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The nonlinear propagation of electrostatic solitary waves is studied in a collisionless electron-

positron pair plasma consisting of adiabatic cool electrons, mobile cool positrons (or electron holes),

hot suprathermal electrons described by a j distribution, and stationary ions. The linear dispersion

relation derived for electrostatic waves demonstrates a weak dependence of the phase speed on

physical conditions of positrons in appropriate ranges of parameters. The Sagdeev’s pseudopotential

approach is used to obtain the existence of electrostatic solitary wave structures, focusing on how

their characteristics depend on the physical conditions of positrons and suprathermal electrons. Both

negative and positive polarity electrostatic solitary waves are found to exist in different ranges of

Mach numbers. As the positrons constitute a small fraction of the total number density, they slightly

affect the existence domains. However, the positrons can significantly change the wave potential at

a fixed soliton speed. The results indicate that the positive potential can largely be grown by increas-

ing the electron suprathermality (lower j) at a fixed true Mach number. It is found that a fraction of

positrons maintain the generation of positive polarity electrostatic solitary waves in the presence of

suprathermal electrons in pair plasmas. Published by AIP Publishing.
https://doi.org/10.1063/1.5000873

I. INTRODUCTION

Electron-positron (e-p) pair plasmas are present in many

astrophysical environments such as the solar wind,1–6 the

Earth’s magnetosphere,7,8 pulsars,9,10 and microquasars.11

Moreover, e-p plasmas can be created by ultra-intense laser

interaction with matter in the laboratory.12–16 The long-lived

runaway positrons can also be generated in post-disruption

tokamak plasmas.17 In dense astrophysical environments,

ions usually exist in addition to electrons and positrons, for

example, nearby hot white dwarfs and microquasar.18,19

Energetic electrons, accelerated to high suprathermal ener-

gies, are also found to be produced in ultra-intense laser

fields,12 tokamaks,20 the solar wind,21,22 and the Earth’s

magnetosphere.23 In particular, the energy distribution of

suprathermal electrons in solar flares was found to be well

described by a power law with a maximum high-energy

cutoff of 3 GeV.22 Hence, studying e-p pair plasmas with

suprathermal electrons are important for both laboratory and

astrophysical plasmas.

Electrostatic waves usually occur in a plasma containing

distinct electron populations with different temperatures,24–27

namely, cool electrons, Tc, and hot electrons, Th. The cool

electron motion provides the inertia required to maintain

electrostatic oscillations, while the hot electron pressure pro-

duces the restoring force for electrostatic waves propagating

at a phase speed between the cool and hot electron thermal

velocities. In such a plasma, the ions can be assumed to make

a stationary background providing charge neutrality. It is

found that Landau damping is minimized if the cool electron

fraction of the total number density of electrons is in the

range of 0:2�nc=ðnc þ nhÞ�0:8 and the hot electron temper-

ature is much higher than the cool electron temperature

Th/Tc� 10.26–29 The dynamics of electron-acoustic waves in

a two-electron-temperature plasma have been studied by

many authors.24–28 Moreover, linear and nonlinear studies of

electron-acoustic waves in the presence of suprathermal (or

non-thermal) electrons have received a great deal of interest

in recent years, both in unmagnetized29–31 and in magnetized

plasmas.32,33 Negative polarity electrostatic wave structures

were found to exist in a two-electron-temperature plasma

with excess suprathermal electrons,31,32 which are associated

with the inertia of mobile cold electrons. However, positive

polarity electrostatic waves moving at velocities comparable

to electrons have been reported in the auroral magneto-

sphere.34,35 Inclusion of a beam component36,37 or finite iner-

tia38,39 may lead to a positive polarity electrostatic wave.

Alternatively, a fraction of mobile positrons (or electron

holes), which are created by the solar wind, may maintain the

inertia for the propagation of positive polarity electrostatic

waves. Interestingly, a considerable fraction of positrons has

been recently observed at the solar wind: /ðeþÞ=ð/ðeþÞ
þ/ðe�ÞÞ� 0:1 at energies 0.04 – 1 GeV.1–6 Moreover, a sig-

nificant positron density has been measured in laser-

plasma experiences: nðeþÞ=ðnðeþÞ þ nðe�ÞÞ � 0:05� 0:1
in �10 MeV (Ref. 14) and �0.01–0.1 in 150 MeV.15 The

experimental temperature of positrons was measured to be

roughly half of the effective electron temperature in ultra-

intense laser fields14 (In this paper, Tp � Tc, while Tp/

Th� 0.1 to minimize Landau damping; see Ref. 40). The

positron effect may have important implications for the
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dynamics of positive polarity electrostatic waves of the

auroral magnetosphere.

