,C* @

Hvpro — [t~ vprole
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and respectively

(y@h, =0, yn; =0, m=1,4) < yxi=0. (44
yVu=0un, 45)

Y ®uv = 0 Coy,

yo =0, yH* =29,CH",

y B* = —33;;77”’”’0,

46
y K1 =48, G o
Vil = a[usv]a + 8[MAv]oz - zaaAp.v»

yCH = —33,C1,

(47)

yn=0,  yn"? =4 yC,=38,C, (48)
yg#upk — —SSUQ’“’M“’, )/S;w = 33(MSU), “9)
Y Ay = 1Sy,
VC;wp — 48)LC;wp)L, yn;wp)\ — _Saon/wpka,

(50)
yC =0,
ygﬂvp)»a — O, VSM — O, .
Vc;wpk — _Saac;wpkc’ ( )
yntPre =0,  yCHPe =, (52)

The overall degree that grades the BRST complex is named
ghost number (gh) and is defined like the difference between
the pure ghost number and the antighost number, such that
gh(8) =gh(y) =gh(s) = 1.

The BRST symmetry admits a canonical action s- =
(-, 8), where its canonical generator (gh(g) =0, ¢(5) =0)
satisfies the classical master equation (S, §) = 0. The sym-
bol (,) denotes the antibracket, defined by decreeing the
fields/ghosts conjugated with the corresponding antifields.
In the case of the free theory under discussion the solution
to the master equation takes the form

S=sy +/d5x [2H};0,C"" 4+ V™9,

=3B, o0 + ™" 91, Cy)

+4K* 9, GHoP*

Huvp
4+ (D St + B Avie — 200 Au)
—3C5,0,CHP + 4y Bttt

+ C*9,C = 5G% ), 0, G

+ 380, S,y + A0, Su) +4C,, 05, CHPH

— 50 0o AT = 5C 0, CHPA]. (53)

The solution to the master equation encodes all the infor-
mation on the gauge structure of a given theory. We re-
mark that in our case solution (53) decomposes into terms
with antighost numbers ranging from zero to four. Let us
briefly recall the significance of the various terms present
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in the solution to the master equation. Thus, the part with
the antighost number equal to zero is nothing but the La-
grangian action of the gauge model under study. The com-
ponents of antighost number equal to one are always pro-
portional with the gauge generators. If the gauge algebra
were non-Abelian, then there would appear terms simulta-
neously linear in the antighost number two antifields and
quadratic in the pure ghost number one ghosts. The absence
of such terms in our case shows that the gauge transforma-
tions are Abelian. The terms from (53) with higher antighost
numbers give us information on the reducibility functions. If
the reducibility relations held on-shell, then there would ap-
pear components linear in the ghosts for ghosts (ghosts of
pure ghost number strictly greater than one) and quadratic
in the various antifields. Such pieces are not present in (53)
since the reducibility relations (10), (12), and (14) hold off-
shell. Other possible components in the solution to the mas-
ter equation offer information on the higher-order structure
functions related to the tensor gauge structure of the theory.
There are no such terms in (53) as a consequence of the fact
that all higher-order structure functions vanish for the theory
under study.

3 Strategy

We begin with a “free” gauge theory, described by a La-
grangian action S(%[QDO‘O], invariant under some gauge trans-
formations

88y
spun 26 =0, (54)

8PN =Z° €1,
and consider the problem of constructing consistent interac-
tions among the fields @*° such that the couplings preserve
both the field spectrum and the original number of gauge
symmetries. This matter is addressed by means of reformu-
lating the problem of constructing consistent interactions as
a deformation problem of the solution to the master equation
corresponding to the “free” theory [39, 40]. Such a refor-
mulation is possible due to the fact that the solution to the
master equation contains all the information on the gauge
structure of the theory. If a consistent interacting gauge the-
ory can be constructed, then the solution S to the master
equation associated with the “free” theory, (S‘ , 5') =0, can
be deformed into a solution S,

S—>S=8S+AS1+228 + -
:§+k/dea+)»2/deb+)»3/dec
4. (55)
of the master equation for the deformed theory

(5,8)=0, (56)

such that both the ghost and antifield spectra of the ini-
tial theory are preserved. The symbol (,) denotes the an-
tibracket. Equation (56) splits, according to the various or-
ders in the coupling constant (or deformation parameter) A,
into the equivalent tower of equations

(5,.8)=0, (57)
2(51,8) =0, (58)
2(82.8) + (1. 81) =0, (59)
(83,8) + (81, 82) =0, (60)
2(84, 8) + (852, 82) +2(51, 53) =0 (61)

Equation (57) is fulfilled by hypothesis. The next one re-
quires that the first-order deformation of the solution to the
master equation, Si, is a cocycle of the “free” BRST differ-
ential s- = (-, S’). However, only cohomologically nontrivial
solutions to (58) should be taken into account, as the BRST-
exact ones can be eliminated by (in general nonlinear) field
redefinitions. This means that S pertains to the ghost num-
ber zero cohomological space of s, H? (s), which is generi-
cally nonempty due to its isomorphism to the space of phys-
ical observables of the “free” theory. It has been shown
in [39, 40] (on behalf of the triviality of the antibracket map
in the cohomology of the BRST differential) that there are
no obstructions in finding solutions to the remaining equa-
tions, namely, (59), (60) and so on. However, the resulting
interactions may be nonlocal, and there might even appear
obstructions if one insists on their locality. The analysis of
these obstructions can be done with the help of cohomolog-
ical techniques. As will be seen below, all the interactions in
the case of the model under study turn out to be local.

4 Standard results

In the sequel we determine all consistent Lagrangian inter-
actions that can be added to the free theory described by (1)
and (4)—(7). This is done by means of solving the deforma-
tion equations (58)—(61), etc., with the help of specific coho-
mological techniques. The interacting theory and its gauge
structure are then deduced from the analysis of the deformed
solution to the master equation that is consistent to all orders
in the deformation parameter.

For obvious reasons, we consider only analytical, local,
Lorentz covariant, and Poincaré invariant deformations (i.e.,
we do not allow explicit dependence on the spacetime co-
ordinates). The analyticity of deformations refers to the fact
that the deformed solution to the master equation, (55), is an-
alytical in the coupling constant A and reduces to the original
solution, (53), in the free limit A = 0. In addition, we require
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that the overall interacting Lagrangian satisfies two further
restrictions related to the derivative order of its vertices:

(i) The maximum derivative order of each interaction ver-
tex is equal to two.

(i) The differential order of each interacting field equa-
tion is equal to that of the corresponding free equation
(meaning that at most one spacetime derivative can act
on each field from the BF sector and at most two space-
time derivatives on the tensor field 7,4 ).

If we make the notation S; = f d°x a, with a local, then
(58) (which controls the first-order deformation) takes the
local form
sa=9,m", gh(a) =0, e(a) =0, (62)
for some local m*. It shows that the nonintegrated density of
the first-order deformation pertains to the local cohomology
of s in ghost number zero, a € H B (s|d), where d denotes
the exterior spacetime differential. The solution to (62) is
unique up to s-exact pieces plus divergences

a— a+sb+9,n". (63)

If the general solution to (62) is trivial, a = sb + d,n*, then
it can be made to vanish, a = 0.

In order to analyze (62) we develop a according to the
antighost number

I
a=) a, agh(@)=i,

~ (64)
gh(a;) =0, &(a;)=0,
and assume, without loss of generality, that the above de-
composition stops at some finite value of /. This can be
shown for instance like in [43] (Sect. 3), under the sole as-
sumption that the interacting Lagrangian at order one in the
coupling constant, ag, has a finite, but otherwise arbitrary
derivative order. Inserting (64) into (62) and projecting it on
the various values of the antighost number, we obtain the
tower of equations (equivalent to (62))

(HH
var=90,m , (65)
(I-nt
Sar+yaj_1=90, m (66)

i-DHH

Saj+yai_1 =0, m , I—1>i>1, (67)

N
for some local (%1) );—p.7- Equation (65) can always be re-
placed in strictly positive values of the antighost number by

yar =0, 1>0. (68)

@ Springer

Due to the second-order nilpotency of y (y* = 0), the solu-
tion to (68) is unique up to y-exact contributions

a1—>a1+yb1. (69)

If ay reduces only to y-exact terms, a; = y by, then it can be
made to vanish, a;j = 0. The nontriviality of the first-order
deformation a is translated at its highest antighost number
component into the requirement that a; € H'(y), where
H'(y) denotes the cohomology of the exterior longitudinal
derivative y in pure ghost number equal to /. So, in order to
solve (62) (equivalent with (68) and (66)—(67)), we need to
compute the cohomology of y, H(y), and, as will be made
clear below, also the local homology of §, H(3|d).

From definitions (44)—(52) it is possible to show that
H (y) is spanned by

F;= (go, uH", 3, Vyy, 8, B*Y,
IuPupls 3/4[(’“4)7 Ruvmaﬂ)’ (70)

the antifields x%, and all of their spacetime derivatives as
well as by the undifferentiated objects

N7 = (0, Dyvp, C, GHYPP0 S, pHtoPre [ CHopka) (71
In (70) and (71) we respectively used the notations

1

Ryvpiep = =5 Fuvpltec. p1- Dyivp = 0ruAvpis (72)

with f g = dg f. It is useful to denote by R, and R, the
trace and respectively double trace of R.pjas

Ruvia = UpﬁRqulaﬂa Ry = UpﬁUWRuvplaﬁ- (73)
The spacetime derivatives (of any order) of all the objects
from (71) are removed from H (y) since they are y-exact.
This can be seen directly from the last definition in (45), the
last present in (47), the first from (49), the second in (50),
the last from (51), and also using the relations

1
3otD;wp =Y |:_§ /wp|a:|,

1/1 1
BMS\,:)/[E(g MV+AM,,>1| E)/[ECMU:|.

Let ¢ (n7) be the elements with pure ghost number M
of a basis in the space of polynomials in the objects (71).
Then, the general solution to (68) takes the form (up, to triv-
ial, y-exact contributions)

(74)

ar =a;(IF;1, [xAD)e! (n7), (75)

where agh(c;) = I and pgh(el) = I. The notation f([¢g])
means that f depends on g and its spacetime derivatives
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up to a finite order. The objects «; (obviously nontrivial
in H(y)) will be called invariant ‘polynomials’. They are
true polynomials with respect to all variables (71) and their
spacetime derivatives, excepting the undifferentiated scalar
field ¢, with respect to which oy may be series. This is why
we will keep the quotation marks around the word polyno-
mial(s). The result that we can replace equation (65) with
the less obvious one (68) for I > 0 is a nice consequence of
the fact that the cohomology of the exterior spacetime dif-
ferential is trivial in the space of invariant ‘polynomials’ in
strictly positive antighost numbers. These results on H(y)
can be synthesized in the following array:

BRST  pgh Grassmann parity Nontrivial object

generator from H(y)

X4 0 (e(x®)+ DHmod2 [x}]

tD:‘O 0 0 [Fz] (76)
n¥%l1 1 1 r],DuvaaluAvp]

naz 2.0 C, g;wpko , Sp,

not3 3 1 an\),O)\U

nDt4 4 0 C[l,\)p)\.(f

where notations (2), (25)-(31), (33), and (70) should be
taken into account.

