Effective Recognizability and Model Checking
of Reactive Fiffo Automata

G. Sutre!, A. Finkel’, O. Roux?, F. Cassez?

! LSV, ENS Cachan & CNRS URA 2236, France, email:
{sutre, finkel}@lsv.ens-cachan.fr
2 TRCyN, EC Nantes & CNRS UMR 6597, France, email:

{roux, cassez}@lan.ec-nantes.fr

Abstract. Our work intends to verify reactive systems with event mem-
orization specified with the reactive language Electre. For this, we define
a particular behavioral model for Electre programs, Reactive Fiffo Au-
tomata (RFAs), which is close to Fifo Automata. Intuitively, a RFA is
the model of a reactive system which may store event occurrences that
must not be immediately taken into account. We show that, contrarily
to lossy systems where the reachability set is recognizable but not effec-
tively computable, (1) the reachability set of a RFA is recognizable, and
(2) it is effectively computable. Moreover, we also study the relation-
ships between RFAs and Finite Automata and we prove that (3) from
a trace language point of view, inclusions between RFAs and Finite Au-
tomata are undecidable and (4) the linear temporal logic LTL on states
without the temporal operator next is decidable for RFAs, while L'TL on
transitions is undecidable.

1 Introduction

Objectives. The aim of this work is to verify reactive systems [MP92] with event
memorization specified with the reactive language Electre [CR95]. A reactive pro-
gram is supposed to react instantaneously to occurrences of events. A particular
feature of the Electre language is that it is possible to store occurrences of events
in order to process them later. The number of stored occurrences is unbounded.
Consequently the behavioral model for an Electre program has an unbounded
number of states and verification with standard model-checking techniques can-
not be used on this model. Roux & Cassez have verified Electre programs by
bounding the number of stored occurrences [CR97]. This paper deals with anal-
ysis of transition systems produced by compilation of Electre programs, without
any assumption on the boundedness of the number of stored occurrences.

Related work. The behavioral model for Electre programs [CR95] is close to
Communicating Finite State Machines (CFSMs) or Fifo Automata. However,
this class has the power of Turing Machines since it’s possible to simulate any
Turing Machine by a system of two CFSMs [BZ83,FM97]. The reachability prob-
lem is decidable for systems with the recognizable channel property [Pac87],

but this result cannot be easily used in general because this property is un-
decidable. Decidability results have been established for particular classes of
Fifo Automata. The reachability problem is decidable for linear Fifo Automata,
which can be simulated by colored Petri Nets [FC87,JJ93]. The reachability
problem is decidable for lossy systems and the reachability set of a lossy system
is recognizable [AJ93], but it is not effectively computable [CFP96]. Half-duplex
systems and quasi-stable systems have a recognizable reachability set and it is
effectively computable [CF97]. Semi-algorithms computing a symbolic represen-
tation for the reachability set of a Fifo Automaton have also been established

[BG96,BGWWI7,BHI7,Que96, ABJIS].

Our contribution. Our work intends to establish similar results for the new class
of Reactive Fiffo Automata (RFAs) [CR9T7] that models Electre programs. The

three main results of the paper are:

1. the reachability set of a Reactive Fiffo Automaton is recognizable (section 4),

2. the reachability set of a Reactive Fiffo Automaton is effectively computable
(section 4),

3. the linear temporal logic LTL without the temporal operator next (LTL\X)
is decidable for Reactive Fiffo Automata (section 5). This result especially
allows to check liveness and safety properties.

We also analyse the relationships between Reactive Fiffo Automata and Finite
Automata and we prove that from a trace language point of view, inclusions
between RFAs and Finite Automata are undecidable. Semantic models of other
reactive languages are finite automata: in this sense, the expressiveness of Electre
is strictly greater as the semantic model is a RFA.