The propagation of electrostatic waves in e-p pair plas-

mas can also be supported by the inertia of mobile cool posi-

trons, while background hot electrons act as the restoring

force. Interestingly, the coherent microwave radiation has

been reported in pulsars,41,42 which is assumed to be origi-

nated from electric fields of e-p pair plasma over the polar

caps of neutron stars.43,44 It was proposed that coherent pul-

sar radio emissions could be due to nonlinear electrostatic

solitary oscillations generated by effective electron-positron

streams on the polar caps in rotating magnetized neutron

stars.45 Studies of e-p pair plasmas demonstrated that elec-

trostatic solitary waves can be generated,40 though a

Maxwellian distribution was assumed. A number of papers

have also been devoted to the linear and nonlinear dynamics

of electron-acoustic waves,46,47 electrostatic waves,48–55 and

in the presence of suprathermal (and non-thermal) elec-

trons46,50,52 in e-p pair plasmas. Moreover, the propagation

of ion-acoustic waves56–59 and dust-acoustic waves60–62 has

recently been studied in e-p plasmas. However, the nonlinear

dynamics and the existence domains of electrostatic solitary

waves have not fully been investigated in the presence of

positrons. It is important to study the occurrence of electro-

static solitary wave structures in e-p pair plasmas with supra-

thermal electrons, which may lead to the (co-)existence of

positive and negative polarity electrostatic waves similar to

what observed in the Earth’s magnetosphere,34,35 as well as a

possible explanation for coherent pulsar radio emissions.45

In this paper, we aim to explore the effect of mobile

cool positrons (electron holes) on electrostatic solitary waves

in an e-p pair plasma with suprathermal electrons. In Sec. II,

a two-fluid model is presented. In Sec. III, a dispersion rela-

tion is derived. In Sec. IV, a nonlinear pseudopotential

(Sagdeev) method is used to investigate the existence of

large-amplitude electrostatic solitary waves. Section V is

devoted to a parametric investigation of the nonlinear form

and the characteristics of electrostatic solitary wave struc-

tures. Finally, our results are summarized in Sec. VI.

II. THEORETICAL MODEL

We consider a 1-D collisionless, four-component plasma

consisting of cool inertial background electrons (at tempera-

ture Tc 6¼ 0), mobile cool positrons (or electron holes; at tem-

perature Tp 6¼ 0), inertialess hot suprathermal electrons

modeled by a j-distribution (at temperature Th� Tc, Tp),

and uniformly distributed stationary ions.

The cool electrons and positrons are governed by the

following fluid equations:

@nc

@t
þ @ðncucÞ

@x
¼ 0; (1)

@uc

@t
þ uc

@uc

@x
¼ e

me

@/
@x
� 1

menc

@pc

@x
; (2)

@pc

@t
þ uc

@pc

@x
þ cpc

@uc

@x
¼ 0; (3)

@np

@t
þ @ðnpupÞ

@x
¼ 0; (4)

@up

@t
þ up

@up

@x
¼ � e

mp

@/
@x
� 1

mpnp

@pp

@x
; (5)

@pp

@t
þ up

@pp

@x
þ cpp

@up

@x
¼ 0; (6)

where n, u, and p are the number density, the velocity, and

the pressure of the cool electrons and positrons (denoted by

indices “c” and “p,” respectively), / is the electrostatic wave

potential, e the elementary charge, me the electron mass, mp

the positron mass, and c¼ (fþ 2)/f denotes the specific heat

ratio for f degrees of freedom. For the adiabatic cool elec-

trons and positrons in one-dimensional (f¼ 1), we get c¼ 3.

Through this paper, we assume that me¼mp.

Following Eq. (1) in Ref. 31, the j-distribution expres-

sion is obtained for the number density of the hot suprather-

mal electrons

nhð/Þ ¼ nh;0 1� e/

kBTh j� 3

2

� �
2
64

3
75
�jþ1=2

; (7)

where nh,0 and Th are the equilibrium number density and the

temperature of the hot electrons, respectively, kB the

Boltzmann constant, and the spectral index j measures the

deviation from thermal equilibrium. For reality of the charac-

teristic modified thermal velocity, ½ð2j� 3ÞkBTh=jme�1=2
,

the spectral index must take j> 3/2. The suprathermality is

measured by the spectral index j, describing how it deviates

from a Maxwellian distribution, i.e., low values of j are asso-

ciated with a significant suprathermality; on the other hand, a

Maxwellian distribution is recovered in the limit j!1.

The ions are assumed to be immobile in a uniform state,

i.e., ni¼ ni,0¼ const. at all times, where ni,0 is the undis-

turbed ion density. The plasma is quasi-neutral at equilib-

rium, so Zni,0þ np,0¼ nc,0þ nh,0, that implies

Zni;0=nc;0 ¼ 1þ a� b; (8)

where we have defined the hot-to-cool electron density ratio

as a¼ nh,0/nc,0, and the positron-to-cool electron density

ratio as b¼ np,0/nc,0, while nc,0 and np,0 are the equilibrium

number densities of the cool electrons and positrons, respec-

tively. Electrostatic waves are weakly damped in the range

of 0:2 � nc;0=ðnc;0 þ nh;0Þ� 0:8,26–29 so 0:256 a6 4. This

region may permit the propagation of nonlinear electrostatic

structures. As the positron fraction has been measured to

be /ðeþÞ=ð/ðeþÞ þ /ðe�ÞÞ� 0:1 in low energy solar wind

observations1–3,5 and nðeþÞ=ðnðeþÞ þ nðe�ÞÞ � 0:05–0.1 in

some laser-plasma experiences,14,15 we assume b � 0:06.