Inserting (75) in (66) we obtain that a necessary (but not
sufficient) condition for the existence of (nontrivial) solu-
tions ay_ is that the invariant ‘polynomials’ «; are (non-
trivial) objects from the local cohomology of Koszul-Tate
differential H(§|d) in antighost number / > 0 and in pure
ghost number zero,

(1-nt
30!1 ZBM J 5

(17_1)“
pgh( Jj ):0.

We recall that H (§|d) is completely trivial in both strictly
positive antighost and pure ghost numbers (for instance,
see [42], Theorem 5.4, and [43]), so from now on it is under-
stood that by H (8]|d) we mean the local cohomology of § at
pure ghost number zero. Using the fact that the free model
under study is a linear gauge theory of Cauchy order equal to
five and the general result from the literature [42, 43] accord-
ing to which the local cohomology of the Koszul-Tate dif-
ferential is trivial in antighost numbers strictly greater than
its Cauchy order, we can state that

(1-nH
agh( j ) =1-1,
o))

H; (§|d)=0 forall J >35, (78)
where Hj(5|d) represents the local cohomology of the
Koszul-Tate differential in antighost number J. Moreover,
it can be shown that if the invariant ‘polynomial’ «j, with
agh(ay) = J =5, is trivial in Hy(8|d), then it can be taken
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to be trivial also in H™ (5|d)
(DM
(a, = 8byp1 +0, ¢ agh(ay)=J 25) =
D (79)
ay=388j41+ Y
Dk
with both 841 and (y) invariant ‘polynomials’. Here,

H}“V (8]d) denotes the invariant characteristic cohomology
in antighost number J (the local cohomology of the Koszul—-
Tate differential in the space of invariant ‘polynomials’). An
element of Hlin" (6]d) is defined via an equation like (77), but
with the corresponding current an invariant ‘polynomial’.
This result together with (78) ensures that the entire invari-
ant characteristic cohomology in antighost numbers strictly
greater than five is trivial

HI™ (8|d)=0 forall J > 5. (80)

It is possible to show that no nontrivial representative of
H;(5|d) or H}“V(8|d) for J > 2 is allowed to involve the
spacetime derivatives of the fields [32] and [62]. Such a
representative may depend at most on the undifferentiated
scalar field ¢. With the help of relations (35)—(43), it can be

shown that H™ (8|d) and H(8|d) are spanned by the ele-
ments

agh Nontrivial rc_apresentative Grassmann
spanning H™ (8|d) parity
>5 None _
5 (W)y,vp)\o 1 (81)
4 (W)MW)}U n;tv,o)»o 0
3 (W)MVP’”ZupA’C*v ;v o I 1
2 (W);LvJI*’TI,ivp,C w, /w o SV AHIY ()
where
(W)uvpka = %Cuupxg +— d P (H[;Lcup)\a] + C[/chpka])
3
* * vk *
+ d(p3 (H[/LHV Cp)»cr] + H[MC Cka])
+d4—WH* HH*CS
do* (v Hp a0l
dSWH YHY H HHY, 82
+ 405 s (82)
dw d*w
W)pvpr = Wc;jvp)\ + d—(p2(H* vpAl + C [uv ,0)»])
+ WH[MHV Ch
+ o HHH S, (83)
¢
aw ., d*w
W)puvp = dy CMV,O dy g2 H[# vp]
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d*w
+ d—q)SH:Hj‘H;, (84)
aw ., d*w . .
W) = %CW + d—(szﬂHv, (85)

whit W = W(g) an arbitrary, smooth function depending
only on the undifferentiated scalar field ¢.

In contrast to the spaces (H;(8|d))s>2 and
(H iJ“V((S |d)) r>2, which are finite-dimensional, the cohomol-
ogy Hi(8]d) (known to be related to global symmetries and
ordinary conservation laws) is infinite-dimensional since the
theory is free. Fortunately, it will not be needed in the sequel.

The previous results on H (8|d) and H'™ (8|d) in strictly
positive antighost numbers are important because they con-
trol the obstructions to removing the antifields from the
first-order deformation. More precisely, we can successively
eliminate all the pieces of antighost number strictly greater
that five from the nonintegrated density of the first-order de-
formation by adding solely trivial terms, so we can take,
without loss of nontrivial objects, the condition I < 5 into
(64). In addition, the last representative is of the form (75),
where the invariant ‘polynomial’ is necessarily a nontrivial
object from Hi™ ().

5 Computation of first-order deformation

In the case I = 5 the nonintegrated density of the first-order
deformation (see (64)) becomes

a=ay+a; +ax+az+a4+as. (86)

We can further decompose a in a natural manner as a sum
between two kinds of deformations

a= aBF +Clint, (87)

where aBF contains only fields/ghosts/antifields from the BF
sector and a™ describes the cross-interactions between the
two theories.! The piece aPF is completely known [32]. It
is parameterized by seven smooth, but otherwise arbitrary
functions of the undifferentiated scalar field, (W, (©))u=Ts
and M(p). In the sequel we analyze the cross-interacting
piece, a™™.

Due to the fact that aBF and ™ involve different types
of fields and that aBF separately satisfies an equation of type
(62), it follows that a™ is subject to the equation

sa™ = 9" m, (88)

Decomposition (87) does not include a component responsible for
the self-interactions of the tensor field with the mixed symmetry (2, 1)
since any such component has been proved in [62] to be trivial.
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for some local current mﬁ“. In the sequel we determine the
general solution to (88) that complies with all the hypotheses
mentioned in the beginning of Sect. 4.

In agreement with (86), the general solution to the equa-
tion sa™ = aumﬁ“ can be chosen to stop at antighost num-
ber I =5

amt — agl[ +a=nt +aiﬂt +a§nt +a41‘nt +agnt. (89)

We will show in Appendices A, B and C that we can always
take al™ = ai™ = ai™ = 0 into decomposition (89), without
loss of nontrivial contributions. Consequently, the first-order
deformation of the solution to the master equation in the in-

teracting case can be taken to stop at antighost number two
int __ _int int int
a " =ay ta; t+ay, 90)

where the components on the right-hand side of (90) are sub-
ject to (68) and (66)—(67) for I =2.

The piece aizm as solution to (68) for I = 2 has the general
form expressed by (75) for I =2, with a; from H,™ (5|d).
Looking at formula (76) and also at relation (81) in antighost
number two and requiring that aizm mixes BRST generators
from the BF and (2, 1) sectors, we get that the most general

solution to (68) for I = 2 reads®

ay" = qon*™ " nDyp + (910G + q11C*) S,

+q12A™ Dy

‘Izﬁﬁ*“”a“ﬂi)wﬁvﬂ + S KiC + kG, (91)

+
where all quantities denoted by g or k are some real, arbi-
trary constants.

In the above and from now on we will use a compact
writing in terms of the Hodge duals

~ 1

VIV gVl Vil 5—jyr . 92
(5 _ J)‘ Ky -5 ( )

Consequently 7**¥, G** and QNP are the Hodge duals of
N30 Griypy» and respectively GHvio
Substituting (91) in (66) for I = 2 and using definitions

(35)—(52), we determine the solution ailnt under the form

» 1

2In principle, one can add to aiz’“ the terms (Mg)’””anp +
%(M3)“"U“ﬂl~)wbuﬁ, where (M»)*" is the Hodge dual of an ex-
pression similar to (85) with W (¢) — M2 (¢), and (M3)"" reads as
in (85) with W(¢) — M3(¢). Both M, and M3 are some arbitrary,
real, smooth functions depending on the undifferentiated scalar field.
It can be shown that the above terms finally lead to trivial interactions,
so they can be removed from the first-order deformation.



Eur. Phys. J. C (2009) 63: 491-519

499

~ 1 -
- 36]12l*’”p<Vpr + EnFuv|p>

413
3 B*uwaaﬁFualpDVﬂ

o <k ok _ —gﬂ> an, (93)

where F |y is the Hodge dual of F, ‘ff 9 defined in (3) with
respect to its first three indices

~ 1
F)\M\a = —8)LMUPGF|‘;'OG. (94)

3!
In the last formulas K 5o 18 the dual of the three-form K#"P
from action (1), B***° and K**° represent the duals of the
antifields B* and respectively K Lvp from (28).

In the above a‘m is the solution to the homogeneous equa-
tion (68) in antlghost number one, meaning that aim is a non-
trivial object from H (y) in pure ghost number one and in
antighost number one. It is useful to decompose a”lt like in
(C4)

—int ~int vint
a) =ay +ay, (95)

with &i“t the solution to (68) for I = 1 that ensures the con-
sistency of a‘m in antighost number zero, namely the exis-
int as solution to (67) for i = 1 with respect to

tence of a;
the terms from a‘lnt containing the constants of type ¢ or k,

and alm the solution to (68) for I = 1 that is independently
consistent in antighost number zero

8”‘“ =—ydy+ B,ﬂhg. (96)
With the help of definitions (35)—(52) and taking into ac-
count decomposition (C.4), we infer by direct computation
int Amt *UVO k kUVP
day" =6|a 2k1 K + 3OK Dy
+yco+ 0.j) + xo. 97)
where

Vuvpk

0__C0+ 16 ﬂﬁ/ta\pﬁvﬂ\)\

e

x0 = —3qo[ (3" V'Y VP Dy + VH(3Y 1) Fyuv

ke
0K’“’> Fuy, (98)
_ VM’?RM]

1
BT 18 (qlod)lwp +6g11 K" p)D/wp

— 3‘1_12[30(pr|a —

. Ga[Mva])]

X (ZVablw + nﬁ,uv\ot)

q13 5 = =
+ ?eﬂw“’a“ﬂmm Q2V,Dyg +nFupp), (99

and j are some local currents. In the above V#"** and ¢#"*
represent the Hodge duals of the one-form V,; and respec-
tively of the two-form ¢,, from (2) and ﬁwmﬂ is nothing
but the Hodge dual of the tensor R""” op defined in (72)
with respect to its first three indices, namely