Outline of the paper. Section 2 recalls several definitions we use throughout
the paper. In section 3 we introduce the behavioral model for Electre programs
which is a Reactive Fiffo Automaton. Section 4 is devoted to the proving that
the reachability set of a RFA is recognizable and effectively computable. In
section 5 we examine the relationships between Reactive Fiffo Automata and
Finite Automata. Eventually we give in section 6 directions for future work.
Several proofs are not included in this paper, but they can be found in a

longer version !.

2 Preliminaries

Here are some basics on words and transition systems. Let X' be an alphabet
(a finite, non empty set). We write X* for the set of all finite words zi2o-- -z
with z; € Y| and ¢ is the empty word. For two words z,y € X*, zwy is their
shuffle: zwy = {z1y122y2 - Tuyn / © = T122- -2, and y = y1ya - - -yn With
i,y € X*}. Iz € ¥* is a word and e € ¥ is a letter, we write |z|. for the

! Available from the authors.

number of occurrences of e in x. For two words z,y € X*, x is a subword of y iff
Yy E xwr™.

A transition system is a structure TS = (5,50, A, —) where S is a set of
states, sg is the wnitial state, A is a finite set of actions and — C S x A x S is
a set of transitions. We note — for the reflexive transitive closure of —. An

. (a7
erecution is a finite or infinite sequence of transitions (s; —= s} such that
i>1

for all ¢ > 1, s;41 = s}. Furthermore, we write s; Bt LN Sp4+1 whenever we
have 51— §5 —23 §g- -+ 5, —2 Sp+1- A state s is said to be reachable in T'S
iff there exists an execution from the initial state sy —s s. The reachability set
of T'S, noted RS(T'S), is the set of all reachable states in 7'S.

Let us also recall some decision problems for transition systems. The Reacha-
bility Problem is, given a transition system 7'S and a state s of T'S, to determine
whether s is reachable in T'S. The Reccurent Reachability Problem is, given a
transition system T'S and a state s of T'S, to determine whether there exists an
execution in 7'S in which s appears infinitely often. The Finite Reachability Set
Problem 1is, given a transition system TS, to determine whether the reachabil-
ity set of T'S is finite. The Inclusion of Reachability Sets Problem is, given two
transition systems 7'S; and T'Ss, to determine whether the reachability set of
T'Sy contains the reachability set of T'S5. The Termination Problem is, given a
transition system 7S, to determine whether all executions in 7'S are finite.

3 RFA: a model for reactive systems with event
memorization

Electre is a reactive language aimed at specifying and programming real-time ap-
plications. Due to the types of these applications, we need to cope with events of
different nature, for instance: a relevant classification concerns their memoriza-
tion properties. To this extent, Electre provides for two sorts of events: fleeting
or memorized.

These features are essential in the programming of some automated applica-
tions: real industrial experiments have been carried out in the field of embedded
systems in cars and in the avionics (namely the SNECMA company ? and the
CERT /ONERA laboratory [BBnRR98]) but of course they are too big to be re-
ported in this paper.

In order to understand the need for memorization of events, consider a con-
veyor which brings items to be manufactured at a rate which may differ from
the rate of the manufacturing machine. To process all the incoming items, we
have to memorize the pending items. Thus, the ability of the language to express
memorization of events can ease the task of specification. This particular feature
becomes crucial in the case there are many events the memorizations of which
can be interleaved.

To deal with the memorization, we start with a finite model of Electre pro-
grams (Control Automaton, Definition 1) which does not take into account the

2 Work partially supported under a three years grant number 765 358 L.

memorization. Then, a list of stored occurrences of events is added to this finite
model in order to deal with the ordered and multiple memorizations of the events
occurrences. Thus, we obtain a Reactive Fiffo Automaton (RFA, Definition 2):
a stored occurrence of an event is processed as soon as possible and priority is
given to the oldest stored occurrence, hence the name First In Fuirst Fireable
Out (fiffo).

This memorization issue is completely defined in the semantics of the Electre
language: this accounts for the semantic model of programs (RFA) which is the
subject of this section.