All four components are coupled via the Poisson’s

equation

@2/
@x2
¼ � e

e0

Zni þ np � nc � nhð Þ; (9)

where e0 is the permittivity constant.
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Scaling by appropriate quantities, we arrive at a fluid

system of our model in a dimensionless form for the cool

electrons and the positrons, respectively

@n

@t
þ @ðnuÞ

@x
¼ 0; (10)

@u

@t
þ u

@u

@x
¼ @/
@x
� r

n

@p

@x
; (11)

@p

@t
þ u

@p

@x
þ 3p

@u

@x
¼ 0; (12)

@np

@t
þ @ðnpupÞ

@x
¼ 0; (13)

@up

@t
þ up

@up

@x
¼ � @/

@x
� h

np

@pp

@x
; (14)

@pp

@t
þ up

@pp

@x
þ 3pp

@up

@x
¼ 0: (15)

The dimensionless Poisson’s equation takes the following form:

@2/
@x2
¼ � 1þ a� bð Þ þ n� bnp þ a 1� /

j� 3

2

0
@

1
A
�jþ1=2

;

(16)

where n and np denote the fluid density variables of the cool

electrons and positrons normalized with respect to nc,0 and

np,0, respectively, u and up the velocity variables of the cool

electrons and positrons scaled by the hot electron thermal

speed cth¼ (kBTh/me)
1/2, p and pp the pressure variables of

the cool electrons and positrons normalized with respect to

nc,0kBTc and np,0kBTp, respectively, and the wave potential /
by kBTh/e, time and space scaled by the plasma period

x�1
pc ¼ ðnc;0e2=e0meÞ�1=2

and the characteristic length k0

¼ ðe0kBTh=nc;0e2Þ1=2
, respectively. We have defined the

cool-to-hot electron temperature ratio as r¼ Tc/Th, and the

positron-to-hot electron temperature ratio as h¼ Tp/Th.

Landau damping is minimized if r¼ Tc/Th� 0.1,26–28 and

the same for the cool positrons, i.e., h¼Tp/Th� 0.1 (see

Ref. 40), and typically Tp/Tc � 0.5 in some laser-plasma

experiences.14

III. LINEAR DISPERSION RELATION

To obtain the linear dispersion relation, we substitute

linearized forms of Eqs. (10)–(15) to the Poisson’s equation

(16) and restrict up to the first order, which yield

1þ
k2

D;j

k2
¼ 1

x2 � 3rk2
þ b

x2 � 3hk2
; (17)

where the appearance of a normalized j-dependent screening

factor (scaled Debye wavenumber) kD,j is defined as

kD;j �
1

kD;j
�

a j� 1

2

� �

j� 3

2

2
664

3
775

1=2

: (18)

Equation (17) contains a suprathermality term, a

Langmuir wave mode, and a positron wave mode. In this

equation,
ffiffiffiffiffiffi
3r
p

corresponds to the normalized cool electron

thermal velocity, and
ffiffiffiffiffi
3h
p

is associated with the normalized

positron thermal velocity. In the absence of the hot electrons,

a linear dispersion is derived in agreement with Eq. (4) in

Ref. 63 and Eq. (8) in Ref. 48. It is seen that the phase speed

increases with higher cool-to-hot electron temperature ratio

r¼ Tc/Th, in agreement with what was found previously.31

In the limit b ! 0 (in the absence of the positrons), we

obtain Eq. (14) of Ref. 31. From Eq. (17), we see that the fre-

quency x(k), and hence the phase speed, increases with

higher positron-to-hot electron temperature ratio h¼Tp/Th.

However, this linear thermal effect may not be noticeable

due to the range of parameters adopted here, i.e., low values

of the positron-to-cool electron density ratio (b�0:06).

In Fig. 1, we plot the dispersion curve (17) in the elec-

tron cold limit (r ¼ 0), showing the effect of varying the

values of the positron-to-cool electron charge density ratio b.

It can be seen that an increase in the positron parameter b
weakly increases the phase speed (x/k). Noting that the posi-

tron fraction in astrophysical plasmas, for example in the

solar wind,5 is very small, its effect on the small-amplitude

wave solutions is negligible. Otherwise, a large fraction of

the positron fraction can significantly modify the dispersion

relation. Previously, we found that the dispersion relation

and the condition for Landau damping are considerably

changed, when the plasma is dominated by hot j-distributed

electrons (see Fig. 1 in Ref. 31). Similarly, increasing the

number density of suprathermal hot electrons or/and the

suprathermality (decreasing j) also decreases the phase

speed.