~ 1

Rkalaﬂ = 3' AauupR“:{‘;gp~ (100)

Inspecting (97), we observe that (67) for i = 1 possesses so-

lutions if and only if xo expressed by (99) is y-exact mod-

ulo d. A straightforward analysis of xo shows that this is not

possible unless

g99=4q10=q11 =q12=¢q13=0. (101)
Now, we insert conditions (101) in (91) and identify the

most general form of the first-order deformation in the inter-

acting sector at antighost number two

at = §*(k1C + ka2G). (102)

The same conditions replaced in (97) enable us to write

ko -~
ain = <2k1K*’”p + £¢*W>DW. (103)
Introducing (103) in (95) and then the resulting result to-
gether with (101) in (93), we obtain

k> ~
i = 2% (klc“ + ?gﬂ)

ks -
- <2k11<*“"ﬂ + 3—é¢*M”P)DW +an, (104)

Next, we determine aim as the solution to the homo-

geneous (68) for / = 1 that is independently consistent in
antighost number zero, i.e. satisfies (96). According to (75)
for I =1 the general solution to (68) for / = 1 has the form

a" :t*w‘p( MV\p’?+LW\pDaﬂy)
+ (Vamz,,

+ B*ﬂMZ/Sﬂ + ¢2,3M,‘f’3p + KaﬂVMzeg)pr

+(P M;wp +H¥ MIWP

+ (VEN“ +¢*N + HyN® + Bj; NP
+¢ag NP + Ko, NP7 ), (105)

where all the quantities denoted by L, M, N, M, or N are
bosonic, gauge-invariant tensors, and therefore they may de-
pend only on Fj; given in (70) and their spacetime deriva-
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tives. The functions L,;,|, and Liﬁrp exhibit the mixed sym-

metry (2, 1) with respect to their lower indices and, in ad-
dition, L;’f’l/p is completely antisymmetric with respect to
its upper indices. The remaining functions, M, M, N, and
N, are separately antisymmetric (where appropriate) in their
upper and respectively lower indices.

In order to determine all possible solutions (105) we de-
mand that Zli]m mixes the BF and (2, 1) sectors and (for the
first time) explicitly implement the assumption on the deriv-
ative order of the interacting Lagrangian discussed in the
beginning of Sect. 4 and structured in requirements (i) and
(ii). Because all the terms involving the functions N or N
contain only BRST generators from the BF sector, it fol-
lows that each such function must contain at least one tensor
Ryvplap deﬁned in (72), with F as in (3). The corresponding
terms from Zz‘lm, if consistent, would produce an interacting
Lagrangian that does not agree with requirement (ii) with
respect to the BF fields and therefore we must take
N®=N=N%=N% = N* = N7 = . (106)
In the meantime, requirement (ii) also restricts all the func-
tions M and M to be derivative-free. Since the undifferen-
tiated scalar field is the only element among F; and their
spacetime derivatives that contains no derivatives, it follows
that all M and M may depend at most on ¢. Due to the fact
that we work in D =5 and taking into account the various
antisymmetry properties of these functions, it follows that
the only eligible representations are

My, = My = szp =0, (107)
Mgep = U138aﬁuvp’ Mﬁfp = U148aﬂuvp’

1
MY = —Us8%, 6887, (108)

mp — o w o]

with Uys, Uyg, and U;s some real, smooth functions of ¢.
The same observation stands for L, and LZ‘?)TP, so their
tensorial behavior can only be realized via some constant
Lorentz tensors. Nevertheless, there is no such constant ten-
sor in D = 5 with the required mixed symmetry properties,

and hence we must put

L7 o,

Lyvip =0, uvlp =

(109)

Inserting results (106)-(109) in (105), it follows that the
most general (nontrivial) solution to equation (68) for I = 1
that complies with all the working hypotheses, including
that on the differential order of the interacting Lagrangian,
is given by

vint A
alln = ghvp U(U13BZV + U14¢;‘))Dp)ﬁ

+U15K*MV'ODMW). (110)
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By acting with § on (110) and using definitions (35)—(52)
we infer

8ai™ = y[(=3U14K™ +2U15¢"") F iy |
+ 3 (872 U13V, Doy,
— &uvpro Uta K" DP* + Uyagpyy D)
+ euvpio [— (81U13) V" + (3 U14) K**"] DP*?
— (0,U15)9vp DM
+ 2F"(6U1431.Gv) — Ur5[,.Cuy). (111)

Comparing (111) with (96), we conclude that function Uj3
reduces to a real constant and meanwhile functions U4 and
U\s must vanish

Uiz =uy3, U4 =0=Uys, (112)
so (110) becomes
a" = &M u13B% Do (113)

which produces trivial deformations because it is a trivial
element from H;(5§|d) :

v int VoAO *
a; :8(8“’0 u13nuvaAg)

+ 0, ("2 u13 B}, Ao (114)
and by further taking
a™ =0. (115)

As a consequence, we can safely take the nontrivial part
of the first-order deformation in the interaction sector in
antighost number one, (104), of the form

int __

ky ~
" = 2 (kIC“ + gzgﬂ)

kr ~
- <2k1K*’“”’ + %qﬁ*””p)pr. (116)
In addition, (115) leads to
&o=0, iy =0 (117)

in (96). Replacing now (101) and (117) in (97), we are able
to identify the piece of antighost number zero from the first-
order deformation in the interacting sector as

. ko ~ .
ay" = <k1¢>’“ - 2—3!{’”) Fuy +ag", (118)

where Ez‘om is the solution to the ‘homogeneous’ equation in
antighost number zero
—int __

yait = o,ml. (119)
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We will prove in Appendix D that the only solution to (119)
that satisfies all our working hypotheses, including that on
the derivative order of the interacting Lagrangian, is Ez(i)m =
0, such that the nontrivial part of the first-order deformation
in the interaction sector in antighost number zero reads

ait = <k1¢’“’ — ki[%/”)Flw. (120)
20
The main conclusion of this section is that the general
form of the first-order deformation of the solution to the
master equation as solution to (58) for the model under study
is expressed by

Si =/d5x(aBF +a™), (121)
where aBF can be found in [32] and
aint — aé)nt +ailnt +ai2nt
~ ky ~
= §*(k1C + k2G) — 2t;j (klcl* + ?zg“)
2k K *Hvo k2 T HUVP D
- 1 + %fb Hvp
LV k2 o LV
+ | k1o —%K Fuy. (122)

It is now clear that the first-order deformation is parameter-
ized by seven arbitrary, smooth functions of the undifferen-
tiated scalar field (W, (@©)=1% and M (p) corresponding
to aBF and by two arbitrary, real constants (k; and ks from
a™). We will see in the next section that the consistency of
the deformed solution to the master equation in order two in
the coupling constant will restrict these functions and con-
stants to satisfy some specific equations.

6 Computation of higher-order deformations

With the first-order deformation at hand, in the sequel we de-
termine the higher-order deformations of the solution to the
master equation, governed by (59)—(61), etc., which comply
with our working hypotheses.

In the first step we approach the second-order deforma-
tion, S, as (nontrivial) solution to (59). If we denote by A
the nonintegrated density of the antibracket (S, S1) and by
b the nonintegrated density associated with S,

(81, 81) =/d5x A, S» =/d5x b, (123)
then (59) takes the local form
A+2sb=9,n", (124)

with n#* alocal current. By direct computation it follows that
A decomposes as
A = ABF At (125)
where APF involves only BRST generators from the BF sec-
tor and each term from A™ depends simultaneously on the
BRST generators of both sectors (BF and mixed symme-
try (2, 1)), such that A™ couples the two theories. Conse-
quently, decomposition (125) induces a similar one at the
level of the second-order deformation
b=0bBF +p (126)
and (124) becomes equivalent to two equations, one for the
BF sector and the other for the interacting sector

APF 4 25pPF = 9ialF, (127)

Aint + Zsbint — a,unint.

m

(128)

Equation (127) has been completely solved in [32], where
it was shown that it possesses only the trivial solution
pBF =0 (129)

and, in addition, the seven functions (Wa)azl,_s and M ()

that parameterize aBF are subject to the following equations:
am
i =0,
¢ (130)
Wi(p)W2(p) =0,
dw
Wi 23w W)
¥
+6Ws(p)We(p) =0, (131)
W2 (@) W3 (@) + Ws(p)Ws(p) =0, (132)
dW,
Wi(p) ;f) +3Ws () We(p)
— 6Wa (@) Wale) =0, (133)
Wi(p)We(p) =0,
(134)
W2 (@) Wale) + W3(p)Ws(p) =0,
Wa(p)Ws(p) =0,
(135)

Wa(p)Ws(p) =0.

Now, we investigate the latter equation, (128). By direct
computation A™ can be brought to the form

. ky - ky ~
% =] 3R 35 ) (ka0 558

+ A A, (136)
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where n}f‘ is a local current and
ary® _

rint (l)

oy Iy 1)
i=1 p=0

In Al we used the notations

5 (1) ka
YW =kW;4+—= 50 Ws,

ks (138)

v(2) _
Y'Y =k Wy + 5. 5] W3,
5(3) ka
Y =k1W6+§W2, (139)

and the polynomials X f,,i) are listed in Appendix E (see for-
mulas (E.1)-(E.12)). It can be shown that (137) cannot be
written as a s-exact modulo d element from local functions
and therefore it must vanish
At — ), (140)
which further restricts the functions and constants that para-
meterize the first-order deformation to obey the supplemen-
tary equations

k2
ki W — W5 =0,
1 3+60 5

k (141)
k — 0,
1W4+2 5,W3
ko
kiWe + 5'W2_0 (142)

As a consequence, the consistency of the first-order de-
formation at order two in the coupling constant (the exis-
tence of local solutions to (59)) on the one hand restricts the
functions and constants that parameterize S to fulfill (130)—
(135) and (141)—(142) and, on the other hand, enables us
(via formulas (123), (126), (128), (129), (136), and (140)) to
infer the second-order deformation as

. 3 kr ~
5y — S — /dsx[i(kl¢“” - 2—(2)1(,”>
ky -
ki — 2K ) |
x ( T ﬂ

In the second step we solve the equation that governs the
third-order deformation, namely, (60). If we make the nota-
tions

(143)

(Sl,sz)=/d5xA,

S3 =/d5xc,
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(144)

then (60) takes the local form
A+sc=29,p", (145)
with p* alocal current. By direct computation we obtain

RS>

i=1 p=0

dpy(t)
s

where p* is a local current and the functions U ,(,i) appear-
ing in the right-hand side of (146) are listed in Appendix
E (see formulas (E.13)—(E.21)). Taking into account the re-
sult that the functions and constants that parameterize both
the first- and second-order deformations satisfy (130)—(135)
and (141)—(142) and comparing (146) with (145), it results
that the third-order deformation can be chosen to be com-
pletely trivial
S3=0. (147)

Related to the equation that governs the fourth-order de-
formation, namely, (61), we have that

2(81,83) + (52, $2) =0. (148)

From (148) and (61) we find that S4 is completely trivial

S4=0. (149)
Along a similar line, it can be shown that all the remaining
higher-order deformations Si (k > 5) can be taken to vanish

(150)

The main conclusion of this section is that the deformed
solution to the master equation for the model under study,
which is consistent to all orders in the coupling constant,
can be taken as

S=S+4AS| + A2y, (151)

where S reads as in (53), S| is given in (121) with a'™ of the
form (122), and S, is expressed by (143). It represents the
most general solution that complies with all our working hy-
potheses (see the discussion from the beginning of Sect. 4).
We cannot stress enough that the (seven) functions and (two)
constants that parameterize the fully deformed solution to
the master equation are no longer independent. They must
obey (130)—(135) and (141)-(142).