The RFA model can be used for simulations or real executions (tools have
been developed namely SILEX for simulations, EXILE for executions). A specific
real-time executive based on the RFA model is run in EXILE and provides an
efficient execution.

In this section, we first give a brief description of the language. Then, we de-
fine a behavioral model for Electre programs which is a Reactive Fiffo Automaton

(RFA).

3.1 The Electre reactive language

Overview of the language. An Electre program describing the behavior of a
process is made of three types of components:

modules: which are tasks of the process without blocking points: each instance
of a module is a piece of executable code which can be either active, pre-
empted or idle,

events: which can be software or hardware originated: each occurrence of an
event is a signal which can be either memorized or not,

operators: combining the two previous components (for instance parallelism,
sequence, preemption or launching (of a module by an event), repetition,
and so on).

The term reactive means that the system controlling the process is to re-
act instantaneously to any event occurring in the environment. As a running
example, we will focus on an Electre program for describing the well-known
readers/writers problem.

The readers/writers problem. The readers/writers problem was originally
stated and solved in [CHP71]|. There are several variations on this problem,
all involving priorities. We specify our readers/writers problem here, with the
following requirements:

— several readers can read the book simultaneously,
— when a writer writes the book, no other process (reader or writer) can access

the book.

To specify the problem in the Electre language with two readers and two
writers, we proceed as follows:

— the processes readers and writers are what we called modules
o READ; (respectively READ,) refers to the module for reader 1 (re-
spectively reader 2) to read the book,
o WRITUE refers to the module for both writer 1 and writer 2 to write the
book,
— a request to read or write the book is an event
e 1 (respectively rq) is a request for reading the book made by reader 1
(respectively reader 2),
e w; (respectively ws) is a request for writing the book made by writer 1
(respectively writer 2).

An Electre program that specifies the behavior of the system is presented in
Figure 1.

PROGRAM Readers&Writers ;
loop
await
{ rs o READ1 || Yo o READ2 }
or
#w; : WRITE
or
#w, : WRITE
end loop ;
END Readers&Writers ;

Fig. 1. Readers/writers with no multiple memorization for reading requests

We shall not go into details about the syntax of the Electre language; the
meaning of the above written program can be summed up as follows:

1. arequest for reading (v or r2) is a standard event (no qualifier before them);
this means that
— if the request can not be taken into account at the time the event occurs
then the request is:
o ignored if it has already been stored;
e stored otherwise;
(it means that a standard event is memorized at most once).
— on the contrary if the request can be taken into account, the correspond-
ing module (READ; for request rq) is launched (this is the meaning of
the symbol “7),

2. the activities of readers 1 and 2 may be run simultaneously (symbol “||”)
and when READ; is being run request ry can be taken into account (the
converse when READ5 is being run holds),

3. the writing activity W RITE and the parallel activity READ; and READ,

are in mutual exclusion (symbol “or”),

4. the requests for writing wy and ws can be satisfied one at a time (symbol
“or”) between the events wy and ws;

5. the program consists in a cycle (structure “loop — end loop”) of waiting
until one of the events ry, 3, wy or ws occurs (structure “await”),

6. wy and wq are multiple storage events (prefixed by “#”, X, in Definition 1):
occurrences of these events may be memorized an unbounded number of
times.
r1 and ro are single storage events (not prefixed, X5 in Definition 1): only
one occurrence of these events may be memorized at one time.
Memorizable events are either multiple or single storage events. Other events
are fleeting events.

3.2 From Electre programs to RFAs

The first step towards the behavioral model for Electre programs is a Control
Automaton. Each transition of this automaton indicates what is to be done upon
the occurrence of event. It is built according to the semantics of the language
[CR95].

On the example of the readers and writers, we obtain the automaton depicted
in Figure 2.