IV. NONLINEAR ANALYSIS

To obtain nonlinear wave solutions, we consider all fluid

variables in a stationary frame traveling at a constant

FIG. 1. Variation of the dispersion curve for different values of the positron-

to-cool electron density ratio b. Curves from bottom to top: b¼ 0.0 (solid),

0.02 (dashed), 0.04 (dotted-dashed curve), and 0.06 (dotted curve). Here,

a¼ 1, j¼ 3, h¼ 0.01 and r¼ 0.
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normalized velocity M (to be referred to as the Mach num-

ber), which implies the transformation n¼ x – Mt. This

replaces the space and time derivatives with @/@x¼ d/dn and

@/@t¼ –Md/dn, respectively. Now Eqs. (10) to (16) take the

following form:

�M
dn

dn
þ dðnuÞ

dn
¼ 0; (19)

�M
du

dn
þ u

du

dn
¼ d/

dn
� r

n

dp

dn
; (20)

�M
dp

dn
þ u

dp

dn
þ 3p

du

dn
¼ 0; (21)

�M
dnp

dn
þ dðnpupÞ

dn
¼ 0; (22)

�M
dup

dn
þ up

dup

dn
¼ � d/

dn
� h

np

dpp

dn
; (23)

�M
dpp

dn
þ up

dpp

dn
þ 3pp

dup

dn
¼ 0; (24)

d2/

dn2
¼� 1þa�bð Þþn�bnpþa 1� /

j�3

2

0
@

1
A
�jþ1=2

: (25)

The equilibrium state is assumed to be reached at both infini-

ties (n !61). Accordingly, we integrate Eqs. (19)–(24),

apply the boundary conditions n¼ 1, p¼ 1, u¼ 0, np¼ 1,

pp¼ 1, ub¼ 0, and / ¼ 0 at infinities, and obtain

u ¼ M 1� ð1=nÞ½ �; (26)

u ¼ M � ðM2 þ 2/� 3n2rþ 3rÞ1=2; (27)

up ¼ M 1� ð1=npÞ
� �

; (28)

up ¼ M � ðM2 � 2/� 3n2
phþ 3hÞ1=2; (29)

p ¼ n3; pp ¼ n3
p: (30)

Combining Eqs. (26)–(30), one obtains the following biqua-

dratic equations for the cool electron density and the positron

density, respectively:

3rn4 � ðM2 þ 2/þ 3rÞn2 þM2 ¼ 0; (31)

3hn4
p � ðM2 � 2/þ 3hÞn2

p þM2 ¼ 0: (32)

Equations (31) and (32) are respectively solved as follows:

n ¼ 1

2
ffiffiffiffiffiffi
3r
p 2/þ ðM þ

ffiffiffiffiffiffi
3r
p
Þ2

h i1=2

6
1

2
ffiffiffiffiffiffi
3r
p 2/þ ðM �

ffiffiffiffiffiffi
3r
p
Þ2

h i1=2

; (33)

np ¼
1

2
ffiffiffiffiffi
3h
p �2/þ ðM þ

ffiffiffiffiffi
3h
p
Þ2

h i1=2

6
1

2
ffiffiffiffiffi
3h
p �2/þ ðM �

ffiffiffiffiffi
3h
p
Þ2

h i1=2

: (34)

Equation (33) agrees with Eq. (29) derived in Ref. 31. From

the boundary conditions, nc¼ np¼ 1 at /¼ 0, it follows that

the negative sign must be taken in Eqs. (33) and (34).

Moreover, the cool electrons and positrons are assumed to be

supersonic for M >
ffiffiffiffiffiffi
3r
p

and M >
ffiffiffiffiffi
3h
p

, respectively, while

the hot electrons are subsonic for M< 1.

The reality condition of the cool electron density vari-

able provides the requirement 2/þ ðM �
ffiffiffiffiffiffi
3r
p
Þ2 > 0 that

indicates a lower boundary on the electrostatic potential

value / > /maxð�Þ ¼ � 1
2
ðM �

ffiffiffiffiffiffi
3r
p
Þ2 associated with nega-

tive polarity solitary structures. However, the reality condi-

tion of the positron density variable gives the requirement

�2/þ ðM �
ffiffiffiffiffi
3h
p
Þ2 > 0, implying a higher boundary on the

electrostatic potential value / < /maxðþÞ ¼ 1
2
ðM �

ffiffiffiffiffi
3h
p
Þ2

associated with positive polarity solitary structures.