7 The coupled theory: Lagrangian and gauge structure

In this section we start from the concrete form of (151) and
identify the entire gauge structure of the Lagrangian model
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that describes all consistent interactions in D = 5 between
the BF theory and the massless tensor field #,,, ¢ . To this end
we recall the discussion from the end of Sect. 2 related to
the relationship between the gauge structure of a given La-
grangian field theory and various terms of definite antighost
number present in the solution of the master equation. Of
course, we assume that the functions (W,) a=1.6° M together
with the constants k1 and k» satisfy (130)—(135) and (141)—
(142). The analysis of solutions that are interesting from the
point of view of cross-couplings (at least one of the con-
stants k1 and k» is nonvanishing) is done in Sect. 8.

The piece of antighost number zero from (151) provides
nothing but the Lagrangian action of the interacting theory

1
SL[(D‘XO] =/d5x{Huaﬂ(p+ EBMUB[MVV]
1 vp
+ gK OuPupl
+A.[W1 V. H* + Wa B9t

— W3 Vo KM + M ()

4 goPrde <9W4 VoaKpy Kse

1
+ ZWSVaqbﬂy(bae + WeByg Ky5£>:|

1
— E(Flwplaplwpld _ 3FMVFMV)
ky ~
A k"’ — =K
+ ( 19 20 >

3A ky ~
[W+ <k1¢uv—2—éKW>:|}, (152)

where @0 is the field spectrum (2). The terms of antighost
number one from the deformed solution of the master equa-
tion, generically written as @;‘0 z% o™, allow the iden-
tification of the gauge transformations of action (152) via
replacing the ghosts n*! with the gauge parameters £2¢!
8@ =Z% , Q. (153)
In our case, taking into account formula (151) and maintain-
ing the notation (8) for the gauge parameters, we find the
concrete form of the deformed gauge transformations:

Sop =—AWie, (154)
dw dW:
SoH" = 2D, + 4 =L Hr — 352 gmeg, e
do do
dW,
~ Mgy e

503
dw. dw
+on( =2B —3=2kmrey, g,
dw de
dWs
1227 5V ghor

dWw,
+ Z)Nd—(péBMvgvaﬁyégaﬂya

aw.
+3AKHP (4d—4 vapozﬂ)/ﬁsaﬂys
@

dWs
- W‘?vmﬂyeaﬁy>

dWy

+ AghvPro [Zw%paﬂyl{ ﬂygkaa’ﬁ’V’Ka Ve

dw 1
- —5¢Up (V)»S(r - Z¢ko€>:|,

8V, = € — 2AWak), — 2he0pi0 WoE P27,

(155)

(156)

SoBM = =30, — 2).Wet”
+ 6AW3 (200 617P% + KHYPE,)
+ A(12W4 K P & 50,56 %P7°

— WsehPro ¢ 1 &5), (157)

SQ(IJ);LU = D[(;)%‘v] + 3)»(W3¢;w€ - 2W4V[p,8v]a/3y8$aﬁya)

+ 3AEpvprc <2W4Kﬂ“’e + WeeP*?

k
— = gloyrel) 158
300 X (158)
S K1 = 4D ERPA _ 3 (WrehVP 4 W3 K" e)
LVPAO 1
— A& Ws| V,&s — E(f?kof
— 20kl 5P, (159)

S.Qtuv\a = 8[/Levloz + 8[u)(v]oz - 2301)(;1,11

k2
_Ua[ugv]ﬂyz%sﬂyaes (160)

A
+ )\klaa[ugv] - 51

where, in addition, we used the notations

dw,
D,=0, —A——V,,
do

(161)
D) =03, +£3 W3V,

We observe that the cross-interaction terms,

ko ~
x(quw _ 2—?)1(/“) Foy.
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are only of order one in the deformation parameter and cou-
ple the tensor field #,,), to the two-form ¢, and to the
three-form K#"? from the BF sector. Also, it is interesting
to see that the interaction components

3A2 ko ko -~
( ¢#U 20 'uv)<kl¢;w_%l(;w>,

2

which describe self-interactions in the BF sector, are strictly
due to the presence of the tensor f;,,, (in its absence k| =
ko = 0, so they would vanish). The gauge transformations of
the BF fields ¢, and K#" are deformed in such a way to
include gauge parameters from the (2, 1) sector. Related to
the other BF fields, ¢, H*, V,,, and B*”, their gauge trans-
formations are also modified with respect to the free theory,
but only with terms specific to the BF sector. A remarkable
feature is that the gauge transformations of the tensor 7 ¢
are modified by shift terms in some of the gauge parameters
from the BF sector.

From the components of higher antighost number present
in (151) we read the entire gauge structure of the interacting
theory: the commutators among the deformed gauge trans-
formations (154)—(160), and hence the properties of the de-
formed gauge algebra, their associated higher-order struc-
ture functions, and also the new reducibility functions and
relations together with their properties. (The reducibility or-
der itself of the interacting theory is not modified by the de-
formation procedure and remains equal to that of the free
model, namely, three.) We do not give here the concrete
form of all these deformed structure functions, which is an-
alyzed in detail in Appendix F, but only briefly discuss their
main properties by contrast to the gauge features of the free
theory (see Sect. 2).

The nonvanishing commutators among the deformed
gauge transformations result from the terms quadratic in the
ghosts with pure ghost number one present in (151). Since
their form can be generically written as %(n;ﬁlc"”

Bivi
1p* p* aOﬂO B :
@a()d)ﬂo Bivi ynPin¥t, it follows that the commutators

among the deformed gauge transformations only close on-
shell (on the stationary surface of the deformed field equa-
tions)

a0fBo 38"

[82,,802,10% =38P + M, Soh

(162)

Here, 8S"/8&% stand for the Euler—Lagrange (EL) deriv-
atives of the interacting action (152), 21 and §2, represent
two independent sets of gauge parameters of type (8), and
£2 is a quadratic combination of £21 and £2,. The exact form
of the corresponding commutators is included in the Appen-
dix F (see formulas (F.3)—~(F.9)). In conclusion, the gauge
algebra corresponding to the interacting theory is open (the
commutators among the deformed gauge transformations
only close on-shell), by contrast to the free theory, where
the gauge algebra is Abelian.
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The first-order reducibility functions and relations fol-
low from the terms linear in the ghosts for ghosts appear-
ing in (151) Because they can be generically set in the form
%, 2% 0y + 597, P, Ca 060y 22 it follows that if we trans-
form the gauge parameters £2°! in terms of the first-order
reducibility parameters £2% as in
Y —» Q% =74 QZQ‘“, (163)
then the transformed gauge transformations (153) of all
fields vanish on-shell

L
a0 fo S

SQ(Q)(paO = 7% a Zo1 azéaz — C.(2 5¢ﬂ

~0. (164)
Along the same line, the second-order reducibility functions
and relations are given by the terms linear in the ghosts for
ghosts for ghosts appearing in (151), which can be generi-
cally written as (15, Z%* o5 — nal¢gocg‘;f’° +..)n*. Con-
sequently, if we transform the first-order reducibility para-
meters 2% in terms of the second-order reducibility para-
meters £2% as in

2% — Q%2 =77, 2%, (165)

then the transformed gauge parameters (163) vanish on-shell
QU ([}Olz ({20!3)) =27, ZOlz [}Oﬂ

Calﬂo ss-

o 3o ~ 0. (166)

Finally, the third-order reducibility functions and relations
are withdrawn from the terms linear in the ghosts for ghosts
for ghosts for ghosts from (151), which have the generic
form (0%, Z* o, + 03, P4, Cc22Po 4 . ype such that if we
transform the second-order reducibility parameters 2% in
terms of the third-order reducibility parameters 2% asin

06 —> QB =7%, 2%, (167)
then the transformed first-order reducibility parameters
(165) again vanish on-shell

foLe) (_(Vzols (QOM)) = 7% “ 793 a4_(}014

— Cazﬂo ss-

5 om0 (168)

In the above the notations 29!, §2%2, fz‘“, and 2% are
the same from the free case, namely (8), (16), (20), and
(23), while the BRST generators are structured according
to formulas (25)—(31). It is now clear that the reducibil-
ity relations associated with the interacting model ((164),
(166), and (168)) only hold on-shell, by contrast to those
corresponding to the free theory ((10), (12), and respectively
(14)), which hold off-shell. Their concrete form is detailed
in Appendix F.
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8 Some solutions to the consistency equations

Equations (130)—(135) and (141)—(142), required by the
consistency of the first-order deformation, possess the fol-
lowing classes of solutions, interesting from the point of
view of cross-couplings between the BF field sector and the
tensor field with the mixed symmetry (2, 1).

I. The real constants k| and k, are arbitrary (k% + k% > 0),
functions M and W, are some arbitrary, real, smooth
functions of the undifferentiated scalar field, and

Wi(p) = W3(@) = Walp) = Ws(p) =0, (169)

ka
We(p) = ———Wa(p).

170
Stk (170)

The above formulas allow one to infer directly the solu-
tion in the general case k» = 0. This class of solutions
can be equivalently reformulated as: the real constants
k1 and kp are arbitrary (k% + k% > 0), functions M and
We are some arbitrary, real, smooth functions of the un-
differentiated scalar field, and

W1(p) = Wa(g) = Wa(p) = Ws(@) =0, (171)
S5k

Wz<¢>=—k—lwﬁ<<p). (172)
2

The last formulas are useful at writing down the solution
in the particular case k1 = 0.