It must be interpreted as follows:

e each X module completion (written endy) is a fleeting event,
e immediate processing: whenever the occurrence of an event x can be
taken into account, the transition labeled x is triggered (e.g. qo — q),
1.(a¢) memorization/sending: whenever the occurrence of a memorizable event
x cannot be taken into account, it is stored, and the transition is labeled

x (e.g. ¢o L)«qz); moreover, there is no state change in the Control
Automaton (Definition 1, 1.(a)),

1.(b) batch processing/reception: whenever a stored occurrence of a mem-
orizable event x is processed, the transition labeled 7x is triggered (e.g.

qo ng). Batch processing an event has the same effect as the im-
mediate processing of the same event (Definition 1, 1.(b)),
2. the automaton is complete w.r.t. memorizable events (Definition 1, 2.).

This does not state when the transitions are triggered. We will define the
operational semantics of the Control Automaton in Definition 2.

In the sequel, we focus on the memorizable event: consequently, immediate
processing transitions are abstracted in r-transition (e.g. gg —"* 41 becomes
g0 —— q1).

Now, we can give a formal definition of a Control Automaton:

Definition 1 (Control Automaton). A Control Automaton is a finite tran-
sition system C = (Q, qo, A, —¢), where:

e () 1s a finite set of control states, and,

?TQ

Fig. 2. The Reactive Fiffo Automaton for the readers/writers

e o is the initial state, and,

o A= ({1,7} x) U{r} is a finite sel of actions such that X is an alphabet
and X, Xs are subsets of X verifying: Xy N Xs =0 and Xy U Xg = X,
and,

e — 1s any finite set of transitions, verifying the two following properties:

1. forallq,¢ €Q ande € X:
(a) if ¢~cq’, then g = ¢'.
(b) if ¢~Scq’, then ¢Tod,

2. for allq € Q and e € X, we have either q!—e>cq or there erists a state q'
such that qicq’.

For every control state ¢ €), we write ¥, ={e € X / qicq}.

Remark 1. Every reachable state of a Control Automaton is reachable by an
execution containing only 7-transitions.

A Control Automaton is built for every Electre program. A fiffo queue is then
added to the Control Automaton to take the memorisation and batch processing
of events into account. This is formally defined by the Reactive Fiffo Automaton

(RFA).

Definition 2 (Reactive Fiffo Automaton). The Reactive Fiffo Automaton
R associated with a Control Automaton C' = (@, qo, ({!,7} x XY U {7}, —=¢) is
the potentially infinite transition system R = (S, so, A, —r) defined as follows:

o S = x X" s the set of states, and,
o so = (qo,€) is the initial state, and,
o A= ({,7} x Z)U{r} is the set of actions, and,
o the sel of transitions — 1s the smallest §ubset of S x A x S verifying:
1 if g—>cq’ then forall w € X", (q,w)—=x(¢,w), and
2. ifq!—e>cq' then forall w € X,*, (q,w)im(q’, w'), where w’ is defined by:
(a) W =w ife € Xs and |w|e > 1,
(b) w' = we otherwise, and
? ?
3. if (=S q’ then forall wy € Y w, € X (¢, wiews) = x(q", wiws),

Definition 3 (Stability). A state (¢, w) of a Reactive Fiffo Automaton is sta-
ble iff w € X" Otherwise, it is unstable.

The definition of a Reactive Fiffo Automaton corresponds to the informal
semantics of the fiffo queue given in the beginning of this section:

— conditions 1 and 2 give priority to batch processings: stored occurrences of
events are processed as soon as possible,

— condition 3 corresponds to the fiffo order: in a batch processing, priority is
given to the oldest stored occurrence.

Erample 1. Keeping our readers/writers example, let us consider the RFA R
associated with the Control Automaton ' described in Figure 2. An execution
of R is for example:

(40,6) 25 (ga,€) 25 (ga, 1) —25 (ga,r1wn) ~2 (qa, r1wars) ——VEITEy (40 rywnrs)

JV?TI

(q4, w2) & (Q1 s ’w27"2)

2w endrEAD,

o (ga,€) = (qo, w2)

endrpaD,

(qﬁ’ w2)

Three relevant observations can be done on this example :

— (o, r1wary) is an unstable state: priority is given to the processing of the

first memorized occurrence (r1),

— hence, even though ¢z endwriTs, qo —% q3 ... is an execution of the Control

endwriTE

Automaton C, (ga, 71wars) ——2ETE (g0, rwars) — (gs, m1wars) ... is
not an execution of the RFA R, because the last transition is not a transition

of R,
— in the transition (g;, wars) LEN (q1,w2) above, it can be noticed that the

processing of the memorized occurrences are done in the First In First Fire-
able Out order (which is not strictly the fifo order).