Substituting Eqs. (33) and (34) into the Poisson’s equa-

tion (16), multiplying the resulting equation by d//dn, inte-

grating and taking into account the conditions at infinities

(d//dn! 0) yield a pseudo-energy balance equation

1

2

d/
dn

� �2

þWð/Þ ¼ 0; (35)

where the Sagdeev pseudopotential W(/) is given by

Wð/Þ¼a 1� 1þ /

�jþ3

2

0
@

1
A
�jþ3=2

2
64

3
75þð1þa�bÞ/

þ 1

6
ffiffiffiffiffiffi
3r
p

"
ðMþ

ffiffiffiffiffiffi
3r
p
Þ3�ðM�

ffiffiffiffiffiffi
3r
p
Þ3

� 2/þ Mþ
ffiffiffiffiffiffi
3r
p� �2� �3=2

þ 2/þ M�
ffiffiffiffiffiffi
3r
p� �2� �3=2

#

� b

6
ffiffiffiffiffi
3h
p

"
ðMþ

ffiffiffiffiffi
3h
p
Þ3�ðM�

ffiffiffiffiffi
3h
p
Þ3

� �2/þ Mþ
ffiffiffiffiffi
3h
p� �2� �3=2

þ �2/þ M�
ffiffiffiffiffi
3h
p� �2� �3=2

#
:

(36)

In the absence of the positrons (b ! 0), we exactly recover

the pseudopotential equation derived for electron-acoustic

waves with suprathermal electrons.31

For the existence of solitons, we require that the origin

at /¼ 0 is a root and a local maximum of W in Eq. (36), i.e.,

W(/)¼ 0, W0ð/Þ ¼ 0 and W00ð/Þ < 0 at /¼ 0, where primes

denote derivatives with respect to /. It is easily seen that the

first two constraints are satisfied. We thus impose the condi-

tion F1ðMÞ ¼ �W00ð/Þj/¼0 > 0, and we get

F1ðMÞ ¼
a j� 1

2

� �

j� 3

2

� 1

ðM2 � 3rÞ �
b

ðM2 � 3hÞ : (37)

Equation (37) provides the minimum value for the Mach

number, M1ðj; a; r; b; hÞ. In the limit b ! 0 (without the

positrons), Eq. (37) takes the form of Eq. (34) in Ref. 31.

An upper limit for M is determined from the fact that the

cool electron density becomes complex at negative potentials
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lower than /maxð�Þ ¼ � 1
2
ðM �

ffiffiffiffiffiffi
3r
p
Þ2 for negative polarity

waves, and the cool positron density at positive potentials

higher than /maxðþÞ ¼ 1
2
ðM �

ffiffiffiffiffi
3h
p
Þ2 for positive polarity

waves. Thus, the largest negative soliton amplitude satisfies

F2ðMÞ ¼ Wð/Þj/¼/maxð�Þ
> 0, whereas the largest positive

soliton amplitude fulfills F2ðMÞ ¼ Wð/Þj/¼/maxðþÞ
> 0. These

yield the following equation for the upper limit in M for neg-

ative polarity electrostatic soliton existence associated with

cool electrons:

F
ð�Þ
2 ðMÞ ¼ �

1

2
ð1þ a� bÞðM �

ffiffiffiffiffiffi
3r
p
Þ2 þM2 þ r

þa 1� 1þ M �
ffiffiffiffiffiffi
3r
p� �2

2j� 3

 !�jþ3=2
2
4

3
5

� b

6
ffiffiffiffiffi
3h
p ðM �

ffiffiffiffiffi
3h
p
Þ2 � ðM �

ffiffiffiffiffiffi
3r
p
Þ2

h i3=2
�

� ðM þ
ffiffiffiffiffi
3h
p
Þ2 � ðM �

ffiffiffiffiffiffi
3r
p
Þ2

h i3=2
�

�bM2 � bh� 4

3
M3=2 3rð Þ1=4

; (38)

and the following equation for positive polarity electrostatic

soliton existence associated with positrons:

F
ðþÞ
2 ðMÞ ¼

1

2
ð1þ a� bÞðM �

ffiffiffiffiffi
3h
p
Þ2 þM2 þ r

þa 1� 1� ðM �
ffiffiffiffiffi
3h
p
Þ2

2j� 3

	 
�jþ3=2
 !

þ 1

6
ffiffiffiffiffiffi
3r
p

�
ðM �

ffiffiffiffiffiffi
3r
p
Þ2 þ ðM �

ffiffiffiffiffi
3h
p
Þ2

h i3=2

� ðM þ
ffiffiffiffiffiffi
3r
p
Þ2 þ ðM �

ffiffiffiffiffi
3h
p
Þ2

h i3=2
�

�bM2 � bhþ 4

3
bM3=2 3hð Þ1=4

: (39)

Solving Eqs. (38) and (39) provide the upper limit M2(j, a,

r, b, h) for acceptable values of the Mach number for nega-

tive and positive polarity solitons to exist. The cool electrons

can generally support a negative supersonic electrostatic

wave, while the positrons may provide the inertia to support

a positive polarity electrostatic wave. Hence, the upper limit

of negative polarity electrostatic solitons can be determined

from Eq. (38), while the upper limit of positive polarity elec-

trostatic solitons may be obtained from Eq. (39). In the

absence of the positrons, Eq. (38) yields exactly Eq. (36) in

Ref. 31. Taking a Maxwellian distribution (j ! 1) and

without the positrons (b ! 0), Eqs. (37) and (38) take the

form of Eqs. (37) and (38) in Ref. 31.