II. The real constants k1 and k, are arbitrary (kl2 + k% > 0),
functions M and Ws are some arbitrary, real, smooth
functions of the undifferentiated scalar field, and

Wi(p) = Wa(p) = We(g) =0, (173)
k
Wi(p) = —W;Ws(w), .

k \?
Walp) = (5'—kl> Ws(o).

The above formulas allow one to infer directly the solu-
tion in the general case k> = 0. This class of solutions
can be equivalently reformulated as: the real constants
k1 and kp are arbitrary (k12 + k% > 0), functions M and
W4 are some arbitrary, real, smooth functions of the un-
differentiated scalar field, and

Wi(p) = Wa(p) = Wes(p) =0, (175)
k
Ws(p) = —2- szk—‘W4(w>,
2 (176)
5l \?
Ws(p) = (k—> Wa(p).
2

The last formulas are useful at writing down the solution
in the particular case k; = 0.

III. The real constants k; and k; are arbitrary (k% + k% > 0),
functions W and Ws are some arbitrary, real, smooth
functions of the undifferentiated scalar field, and

Wa(p) = We(p) = M(g) =0, (177)
k
W3 (p) = —ﬁws(@,
(178)
kb \?2
Walp) = (ﬁ) Ws ().

The above formulas allow one to infer directly the solu-
tion in the general case k» = 0. This class of solutions
can be equivalently reformulated as: the real constants
k1 and kj are arbitrary (kf + k% > (), functions W; and
W4 are some arbitrary, real, smooth functions of the un-
differentiated scalar field, and

Wa(p) = We(p) = M(p) =0, (179)
ki
Wi(p) = —2~5!k—W4(<p),
: (180)
51\ 2
WS((P) = (k—) Wa(p).
2

The last formulas are useful at writing down the solution
in the particular case k| = 0.

For all classes of solutions the emerging interacting the-
ories display the following common features:

1. There appear nontrivial cross-couplings between the BF
fields and the tensor field with the mixed symmetry
2,1).

2. The gauge transformations are modified with respect to
those of the free theory and the gauge algebras become
open (only close on-shell).

3. The first-order reducibility functions are changed during
the deformation process and the first-order reducibility
relations take place on-shell.

Nevertheless, there appear the following differences be-
tween the above classes of solutions at the level of the
higher-order reducibility:

(a) For class I the second-order reducibility functions are
modified with respect to the free ones and the corre-
sponding reducibility relations take place on-shell. The
third-order reducibility functions remain those from the
free case and hence the associated reducibility relations
hold off-shell.

(b) For class II both the second- and third-order reducibility
functions remain those from the free case and hence the
associated reducibility relations hold off-shell.
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(c) For class III all the second- and third-order reducibility
functions are deformed and the corresponding reducibil-
ity relations only close on-shell.

9 Conclusion

The most important conclusion of this paper is that under the
hypotheses of analyticity in the coupling constant, space-
time locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the preservation of the
number of derivatives on each field, the dual formulation of
linearized gravity in D = 5 allows for the first time non-
trivial couplings to another theory, namely with a topolog-
ical BF model, whose field spectrum consists in a scalar
field, two sorts of one-forms, two types of two-forms, and
a three-form. The deformed Lagrangian contains mixing-
component terms of order one in the deformation parameter
that couple the massless tensor field with the mixed sym-
metry (2, 1) mainly to one of the two-forms and to the
three-form from the BF sector. There appear some self-
interactions in the BF sector at order two in the coupling
constant that are strictly due to the presence of the tensor
field with the mixed symmetry (2, 1). One of the striking
features of the deformed model is that the gauge transforma-
tions of all fields are deformed. This is the first case where
the gauge transformations of the tensor field with the mixed
symmetry (2, 1) do change with respect to the free ones (by
shifts in some of the BF gauge parameters). All the ingre-
dients of the gauge structure are modified by the deforma-
tion procedure: the gauge algebra becomes open and the re-
ducibility relations hold on-shell.
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Appendix A: No-goresultfor I =5Sina

In agreement with (86), the general solution to the equation
sa'™ = Bl‘mii“ can be chosen to stop at antighost number
1=5:

aint :a(i)m +ailnt+ai2nt +a§“t+aint +ai5m, (Al)
where the components on the right-hand side of (A.1l) are
subject to (68) and (66)—(67) for I =5.

The piece aism as solution to (68) for I = 5 has the general
form expressed by (75) for I =5, with a5 from HS"™(5|d).
According to (81) at antighost number five, it follows that
HSinV(SId) is spanned by the generic representatives (82).
Since aiSnt should effectively mix the BF and the (2, 1) tensor
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field sectors in order to produce cross-couplings and (82) in-
volves only BF generators, it follows that one should retain
from the basis elements ¢(7) only the objects containing
at least one ghost from the (2, 1) tensor field sector, namely
Dy, or S,,. Recalling that we work precisely in D =35, we
obtain that the general solution to (68) for I =5 reduces to

. 1 - ~ o~ o~ ~ ~
al = 5((Ul)c +(02)G)Dya D Dgyo ™’
1, - . ..
+ 5((U3)nS“ — (Us) D" Do Dppo®f) S, (A2)

Each tilde object from the right-hand side of (A.2) means
the Hodge dual of the corresponding non-tilde element, de-
fined in general by formula (92). The elements U are dual
t0 (U)y,..us as in (82), with W (¢) respectively replaced by
the smooth function U (¢) depending only on the undiffer-
entiated scalar field ¢.

Introducing (A.2) in (66) for I =5 and recalling defini-
tions (35)—(52), we obtain

. 1. - - B+ OCF
al = _ED,WD“%“”[(UOA <CADﬁv + ECFﬁvM)
. 15 - 3=
_ (Uz))n(gngﬂv + Eg ﬂuk>:|
1., "
+ U3 (VS +nCop)S
1 -~ ~ ~
= 7O [ D" (Do Dy’ Cyy.

~2Dya Fpppo s,

— F"PY Dy D g Suo® oy ] + ay™. (A.3)
In (A.3) (U)* are dual to (83), with W (¢) — U (¢). In addi-
tion, C,,, is implicitly defined by formula (74) so it is a ghost
field of pure ghost number one without definite symme-
try/antisymmetry property, C*'* is its associated antifield,
defined such that the antibracket (C,,,, C #AY s equal to the
‘unit’ 8,87

C*V}\ = 35*11)» + A*V}n' (A4)

The nonintegrated density C_lim stands for the solution to the
homogeneous equation (68) for I = 4, showing that a,™ can
be taken as a nontrivial element of H (y) in pure ghost num-

ber equal to four.
~int

At this stage it is useful to decompose a," as a sum be-
tween two components
—int __ ~int vint
a, =a, +a,, (A5)

where &‘i‘m is the solution to (68) for / = 4 which is explicitly
required by the consistency of ¢ in antighost number three

(ensures that (67) possesses solutions for i =4 with respect
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to the terms from (A.3) containing the functions of type U)
and a)" signifies the part of the solution to (68) for I =4

that is independently consistent in antighost number three
ai = —y & + 8, (A.6)

Using definitions (35)—(52) and decomposition (A.5), by di-
rect computation we obtain that

. . 1 ~
day = 8[&1{“ —55"S ((W”BZV

1 -
U JLVPA
+—12( 3)

1 -
+§(U3)MUP * r/uupk

Npvp

1 -
+ye3s+ 08 + 1, (A7)

where we use the notation

1 - -
c3=—C3+ E(UI)MT D/L,oalw

~ ~ ~ 3 - ~
X I:D/JOI (2.6 Doy — SCAFaukr) + ECFpa|)LFava:|

1
240
- 1zg~kﬁav|¢1) - 30g~ﬁpauﬁav|a]

(UZ)AJ [)upO‘Mv [ﬁpa (kko [)av

1 -

- 550" [S“(6chcm — Nl
3 U

+ ETICAngMO’
1 7. \MVO R 1 - LVpo
1 -

+ E(UB)MV,O)»U 772va> SaCO'a

1 - [
— ﬁ(U@*”c‘*ﬂ[D“”p(6Dme,mcw

+ Sﬁua\kﬁpﬂ|osu + [)vozﬁpﬁtkolu)

+3F[U))O ‘)\DUO((DﬂﬂCUﬂ _Zﬁﬂﬂ‘”sﬂ)]’ (AS)
1 ~ - e
16 == (07 C + (027 G)o" Dya D R
1 .
+ g(Us)WﬂSpDuv,o
1 - ~ ~
_ E(U4)Aaaaﬁ[—3Rﬁ;pDvaDpﬂSu
+ DM Dy (D Doy — 6R g0 Si) ] (A9)
B oo pBlraOul | ’

and jél are some local currents. In (A.7)—~(A.9) (U)*" and
(U)"P denote the duals of (84) and (85) with W(p) —

U (). In addition, (U)Hvrr represents the dual of (U), =
‘ZI—ZH; and (U)*"P* the dual of U (p). Inspecting (A.7),
it follows that the consistency of a‘i{“ in antighost number
three, namely the existence of a_i{“ as solution to (67) for

i =4, requires the conditions

X3 =y + 0.y (A.10)
and
Aint __ lSaS (0 );,LVB* + l(f] );wp *
a4 - 2 o 3 nv 3 3 nl,“)p
1 - JLVPA
+ E(U3) nﬂyp)\
1 -
+ @(Ug)“””“n,ﬁupm), (A.11)
where we made the notations ¢3 = —(ai3“t + ¢3) and f;‘ =
3 int @
gn) — jé‘ . Nevertheless, from (A.9) it is obvious that x3 is

a nontrivial element from H(y) in pure ghost number four,
which does not reduce to a full divergence, and therefore
(A.10) requires that y3 = 0, which further imply that all the
functions of type U must be some real constants

Ui(p) =uy,

Us(p) = us,

Uz (@) = uz,
(A.12)

Us(p) = ua.

Based on (A.12), it is clear that aism given by (A.2) vanishes,
and hence we can assume, without loss of nontrivial terms,
that

int __
as =0

(A.13)

in (A.1).

Appendix B: No-go result for I =4 in a™

We have seen in Appendix A that we can always take (A.13)
in (A.1). Consequently, the first-order deformation of the so-
lution to the master equation in the interacting case stops at
antighost number four

aim — aé)nt +ailnt +ai2nt +aént _i_aéi‘nt’ (B.1)
where the components on the right-hand side of (B.1) are
subject to (68) and (66)—(67) for I =4.