4 Computation of the recognizable reachability set of a

RFA

We prove, in this section, that the reachability set of a Reactive Fiffo Automaton
is recognizable and that it is effectively computable. This result especially allows
us to decide the Reachability Problem, the Finite Reachability Set Problem and
the Inclusion of Reachability Sets Problem for RFAs.

In the following, we consider a Reactive Fiffo Automaton R associated with
a Control Automaton C' = (Q, o, ({!,7} x) U {7}, =).

Our first result states that the reachability set of a Reactive Fiffo Automaton
is recognizable. This property comes essentially from condition 1.(a) of Defini-
tion 1. When an event e may be memorized, it is possible to memorize e” for
any n > 0.

Intuitively speaking, a RFA cannot count, but it takes the fiffo order (which
is very close to the fifo order) into account. The fact that it cannot count allows
the recognizability of its rechability set. Petri nets are orthogonal: they allow
to count but not to retain the fifo ordering. So these two partially analysable
models are based on different assumptions.

Hence, the fiffo queue of a RFA behaves like a fiffo queue capable of both
lossiness and duplication errors [CFP96]. It follows that the reachability set of a
RFA is recognizable.

Theorem 1. The reachability set of R is recognizable.

Proof. The proof is similar to the proof that the reachability set of a lossy
system is recognizable [AJ93]. Let < be the well ordering over ¢ x L™ defined
by (¢, w) < (¢, w’) iff ¢ = ¢’ and w is a subword of w’. Assume the reachability
set RS(R) of R is downward closed. Then Compl(RS(R)) is upward closed. Since
= is well ordering, Compl(RS(R)) has a finite set M of minimal elements, which
gives a recognizable description of Compl(RS(R)):

Compl(RS(R)) = | (g, wwX”)

(qw)eM

As Compl(RS(R)) is recognizable, we obtain that RS(R) is recognizable. It re-
mains to prove that RS(R) is downward closed.

Let (¢, wiews) € RS(R), with wy,ws € Z* and e € ¥. We show that
(¢, wiws) € RS(R). Since (¢, wiews) € RS(R), there exists an execution m =
(go,€) = (¢, wiews) in R, which may be decomposed as follows:

T = (qo,¢) BEARN (¢,2) —< (q,ze) 2 (¢, wiews)

. . !
where the event occurrence e memorized by the transition t = (¢, 2) == (g, ze)
is the event occurrence e in wiews. Hence |oa|7e < |2]e and 7’ defined below is
still an execution of R, as it is possible to remove the transition ¢ from 7

° Intuitively, the memorized event occurrence e could have not occured, since memo-
rization does not change the control state

™ = (qo,¢) L (g, %) 22y (q, wiws) a

However, this does not prove that the reachability set of a Reactive Fiffo
Automaton is effectively recognizable. For instance in the case of lossy systems,
it has been shown that the reachability set is recognizable, but not computable
[CFPY6].

The following of this section is devoted to the proving that the recognizable
reachability set of a Reactive Fiffo Automaton is computable.

Definition 4. For every q € Q, we call language of the fiffo queue in the control
state ¢, written Lr(q), the set:

Li(q) ={we 5 / (g0,8) == (q,w)}

It is clear, according to the definition of a Reactive Fiffo Automaton that if a
control state ¢ € @ is not reachable in the Control Automaton C then £z(q) = 0.
We will in the following deal with the control states ¢ € RS(C') reachable in C.