Figure 2 shows the range of allowed Mach numbers for

negative polarity electrostatic solitary waves with different

parameters: the positron-to-hot electron temperature ratio, h,

and the positron-to-cool electron density ratio, b. The lower

limit (M1) and the upper limit (M2) of Mach numbers are

obtained from numerically solving Eqs. (37) and (38),

respectively. We see that there is a small difference between

the model including the positrons and the model without the

positrons (b! 0). As the positron is assumed to have a very

small fraction of the total charge (b�0:06) and a cool tem-

perature (h� 0.1), they cannot have a significant role in the

dynamics of electron-acoustic waves in the model adopted

here. Hence, the existence domain of electron-acoustic (neg-

ative polarity electrostatic) solitary waves are not largely

affected by the cool positrons.

The soliton existence regions for positive polarity elec-

trostatic solitary waves are shown in Fig. 3 for different

parameters. Solitary structures of the electrostatic potential

may occur in the range M1<M<M2, which depends on

the parameters h, b, and j. Moreover, we assume that the

cool electrons and positrons are supersonic (M >
ffiffiffiffiffiffi
3r
p

and

FIG. 2. Variation of the lower limit M1 (lower curves; panel b) and the upper

limit M2 (upper curves; panel a) of the negative polarity electrostatic solitons

with the positron-to-cool electron density ratio b for different values of the

positron-to-hot electron temperature ratio h. Solitons may exist for values of

the Mach number M in the region between the lower and the upper curve(s)

of the same style/color. (a) and (b) Curves: h¼ 0.0 (solid), 0.01 (dashed),

and 0.02 (dotted-dashed). Here, j¼ 2, a¼ 1, and r¼ 0.01.

FIG. 3. Variation of the upper limit M2 of the positive polarity electrostatic

solitons with the spectral index j for different values of (a) the positron-to-

hot electron temperature ratio h and (b) the positron-to-cool electron density

ratio b. Upper panel: h¼ 0.0 (solid), 0.001 (dashed), and 0.01 (dotted-

dashed). Here, a¼ 1 and b¼r¼ 0.01. Lower panel: b¼ 0.005 (solid), 0.01

(dashed), and 0.015 (dotted-dashed). Here, a¼ 1 and r¼ h¼ 0.01.
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M >
ffiffiffiffiffi
3h
p

, respectively), while the hot electrons are subsonic

(M< 1). We used Eq. (37) to obtain the lower limit for nega-

tive polarity solitons. This equation may also have another

solution, which could yield the lower Mach number limit for

positive polarity solitary structures. However, we noticed

that Mach numbers of positive polarity solitons cannot be

constrained by Eq. (37) due to the small values of the density

ratio b. Therefore, the lower limit (M1) is found to be at

about
ffiffiffiffiffiffi
3r
p

. The positive potential solitons numerically

derived from Eq. (36) cannot also produce any solutions for

Mach numbers less than
ffiffiffiffiffiffi
3r
p

in the adopted parameter

ranges of the positrons.

As seen in Fig. 3, the upper limit (M2) of positive polar-

ity solitons is slightly increased with an increase in the

positron-to-hot electron temperature ratio h and a decrease in

the positron-to-cool electron density ratio b. However, the

effect is not significant, and also dissimilar to how the hot-

to-cool electron density ratio (a) affects electron-acoustic

waves.31 This negligible effect is mostly attributed to the

small fraction of positrons and their cool temperatures in the

e-p plasma system.

Figure 3 also depicts the upper limit (M2) of allowed

Mach numbers as a function of j, for various values of h and

b. As seen, increasing j toward a Maxwellian distribution

(j!1) increases the upper limit (M2) and broadens the

Mach number range. It can be seen that positive polarity soli-

tons are generated in narrower ranges of Mach numbers as

hot electron suprathermality becomes stronger. This conclu-

sion is similar to what found in electron-acoustic solitary

waves with suprathermal electrons.31

V. NONLINEAR WAVE STRUCTURES

To consider the nonlinear features of electrostatic wave

structures, we have numerically solved Eq. (36) for various

plasma parameters, in order to investigate their effects. We

found that both negative and positive electric potentials arise

in the ranges of allowed Mach numbers obtained for negative

and positive polarity soliton existence domains in Sec. IV.

Figure 4(a) shows the variation of the pseudopotential

W(/) of negative polarity solitons with the normalized nega-

tive potential /, for different values of the positron-to-cool

electron density ratio b (keeping a¼ 1, r¼ h¼ 0.01, j¼ 4.0,

and Mach number M¼ 1.1, all fixed). The electrostatic pulse

/ shown in Fig. 4(b) is obtained via a numerical integration.

The negative pulse amplitude decreases with increasing b.

We algebraically determined the fluid density [Fig. 4(c)] and

velocity disturbance [Fig. 4(d)] of the cool electrons, as

well as the fluid density [Fig. 4(e)] and velocity disturbance

[Fig. 4(f)] of the positrons. It is found that an increase in the

positron-to-cool electron density ratio b decreases the distur-

bances and amplitudes of nc, uc, np, and up in the negative

polarity electrostatic mode. This means that increasing the

positron density reduces the negative potential solitary

waves, in agreement with the previous results.52 We also

note that the profiles become less steeper but broader.