The piece af‘m as solution to (68) for I = 4 has the general
form expressed by (75) for I = 4, with a4 from Hjnv S|d).
According to (81) at antighost number four, it follows that
H i“" (8]d) is spanned by some representatives involving only
BF generators. Since aj‘“t should again mix the BF and the

(2, 1) tensor field sectors, it follows that one should retain
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from the basis elements e4(77?) only the objects containing
at least one ghost from the (2, 1) tensor field sector, namely
D, or S,,. The general solution to (68) for / = 4 reads

1
;{“_En <qlS S“—l—?a‘“’D ) ﬁDﬁvn)

+ (Us)*nDyyS"
+ (@) C + (T7)"G)S,

1 e
- Z(Ug)wkaWD”ﬂDW DMy 088

- %(09)MDuvpbuabpﬁ7]Uaﬂ, (B.2)
where each element generically denoted by (O)* is the
Hodge dual of an object similar to (83), but with W re-
placed by the arbitrary, smooth function U, depending on
the undifferentiated scalar field, (Usg).py reads as in (83)
with W(g) — Us(¢), and g > are two arbitrary, real con-
stants.

Introducing (B.2) in (66) for I = 4 and using definitions
(35)—(52), we determine the component of antighost number
three from ¢™™ in the form

. 1
agm = quﬁ*“SvC,w

1 ~kA AV T NS N 3~

+ 8q2n o Du(xD D/SVVA + EFﬂvl)»n
1 - ~ ~ ~

+ 50" [V Dup = 1Fyp)S” + 0 0 DypCir ]
1 - v

- E(Uﬁ) (A/LUC - ZS[LCU)
1 - v s 2 =

- =(Uy) A;wg + —S,ugv
2 5
1 -~ ~ ~ -

— E(Ug)/“aaﬁ [DWDM(DW Vi + F”ﬂwn)
1 NAa 1ypB

+ EF/MplvD D"Pn

1 - s
— E(Ug)”’sprD”“DpﬁD” F? 00,088

+a, (B.3)
where each (U)"" is the Hodge dual of an object of type
(84), with W replaced by the corresponding function of
type U. Here, amt is the general solution to the homoge-
neous equation (68) for I = 3, showing that agm is a nontriv-
ial object from H (y) in pure ghost number three.

At this point we decompose a‘3“t in a manner similar to

(AS)

(B.4)

6_li3m Amt + v%nt’
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where &;m is the solution to (68) for I = 3 that ensures the
consistency of a”‘t in antighost number two, namely the ex-

istence of a‘m as solution to (67) for i = 3 with respect to
the terms from a‘3”t containing the functions of type U or the

constants g1 or g, while Zli3m is the solution to (68) for I =3
which is independently consistent in antighost number two

Sa vmt

= —y& + Bty (B.5)

Based on definitions (35)—(52) and taking into account de-
composition (B.4), we get by direct computation

Samt — 8|:&i3nt _ %ﬁ*kaauvbuabaﬂbﬂvB;ta
-~ <(Us)“““B;iu
+ 3 (Us)“””“nwp —(Us)'“p“n# k) Dqp”
L 6t Dy " 57 ( (o) By
+ 5%ap Dy (Uo)™™ Bjy

1 - 1 -
- §(U9)[/L)»O')/niﬂy E(U9)Mkayan:ay5)i|

+yer+ 0y + xo. (B.6)

where
3
)= —0C2 + 12 7l (S’Ot,wp - 50 CM,C,,)\>

_ -/ . _
+ %U*AHO_MUDMQ (Dﬂtﬂ ‘/)L + EFD[’BMﬂ) Fﬁv\a

+ = (US)ILW[V/A( vA|pS _kac)‘)

l 1~
1 7 _\MVAC p* 1 - HUVPAT %
+§ (US) Buv—i_g(US) n;,“)p
X (I'ZAMGSO[ - f)mcg‘)
1 -
+ E(U6)'uvp(Aqup + Su¢vp)
L@ (Ao + 1SR
_E( 7) ;wg,o"‘z nwhvp
1 - - O
§ O ey D (D P,
+2F DY)F? | oaiy0)p
1 - I - ~
_ g(l]9),l,L)»tTO_O(ﬂ [Dﬂvp (4DUOZFPI3|G V)\ + FWXMFpﬂW T})

+2Fyuplo D™ (Epﬁ Vit Fpﬂ\xn)]
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- %(@Wf’yoaﬂ (2Duup £,
- F/wpIVDW)DpﬂB:a

+ %(09)““”%&[3 (2Duup B 5
- uvplébm)ﬁpﬂ’?;ayv

a1
6

(B.7)

X2 = ﬁ*MUSpD;wp

1 -~
+ E(US)MUPU( 3Ruk|va )

vpoz

2 h [(ac,é*wa)bﬂm;p

3
+ En*ApRﬁvMpn}

I - 1 - -
+ g(Uﬁ)m}pDuv,@C + 8(U7)MV'0D;W,OQ
1 - M e aaaa
= 5 U8 pvpro Oaty 09yp D" D DV R

1 -~ -
+ 1 (U9)"** 0 (2D 0o R™ o

— Ruvplao DY) DPP, (B.8)

and j2” are some local currents. Reprising an argument sim-
ilar to that employed in Appendix A between (A.10) and
(A.13), we find that the existence of aizm as solution to (67)
for i = 3 finally implies that x, expressed by (B.8) must van-
ish. This is further equivalent to the fact that all the functions
of type U must be some real constants and both constants
q1,2 must vanish

Us(¢) = us, Us(¢) = u,
(B.9)
U7(9) = u7,
Us(¢) = us, Ug(¢) = uo,
(B.10)
=0=q.

Inserting (B.9) and (B.9) in (B.2), we conclude that we can
safely take

ai™ =0 (B.11)

in (B.1).

Appendix C: No-go result for I =3 in a™™

We have seen in the previous two Appendixes A and B
that we can always take (A.13) and (B.11) in (A.1). Con-
sequently, the first-order deformation of the solution to the
master equation in the interacting case stops at antighost
number three

amt _a(l)l’lt +a11nt+a12nt +a§m, (Cl)

where the components on the right-hand side of (C.1) are
subject to (68) and (66)—(67) for I = 3.

The piece a‘m as solution to (68) for I = 3 has the general
form expressed by (75) for I = 3, with a3 from H3inV é|d).
Looking at formula (76) and also at relation (81) in antighost
number three and requiring that a‘m mixes BRST generators
from the BF and (2, 1) sectors, we find that the most general
solution to (68) for I = 3 reads?

altt = e (qsnSu +qaS" Dy
1 v 0B K4
— EQSUaﬂDp,va D +g6S™"nSy

+ 20" (@1C" + sG) Bua D By
+ (U10)* DG + (U11)"* D1 C
+ %(Ulz)lwaaﬁnﬁm Dy, (C.2)
where any object denoted by g represents an arbitrary, real

constant. Inserting (C.2) in (66) for I = 3 and using defini-
tions (35)—(52), we can write

- 1
alzm 613'7*W<V;L5u + EnAp.v>

o+ L (Cp DY + 5 Fipu)

qs - ~ ~
_ 1 */M?O.alg (ZD;LUp F e F;L\)p|SDUa) Dﬂﬂ
- q6C*‘w QV,S, + ncuv)

1 e
+ ZU’“’(KNC*A — q3G**) Dy D* Fg )5

1 2~ =
- E(UIO)M p( /w\pg + = /ngp)

Ul

~ ~ 1 -~
+ (Ull)MVp <D,uvcp - EFuvpC>

1 - .
+ 5<U12>”“pa“ﬂ(VMDm

+ 0 Fau) Dpp + ay". (C3)

The component alzm represents the solution to the homoge-

neous equation in antighost number two (68) for I =2, so

aim is a nontrivial element from H (y) of pure ghost number

two and antighost number two. It is useful to decompose a‘2“t

as a sum between two terms

(C.4)

—int __ ~int vint
ay =ay +a,

3In principle, one can add to ai3m the term (M), DMV SP, where
(M1) 1, Teads as in (84), with W (¢) — M (¢). It is possible to show
that such a term outputs only trivial deformations.
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with 213"‘ the solution to (68) for I = 2 that ensures the con-

sistency of aizm in antighost number one, namely the exis-

int a5 solution to (67) for i = 2 with respect to

tence of a]
the terms from 61‘2“t containing the functions of type U or

the constants denoted by ¢, and éizm the solution to (68) for
I = 2 that is independently consistent in antighost number
one

vint __

G = —y &y + . (C.5)

Using definitions (35)—(49) and decomposition (C.4), by
direct computation we obtain that

. N
Saitt = a[ag“ -3 ((Uu)/”“’ B,
1 - - -
+ 5(Ulz)wpmﬁzvp>o°‘ﬁDmDaﬁ]

+yer+ it + x1, (C.6)

where we used the notations
M 1 Dk UVO
c1=—C| — EB q3 VA
q4 = ~
~ %0 3Cua Foptp + tuvia D)
qs ~ ~ ~
+ 7000 (Dyap Feh, — 2Fuaﬁ|vD”)FﬂU|p}
+ Q6t*uv|p(6vp-cvp — Ntuvip)
1 -~ - -
+ E(Ull)uvpl(FuvlpCA + Dp.v¢p)»)

I G oop\ 5 Feb :
- ZUW (CI7¢*M) - EK*M)DuaFaﬂMFﬁvIP

o I T
- E(UIO)WM (FMVng?» + ZDMVKM)

l -~ uvpk _af N [ I
+§(U12) o V;/,Dvanﬁl)»_ZnFuawFpﬂM
1 - .-

+ L0097 B, B o, ©
1 -~
X1 = EB*IWP |:6]3(77Dp,vp + 38,0 Vop)
— 440" (Dyva Do + 3R puajup Sp)
3gs ok Sk O\ 7
+ TUAU(Ruaﬁ\vaa _2Dl10lﬁRa \vp)Dﬂa
— 6g6t*""1° (31, V1)) S,

1 qs8 ~ N DB p
+ Ea’” <q7¢*“ - EK*M)DMaDaﬁRﬂVM

1 - - -
— E(Ulo)“”“Rmmg
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1 -~ ~
- E(Ull)MVpARﬂvlp)\C

- %(Uuw*o“ﬁanRvﬂm, (C.8)
and j f‘ are some local currents. It is easy to see that x; given
in (C.8) is a nontrivial object from H (y) in pure ghost num-
ber two, which obviously does not reduce to a full diver-
gence. Then, since (C.6) requires that it is y-exact modulo
d, it must vanish, which further implies that all the functions
of type U (¢) are some real constants and all the constants
denoted by ¢ vanish

Uio(p) = uo, Ui (p) = u11,

Uia(p) =uy2, (C.9)
B=qs=q5=q6=q7=q3 =0.