Notation. For every F C X, we write S(F™*) for the set of words over F contain-
ing at most one occurrence of each single storage event, S(F*) = {w € F* /Ve €
257 |w|8 S 1}

Let us notice that for any F C X, the language S(F*) is regular. More-
over, according to the definition of a Reactive Fiffo Automaton, a single storage
event can appear at most once in the fiffo queue part of a reachable state. More
formally:

Remark 2. For all reachable state (¢, w) of R, we have w € S(X*).

Lemma 1. Let ¢ € RS(C) be a control state of R reachable in C. If w € S(X7)
then (q,w) is reachable in R.

Using Lemma 1 and Remark 2, it is easy to infer that the recognizable set
of stable reachable states in R is computable, because it may be written as
Ugers(c) (4, S(X7))-

We will now, in the following lemma, also deal with the unstable reachable
states of R.

Lemma 2. Let (q,w) be a stable reachable state of R and (q,w) — (q1,w)

7e17eq-Tep .
rs (¢, w') be an execution of R. Then we have:

1. ejeq- e € S(Z(’;) and,

2. w' € S(X*), where X = Y, \ (s N{e1,ea, -, ex}) and {eq,ea, - er}
denotes the set associated with the multiset consisting of the elements eq,
€2, ", Ck.

We now define, for all (¢, /) € @ x 2¥, the set CoReach(q, /'), which will
allow us to prove that the reachability set of R is recognizable. Intuitively, we
define CoReach(q, F') so that if a control state p is in CoReach(q, F), then the
states in (¢, S(F*)) are reachable from the set of stable states (p,S(L;)) and
hence are reachable in R.

Definition 5 (CoReach). Let ¢ € Q) be a control state of R and F C X be a
subset of X). The set CoReach(q, F') C @Q is the set of control states p € Q) such

?e1%7eq 7€

that there exists an execution p —— q — "% ¢ in C verifying:

1. ejes- e, € S(ZF) and,
2. F=2,\(ZsN{er,ea, - ,er}).

Let us remark that for all (¢, F') € @ x2¥, the set {FF C X' / CoReach(q, F') #
(¢} is finite. The following theorem gives a precise description of the reachabil-
ity set of a Reactive Fiffo Automaton, which will allow us to prove that the
recognizable reachability set of a Reactive Fiffo Automaton is computable.

Theorem 2. For every control state ¢ € RS(C') reachable in C', we have:

Lale) =8z U S(F7)

FCYX | CoReach(g,F)#0

Proof. Let us prove the inclusion from left to right. Assume ¢ € RS(C) and
w € Lr(g). Two cases may arise:

— (¢, w) is stable: then according to the definition of a stable state, we have
w € Xy*. In this way, Remark 2 leads to w € S(X7).

— (q,w) is unstable: as w € L£,(g), there exists an execution ™ = (qo,€) —>
(¢, w) in R. Since (go,¢) is stable, m contains a stable state, and we call
(¢s, ws) the last stable state of w. As (g, w) is unstable, we come to (¢, w) #
(¢s,ws). Hence (g5, w;) is the source of a transition in 7 and we get that 7
may be written as:

™ = ((]0,5) L> (qsaws) i> (qlzwl) L> (Q1w)

As (g5, ws) is the last stable state of 7, we obtain:
e on one hand « € {7} x ¥ and on the other hand o & {!} x X because

otherwise, (g1, w1) would be a stable state. Therefore a = 7 and wy = w;,.
e every state in (g1, w1) — (¢, w) is unstable. Therefore, ¢ € ({7} x 2)*
and we assume in the following that o is written 7e;7es - - -Teg.
Let us assume that F = 5, \(ZsN{eq,ea, -+, ex}). We can apply Lemma 2
so that: oo o
® ecley---e; € S(Z;s). Moreover g, — q1 — 2%y 4 is an execution
of C. Therefore ¢; € CoReach(q, F') so that CoReach(q, F') # 0.
o we S(F*).