Similarly, Fig. 5(a) depicts the variation of the pseudo-

potential W(/) of positive polarity solitons associated with

the positrons for different values of the positron-to-cool

electron density ratio b (keeping a¼ 1, r¼ h¼ 0.01, j¼ 4.0,

and Mach number M¼ 0.5, all fixed). As seen in Fig. 5(b),

that the positive pulse amplitude rises with an increase in b,

in contrast to what we see in Fig. 4(b). Furthermore, an

increase in b increases the disturbances, amplitudes and

steepness of nc uc, np, and up in the positive polarity electro-

static mode. This means that increasing the positron density

increases the positive potential solitary waves, which agrees

with the results of Ref. 52 (they used np,0/nh,0 rather than

b¼ np,0/nc,0).

The thermal effect of the positrons through h¼ Tp/Th is

shown in Fig. 6. The soliton excitation / is slightly amplified

with an increase in the temperature ratio h, which agrees

with the results of Ref. 52 (they used Th/Tp rather than

h¼ Tp/Th). Furthermore, an increase in h slightly increases

the disturbance of nc and uc (not shown here), however,

FIG. 4. (a) The pseudopotential W(/) of negative polarity electrostatic soli-

tons and the associated solutions: (b) electric potential pulse /, (c) density

nc and (d) velocity uc of the cool electron fluid, and (e) density np and (f)

velocity up of the positron fluid are depicted versus position n for different

values of the positron-to-cool electron density ratio b. We have taken:

b¼ 0.0 (solid curve), 0.005 (dashed curve), and 0.01 (dotted-dashed curve).

The other parameter values are a¼ 1, r¼ h¼ 0.01, j¼ 4.0, and M¼ 1.1.
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significantly increases and steepens the disturbance of np and

up in the positive polarity electrostatic mode [Figs. 6(c) and

6(d)]. The temperature ratio h does not make a significant

contribution to the negative polarity electrostatic solitary

waves due to the small value of b.

Figure 7(a) shows the pseudopotential W(/) of positive

polarity solitons for different values of the spectral index j
(keeping a¼ 1, r¼ h¼ 0.01, b¼ 0.015, and Mach number

M¼ 0.5). The positive polarity electrostatic pulse shown in

Fig. 7(b) is found to increase for lower j, implying an ampli-

fication of the electric potential disturbance as the suprather-

mality increases. It can be seen that the positron fluid density

[Fig. 7(c)] and velocity disturbance [Fig. 7(d)] are increased

in the positive polarity electrostatic mode, and again, for

lower j values.

As inherently super-acoustic solitons are taken, it is

important to see the effect of a varying true Mach number,

so we explore the pulse amplitude /m of the positive polarity

electrostatic solitons as a function of the propagation speed

M, measured relative to the true acoustic speed, M1. The var-

iation of the soliton amplitude /m as a function of the true

Mach number, M/M1, is numerically obtained from Eq. (36).

Noting that the lower limit (M1) for positive polarity solitary

structures is about
ffiffiffiffiffiffi
3r
p

, we have plotted the soliton ampli-

tude /m against the ratio M=
ffiffiffiffiffiffi
3r
p

, for a range of values of

the parameter j in Fig. 8. It is seen that the soliton amplitude

/m increases with M=
ffiffiffiffiffiffi
3r
p

for all values of j. Moreover, the

soliton amplitude increases with growing the suprathermality

(reducing j) at a fixed true Mach number, M=
ffiffiffiffiffiffi
3r
p

, in con-

trast to the results obtained previously.31 However, the maxi-

mum value of soliton amplitude is found to be for a

Maxwellian distribution (j ! 1) at larger true Mach num-

bers (M=
ffiffiffiffiffiffi
3r
p

> 4).

VI. CONCLUSIONS

In this work, we have investigated nonlinear characteris-

tics of electrostatic solitary wave structures in a collisionless

FIG. 5. (a) The pseudopotential W(/) of positive polarity electrostatic soli-

tons and the associated solutions: (b) electric potential pulse /, (c) density

nc, and (d) velocity uc of the cool electron fluid, and (e) density np and (f)

velocity up of the positron fluid are depicted versus position n for different

values of the positron-to-cool electron density ratio b. We have taken:

b¼ 0.005 (solid curve), 0.010 (dashed curve), and 0.015 (dotted-dashed

curve). The other parameter values are a¼ 1, r¼ h¼ 0.01, j¼ 4.0, and

M¼ 0.5.