Inserting conditions (C.9) and (C.10) into (C.2), we con-
clude that we conclude that we can safely take
aMt=0 (C.10)

in (C.1).

int

Appendix D: No-go result for I =0ina

The solution to the ‘homogeneous’ equation (119) can be
represented as

an = a4 g, (D.1)
where

yait =0, (D.2)
yag™ = d,my (D.3)

and nig is a nonvanishing, local current.

According to the general result expressed by (75) in both
antighost and pure ghost numbers equal to zero, (D.2) im-
plies
ay™ =ag™ (LFz)), (D.4)
where Fj are listed in (75). Solution (D.4) is assumed
to provide a cross-coupling Lagrangian. Therefore, since
Ryvplap 1s the most general gauge-invariant quantity de-
pending on the field 7,4, it follows that each interaction
vertex from Zzgm is required to be at least linear in R ypjap
and to depend at least on a BF field. But Ry,jqp con-
tains two spacetime derivatives, so the emerging interacting
field equations would exhibit at least two spacetime deriva-
tives acting on the BF field(s) from the interaction vertices.
Nevertheless, this contradicts the general assumption on the
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preservation of the differential order of each field equation 3(7(%) 8(7(%)

with respect to the free theory (see assumption (ii) from the nay = i gl

beginning of Sect. 4), so we must set ((/;) o (D.12)
~/int 3_7'[ — 0 —8 T =

ap" =0. (D.5) 2 EY - (g kool —

Next, we solve (D.3). In view of this, we decompose agmt

with respect to the number of derivatives acting on the fields
as

i 0 (I @
aim =97+ %+ %, D.6)

@) . . . . o
where each 7 contains precisely i spacetime derivatives. Of

course, each ng) is required to mix the BF and (2, 1) field
sectors in order to produce cross-interactions. In agreement
with (D.6), equation (D.3) is equivalent to

0 oH

V(JT) = Bu(m)o, D.7)
1 nHH

y(n) = au%z)o, (D.8)
2 )M

y7 = 3,0, (D.9)

Using definitions (45)—(47) and an integration by parts it is
possible to show that

0

) Ok o
YW =0,my — <8M )SW
Oty (v]er)

©0)

am
20, Agp
3faﬁ|u atu[a\ﬂ]

+

©

(205,
i (a'“aHv ) (a“aBTH)
(w3

(0)
nhvP
[ a B vp]

o a%
—-2(a C,+ (9 Hvpk
( a¢>,,w) v (“‘aKW )g

0
From (D.10) we observe that (n) is solution to (D.7) if
and only if the following conditions are satisfied simulta-
neously

+

(D.10)

©0) 0)

o _ am _
w = w =
Myl Otaplu D.11)
. )
oW
e 37707 aHV] = 0’

0
Because (rr> is derivative-free, the solutions to (D.11)—(D.12)
read

©0) 0)

om _ vl am _n
ot ’ aHr
(’;)”'“ (D.13)
o _—y
Vv,
0 0
o7 o7
aBm M 3¢y, = Juv
(D.14)
a7
—:k Vo>
K mp T

where tHAVIY Ry, ¥, buy, fuv, and ky,, are some real,
constant tensors. In addition, 7#"1% display the same mixed
symmetry properties like the tensor field #**1% and buv, fuvs
and k;,, are completely antisymmetric. Because there are
no such constant tensors in D = 5, we conclude that (D.11)—
(D.12) possess only the trivial solution, which further im-
plies that

©_o. (D.15)

Related to (D.8), we use again definitions (45)—(47) and
integrate twice by parts, obtaining

1
1) (HH 8(71)
yw =0,my — | Op——)Sup
Sty lp)
) )

4 4
— —20, Aup
8tulalp) H Stupin
(1) )
ST ¥4
0 cr —(9,—
(s ) = (s, )
()
S
pvp
+ (a[MSBVp]>n

57 s
_ HVPA
2(% o >C., + <8“‘3Kvm>g . (D.16)

1
Inspecting (D.16), we observe that (71) satisfies equation
(D.8) if and only if the following relations take place simul-
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1
taneously This means that the entire dependence of @ on top|p 1S triv-
1
8(1) 5(1) ial (reduces to a full divergence), and therefore (JT) can at
3y T _ , 3y T o_ , most describe self-interactions in the BF sector. Since there
8tu(lp) Stap| (D.17) is no nontrivial solution to (D.8) that mixes the BF and (2, 1)
8(711) field sectors, we can safely take
Au SHY 0, o
7 =0. (D.26)
5% 57
O m =0, um sBvl In the end of this section we analyze equation (D.9). Tak-
) ) (D.18) ing one more time into account definitions (45)—(47), it is
2
Ha_n =0, a[ua—fpx] = easy to see that (D.9) implies that the EL derivatives of (n)
L 8K are subject to the equations
The solutions to (D.17)—(D.18) are expressed by o) @)
om sm
— =0, 9,—— =0, D.27
57 57 " btuaip) " Stapin (b-2D
= d,s"VF, = 9,7, (D.19)
8ZH(0¢|/3) 8’0{/3\//. 5(]_2[) S(JZT)
5% s O 5 o1 = a”m =0
L (D.28)
sHw M 8V, 52
D20) §,— =0
M M wspvel —
5 s o o8B
s — b g =0 T 5% 5%
g D21) 5, = Oy —— = 0. (D.29)
8(711) M(S‘f’uu 7 ey

SKE = Apkvpl,

where the quantities shvaB  gaBuy g yuv by, f*P, and
k. are some tensors depending at most on the undifferenti-
ated fields @*° from (2). In addition, they display the sym-
metry/antisymmetry properties

Suvaﬂ — _svlwlﬁ — SMV/S“’ (D22)
TPy — _pPany _ _ pabvn (D.23)
LleBulv _ 0, (D.24)

and v*V, fHYP and k,, are completely antisymmetric. Be-
cause both tensors s“V®? and t*FH1V are derivative-free, their
are related through

s;wocﬂ — _L,,u(aﬁ)v‘ (D.25)

Using successively properties (D.22)—(D.24) and formula
(D.25), it can be shown that 7%/ is completely antisym-
metric. This last property together with (D.24) leads to

P —

which replaced in the latter equality from (D.19) produces

1
5%

Stapip
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(2) . .. .
Because 7 (and also its EL derivatives) contains two space-
time derivatives, the solution to both equations from (D.27)
is of the type

2
57

=0,05TP1P (D.30)

Stuvla

where 7#'1%F depends only on the undifferentiated fields
@* and exhibits the mixed symmetry (3, 2). This means
that 7#v°1#P is simultaneously antisymmetric in its first three
and respectively last two indices and satisfies the identity
gluveledf — (. The solutions to the remaining equations,
(D.28) and (D.32), can be represented as

(@) (@)

§ . B
—nzauh, _nzavl—);w’
SHH (SV#
@ (D.31)
¥4 -
§ Brv = by,
2 @
o z o _
[ Hop o
Suv G ST S = Okl (D.32)

where the functions v#V, f Kve “and IE,“, are completely an-
tisymmetric and contain a single spacetime derivative.

Let N be a derivation in the algebra of the fields #,,q,
H*, V,, B, ¢, K*'P, and of their derivatives, which
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counts the powers of these fields and of their derivatives

d
N= Z((am ntuvla) 90

=0 1+ ptn Tivler)
+ (am e Un HM) #
0@, HY)
- Oy Vi)
OOyt oopan Vi)
d
+ (3u1 n Bﬂv) 9(@y1,, B
a

+ Opyopn ) s
SR TC )

+ (aﬂl"'ﬂnKuvp) (D33)

a
Oy KH0P) )
We emphasize that N does not ‘see’ either the scalar field ¢
or its spacetime derivatives. It is easy to check that for every
nonintegrated density ¥ we have

vw = Y, + OV
T St M SHNE
8l1/ sW
—vV BMY
av wt spu
SW

4
Puv + SKnvp K+ s

n D.34
5o (D.34)

If ¥ is a homogeneous polynomial of degree n in the
fields tyvje, H*, Vi, B*Y, ¢y, K*'P and their derivatives
(such a polynomial may depend also on ¢ and its space-
time derivatives, but the homogeneity does not take them
into consideration since ¥ is allowed to be a series in ¢),
then

Ne® — g™

Based on results (D.30)—(D.32), we can write

2 1 -
NT = =3 Ry — ity H
1 Vv
+§v“ 31 V) + 2b,,0, B
1 - -
- gprava] —3kyuyd, K" +9,,m*. (D.35)
2
We decompose (JT) along the degree n as
(n)
PP (D.36)
n>2
2 (n) 2 (n) 2
where N(JT) = n(n) (n = 2 in (D.36) because (71), and

2) (n)

hence every m , is assumed to describe cross-interactions

between the BF model and the tensor field with the mixed
symmetry (2, 1)), and find that

2 2 (n)
NT =307

n>2

(D.37)

Comparing (D.37) with (D.35), it follows that decomposi-

tion (D.36) induces a similar one with respect to each func-
tion TAY1%B o 51 b, fRUP, and Ky,

ekl =N EE =y ke,
n>2 n>2
(D.38)
vu.v -MV
(n 1)’
n>2
_ i _ Frve
= Zb(n—l)’ flwp Z (n—1)°
>2 >2
" " (D.39)
Zk('l 0N
n>2

Inserting (D.38) and (D.39) in (D.35) and comparing the re-
sulting expression with (D.37), we get

o
2 L —uvplep 1z
T =g Tty Ruvelep = > hn-1) 8 H”

1 2 _
- 123
+%”(n71)aluvvl+,_lb(nfl)avBuv

1 Zuvp 3w
3 (n— 1)aﬂ¢vp] k(n 1) 3" K yuvp
+ aum(n). (D.40)

Replacing the last result, (D.40), into (D.36), we further ob-
tain

2 1. N
(7'[) = _§TMVP|0‘}3RMUP|0U3 - hauHﬂ

1. A
+ Ev“va[ﬂv‘,] +2bﬂ8v3’w

14 N
- gf“””a[ucbup] —3kyud, K" 4+ 9,m",  (D.41)
where
~ 1._ | ~ 1-
FHvplap =Zn (;valt)xﬁ =Z;h<"—1)’
n>2 n>2
(D.42)
AUV —,uv
v Z V=1
n>2
~ 1-
g _ ;wp _ VP
b —anww Z Sy
2 2
"= "= (D.43)
Ty _ Y
k anm h*
n>2
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So far, we showed that the solution to (D.9) can be put in
the form (D.41). By means of definitions (36)—(37), we can
bring (D.41) to the expression

2 1
P S Ry + Oy

+8(—¢*h — B, 0" — 2V ib"

+ K,

wvp flwp o 3‘1’*“”]2#‘))'

(D.44)
The §-exact modulo d terms in the right-hand side of (D.44)
produce purely trivial interactions, which can be elimi-
nated via field redefinitions. This is due to the isomor-
phism H' (s|d) ~ H' (y|d, Hy (8)) in all positive values of
the ghost number and respectively of the pure ghost num-
ber [42], which at i = 0 allows one to state that any solution
of (D.9) that is §-exact modulo d is in fact a trivial cocycle
from H° (s|d). In conclusion, the only nontrivial solution to
(D.9) can be written as

@ _Lowwiepg oo (D.45)
where 418 displays the mixed symmetry (3,2), is
derivative-free, and is required to depend at least on one field
from the BF sector. But R,,,,|¢p already contains two space-

time derivatives, so such a (721) disagrees with the hypothesis
on the differential order of the interacting field equations
(see also the discussion following formula (D.4)), which
means that we must set

T =o. (D.46)

Substituting results (D.15), (D.26), and (D.46) into de-
composition (D.6), we obtain

agm =0, (D.47)

which combined with (D.5) proves that indeed there is no
nontrivial solution to the ‘homogeneous’ equation (119) that
complies with all the working hypotheses

—int __

am =o. (D.48)

Appendix E: Notations from Sect. 6

In this Appendix we list the concrete form of the various
notations made in Sect. 6. _

The polynomials denoted by X g) that enter A™ given in
(137) read

x{V = 68*nC + 120*%(V,,C +1C,)
+6 (ZBZuC + ViuCol — dpv ’7) Y
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—2(201%,,C +2B,,Cp
- 3KZUP17

£ = [(-2c;

— P Vp])bkaguvpka, (E.1)

—2C},, Vo) —4H[,B},))C

vp'l nBvpl

+ (=2H], VyCpy + 2H] o)1)
+ ZCFMUC;:]’?] D}chuvma
— 12H;t**nC + 6(H[;, V,)C
+2H;nC, +C;;,;nC)F"", (E2)
X5 = [(=2H;,Clyn — 2Hj; H} V1) C
+2H;: Hy Con] Dig 670
+6H HnCF",
X§" =4H}HHnC D",

(E3)
(E4)
XY = —12-51(S*y + 20V, + 2B}, F*)G

—4-50%,,
+41- 410G, — 41 41B” D, G

DG

+6-41(¢ "y — K"PV,) Dy
— 344K o — 4V, G FHY, (E.5)

7 =—4-5(C}

A s
ool + Cluy Vol + 2H;j, By ) Dao G727

* v * ok
—12-51(C F"™n — 2H1*n
+ Hj\, Vi F*™)G — 12 - 41 H Gy ™

—12-41(C n + Hf, Vi1) Dpr G

—6-41H K" D, (E.6)
XY = —4-5\(H]' Chn + HY H V) Dio G

—12-41H}H 1D, G**

—12-S\H HnF"™G, (E.7)
X = —4 . S\HXH H 0Dy, eGP, (E.8)
X = —6-518%7 + 12 41

+ 4 B*V Dy, — 36,0 FM, (E.9)
X =2.51C%,, Daon ™

+6-51(2H; " — C  F')i]

+6-41Cs Dpyn"P* +3 - 4L H: Dy

+6 - 4H] 7, F™ (E.10)
XV =251} Cl ) Dao ™

+6 - AHHY (Dpyn* — SFI'7), (E.11)
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7 (3) * Ik Ik N LVPLO
Xy’ =2-5\H HHDjsn"""". (E.12) o _ SSL dehv SSL dekvr
’ e By S, H" =S H" =20 = — 32
The functions appearing in (146) and denoted by U ,(,l) are ¢ ¢
of the form o sSt dg, sSL ggnver E4)
8¢, do SKvor do '
) ky - i @
Uy’ = —9(2k1¢’“’ — —K“”) - -
10 [602,,82,1Vu =082V, (E5)
x (2B};,C + ViuCo) — dum). (E.13) . 8St dervp
82,,80,]1B" =5 B" 43— F.6
[602,,852,] +35 00 o (F.6)
L
O _ wv k_2 o LY N N _ 5 _ 8§ ds‘)]
U, = 9(k1¢ 20K ) (802, 62, 1Ppv = 02¢uv SHW dg (E7)
¥ nC — H* < = < St dgrver
x [ChnC = HY (V,C +nC))], Bl 5 5o K = 5 K — T il , (E8)
ky = 2
) v 2 puv \ g g
U, =-9 ki¢o"" — =K" )H H nC, (E.15) -
2 ( 19 2}9 pi (62> 82, tuvje = 0. (E9)
Uy = 108( 1" — —21@”) . .
20 The gauge parameters from the right-hand side of the above
% (4OB:;,VQ~ n Ulg;w _ SVHQV), (E.16) formulas are defined through
oy __ (v _ Hvp JLVPA
U(2) 188aﬁy88(c*vn + H[);Vv]) 229 = (E ,e=0,e"" 5, E s
. 60 =0, xu» =0), (F.10)
X <k1¢“ - EKM >goq3y6£
where
—368papys H [ k1" — k—ZIZW’ nG*fre  (E.17) AW
® 20 M — k{— 1 (6(1)6(2)/w _ E(2),5(1)Mv)
2) _ w _ k2 g dg
U2 = 18s4gys: | k19 20K AW
+6 3 |:¢p>» (6(1)5(2)/“)11A _ 6(2)5(1)1111/)1)
x Hy Hing™#"™, (E.18) 4y
1
ko ~ e (De@) _ D)D)
Us” :98vpocﬂ?/<k1¢w L ””)ﬂ“ﬁy, (E.19) R KIENET — €08
9 ky -~
U(3) 4801,3)/55 (k1¢uu ZOKMV) notﬁyBs -2V, (E)El)é;@)uvpl _ E)Ez)g(l)uvpl)}
ky - sz
— 18eppy5e H; <k1¢>“” B %K’“‘”>ﬂ’3 e (B.20) g 6 g
ka - dw,
3 2
USY = 9eapysc H H <k1¢“” - EKW);;“WS. (E.21) + 3d—¢68/’“ﬁy‘3 (Do gapys _ (uvog(hapys)
AL |:5,oozﬁ s K0P (c(Dg@eByd _ (g (Dapyd)
Appendix F: Deformed gauge structure de
L) (Dapys g 'B'y's
If we denote by £2{"" and £25" two independent sets of gauge + ggwp Erapysconpys Vb TTOE TN

parameters,

thl = (E(l)lw’ 6(1)’ E(l)luw7 s;gl)v é(l)uvm 9(1‘)) X/(le)) (E.1)
‘Qzal = (E(Z)lw’ 6(2)’ E(Z)lwp7 5&2)7 §(2)/wﬂ)\, 9/&2‘}’ X;(sz)) (F2)
then the concrete form of the commutators among the de-
formed gauge transformations of the fields associated with
(F.1) and (F.2) (and generically written as in (162)) read

[591 5 S.Qz](/) = O, (F3)

1 o dWs De 2) (1
_ E8/wp o 2o |:¢)pk(€( )Sé ) _ )Sé ))

—vasi”sé””, (E11)

eMvP — 8)»|: (E)fl)g(z)uvpk _ E)Ez)g(l)uvpk)

_ iguvma (

(Dapyde o' p'y's
2 § §

Waerapys€oa' pry's
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+ Wﬁi”éﬁ”)} (E12)
D2 2) (1
£, = —33[W3(eWg® — @)
+ 2W48uvpk(r (G(I)S(Z)VPMT _ 6(2)5(1)\19)»0)]’ (F.13)
guvpl = 3A[W3 (G(I)S(Z)MWJA _ E(2);§(1)Mvpk)
1
— — WaehvPro ((Mg@ _ (@DgM)) | F14
5 Waeh (g5 &) (F.14)
In addition, we made the notations
0D = 0,500 i =T,2. (F.15)

Related to the first-order reducibility, the transformations
(163) are given by

dW2

€"(2) = —3D e — P —=(B"E — 6¢,0.6"1%)

dw _ _
3 2V, (K#PE — 10¢;,5472)

dWy -
—6xsaﬁy58—d K"MPy,EePrie

A
_ _Suvpxo

2

dW5
p¢k0€

dW6 = 8
+ )\W (Eaﬁy&s B;wsotﬂy ¢

+ 3K e oy 5€%P7°), (E.16)
€(82) = 20(Wak — eqpyss WeE“P7%), (F.17)
1P (2) = 40, P + 2AW1EMP — 20 Waghy o VPP
+ 20K (W3E — 2eap, e WaEP7)
A _
- gswp“’ Wsdro &, (F.18)
£,(2) = D\VE + 6rapyse WaV, EXP7%°
—3A&vpro "V6EVPMr s (F.19)
é/w,ok(fz) — _5D(+)§MU,0)\O’ + 3AW2€MUpA
o
A _
— Zeﬂ”ﬂ“ W5V, &, (E.20)
0,0 (£2) = 39(,0y)
k>
+ Moy (kls += saﬁVSSE“ﬂV‘Sg), (F21)
Xuv (Q) = 8[;/,01)], (F.22)
while the first-order reducibility relations (164) read
839 =0, (F.23)
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. sSt d*w
S H" = x—{6vp[ Lenve

SHY dg?
d2W3
dg?

(103 €17%7 — K/7E)

d2W4 -
— 2eapyse > Kuvpgaﬁyés

1 d? Ws
- ESMUP}LO d 2 ¢)LU$}

d*w,
d —26 (3epapys KMPEPT?
®

+2
+ gaﬁy(ﬁaBuvé—:aﬂySS)

d2
de?

+25 2 (668" - BW%)}

|:dW1 e
de

8B

dW3

10 FUVPAT
- 2 (10,8

K;wpg)

dWy

—2¢ K;wp‘aﬁyée
afyde d§0 E

1 dWs -
_  oMVpro
65 d§0 ¢AU§:|

SSL [ dW, - dWs
( & — 80(57/86 %-aﬁyz%)
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Regarding the second-order reducibility, the transforma-
tions (165) take the concrete form
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such that the second-order reducibility relations (166) be-
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