FIG. 6. (a) The pseudopotential W(/) of positive polarity electrostatic soli-

tons and the associated solutions: (b) electric potential pulse /, and (c) den-

sity np, and (d) velocity up of the positron fluid are depicted versus position

n for different values of the positron-to-hot electron temperature ratio h. We

have taken: h¼ 0.0 (solid curve), 0.01 (dashed curve), and 0.02 (dotted-

dashed curve). The other parameter values are a¼ 1, r¼ 0.01, b¼ 0.015,

j¼ 4.0, and M¼ 0.5.
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plasma consisting of adiabatic cool electrons, mobile cool

positrons (electron holes), hot j-distributed electrons, and

immobile ions. We have derived a linear dispersion relation,

and studied the effects of positron parameters on the

dispersion characteristics, through the positron-to-cool elec-

tron density ratio b. It is found that the phase speed increases

weakly with an increase in b (see Fig. 1). Similarly, in agree-

ment with the previous finding,31 increasing suprathermality

(decreasing j) significantly reduces the phase speed.

The Sagdeev’s pseudopotential technique was used to

determine nonlinear structures and the range of allowed

Mach numbers of electrostatic solitons. The results of this

study indicate that increasing the positron-to-cool electron

density ratio b and the positron-to-hot electron temperature

ratio h lead to a slightly narrowing of the Mach number range

for negative polarity solitons (Fig. 2). Moreover, the upper

Mach number limit for positive polarity solitons slightly

decreases with increasing b and decreasing h (Fig. 3).

However, the lower Mach number limit for positive polarity

solitons is found to be at about
ffiffiffiffiffiffi
3r
p

in the parameter ranges

of the positrons (b�0:06 and h� 0.1). From Fig. 3 one can

see that increasing j toward a Maxwellian distribution

increases the upper limit of Mach numbers for positive polar-

ity solitons.

The e-p model predicts the existence of positive poten-

tial solitons associated with the positrons, in addition to

negative potential solitons. It is found that increasing the

positron-to-cool electron density ratio b decreases the nor-

malized negative potential (Fig. 4), and increases the normal-

ized positive potential (Fig. 5) in the ranges of allowed Mach

numbers for negative and positive polarity solitons, respec-

tively. The disturbances and amplitudes of cool electron

density and cool electron velocity due to the solitary waves

decrease with increasing b, as well as the disturbances and

amplitudes of positron density and velocity decrease in the

negative polarity electrostatic mode (Fig. 4). However, higher

b increases and steepens the normalized positive potential,

the disturbances and amplitudes of positron density and

velocity, and cool electron density and velocity in the positive

polarity electrostatic mode (Fig. 5). Therefore, increasing the

positron density increases the electric potential amplitude in

the positive polarity electrostatic mode, whereas decreases

it in the negative polarity electrostatic (electron-acoustic)

mode.

We also note that at fixed values of the normalized soli-

ton speed, M, the amplitudes of the perturbations of positron

density and velocity are significantly increased and steep-

ened with higher values of the positron-to-hot electron tem-

perature ratio h (Fig. 6). As the positrons constitute a small

fraction of the total number density (b�0:06), the normal-

ized potential, cool electron density and velocity are trivially

affected by h. Therefore, thermal effects of the cool positrons

are negligible for both negative and positive electric

potentials.

From Fig. 7, it can be seen that the suprathermality can

significantly raise the electric potential amplitude in the posi-

tive polarity electrostatic mode. This means that suprather-

mal electrons play a key role in rising a positive potential

pulse from a tiny fraction of cool positrons. Therefore, we

expect to have a strong positive polarity electrostatic wave

when the suprathermality is stronger (lower j). Figure 8 dem-

onstrates how the pulse amplitude of positive polarity elec-

trostatic solitons rises with reducing the spectral index j

FIG. 7. (a) The pseudopotential W(/) of positive polarity electrostatic soli-

tons and the associated solutions: (b) electric potential pulse /, and (c) den-

sity np and (d) velocity up of the positron fluid are depicted versus position

n, for different values of the spectral index j. We have taken: j¼ 3 (solid

curve), 4 (dashed curve), and 6 (dotted-dashed curve). The other parameter

values are a¼ 1, r¼ h¼ 0.01, b¼ 0.015, and M¼ 0.5.

FIG. 8. The dependence of the pulse amplitude /m of positive polarity elec-

trostatic solitons on the Mach number-to-sound-speed ratio M=
ffiffiffiffiffiffi
3r
p

is

depicted, for different values of the spectral index j. From top to bottom:

k¼ 2 (solid curve); 2.5 (dashed curve); 3 (dotted-dashed curve); 4 (crosses);

10 (circles); and 100 (solid squares). Here, a¼ 1 and r¼ h¼b¼ 0.01.
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(higher suprathermality) at a fixed true Mach number

(M=
ffiffiffiffiffiffi
3r
p

), while the soliton amplitude increases with the

true Mach number for all values of j.

In conclusion, the results of this study suggest that the

dynamics of electrostatic solitary waves can be modified by

a small fraction of cool positrons (or electron holes) in the

presence of suprathermal electrons. The results of this study

could have important implications for positive polarity elec-

trostatic waves observed in the auroral magnetosphere,34,35

as well as the formation of coherent radio emission in pul-

sars,41–45 where positrons and suprathermal electrons are

present.
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