Finally:

wo e Sz | UJ S(F™*)
FCX | CoReach(q,F)#0
Let us prove the inclusion from right to left. Assume ¢ € RS(C'). We notice
that according to Lemma 1, for all w € S(X7), (¢,w) is reachable in R. Now
assume CoReach(q, F') # 0 and w € S(F*). Since CoReach(q, F) # 0, there

. . T ?e1%e--Tep .
exists a control state p and an execution p — ¢ —————=5 ¢ in C' such that:

— e1eq ey ES(Z;) and,
- F:ZP\(Zsm{ehe?a"' aek})'

As w € §(F*), we have for all e € Xs:

— ife € {e1,...,er} then e & F hence e & alph(w). Therefore |(e1 ... ex) w|. =
ler...exle < 1.
—ife¢ {er,... ex} then |(e1...e5) w|e = |w|. < L

Consequently, in both cases, we have |(e1...ex) - w|e < 1. We remark that
(e1...ex)w € X7, hence (e1 ... ex)-w € S(X5). We can apply Lemma 1 so that
(p, (€1 ...ex)-w) is reachable in R. Because (p, (e ...ex)-w) — (q1, (e1 .. .ex) -

w) IRUTRLTIN (¢, w) is an execution of R, we obtain that (¢, w) is reachable in R.

Finally:
w € Lr(q) O

Now let us present the main result of this section which says that a regular
expression for the recognizable reachability set of a Reactive Fiffo Automaton is
effectively computable.

Theorem 3. There exists an algorithm computing a reqular expression for Lx(q),
for every q € Q.

From the previous theorem, one may easily deduce the following corollary.

Corollary 1. The Reachability Problem, the Finite Reachability Set Problem,
the Inclusion of Reachability Sets Problem, the Control State Reachability Prob-
lem and the Termination Problem are decidable for RFAs.

While recognizability of the reachability set of a Reactive Fiffo Automaton
comes essentially from condition 1.(a) of Definition 1, effectivity crucially de-
pends on condition 2. of Definition 1. As a matter of fact, let us show that if
we extend Control Automata in removing condition 2. of Definition 1 then the
reachability set is still recognizable but it becomes not effectively computable.
Indeed, for every machine capable of both lossiness and duplication errors, one
may construct a generalized RFA having the same reachability set. Now it is
known that machines capable of both lossiness and duplication errors have a
non effective recognizable reachability set [CFP96].

Ezample 2. Let us consider the RFA R modelling our readers/writers example.
The reachability set of R is:

U (@sE)

i€{0,1,--,6}

with Fy = Fy = {ry,ry, w1, we}, F1 = F5 = {ry, w1, wa}, Fy = Fs = {r1, w1, ws}
and Fy = {wy,ws}. The state (¢b, wirywswsy) is reachable while the state
(¢5,r1) is not reachable. All the control states of R are reachable. The reacha-
bility set of R is infinite and R does not terminate.

Remark 3. We have implemented an optimized algorithm which computes simul-
taneously for all control state ¢, a regular expression for £x(g). This algorithm
has a complexity of O(K(|X]) - Q] - | — |), where K(|Z]) = O(2/*1) is the
complexity of subset operations over Y. Hence, the various decision problems of
Corollary 1 are decidable with the same complexity.

The reachability set of a Reactive Fiffo Automaton with a non empty initial
fiffo queue is still recognizable and effectively computable [Sut97]. This result
especially allows us to decide the Recurrent Reachability Problem for RFAs.

The previous theorems are very useful when considering practical aspects:
simulation and verification. Indeed, the compilation of an Electre program pro-
duces a RFA (given by its associated Control Automaton), which is used for
simulation and verification purposes. This RFA leads to a C program, which is
then compiled to produce an executable file. Clearly, the control states which
are not reachable do not need to be included in the C program. This is also
the case for the transitions of the Control Automaton which are not quasi-live
(a transition ¢ of a Control Automaton is quasi-live if there exists an execution
containing ¢ in the associated RFA). Fortunately, the Quasi-liveness Problem is
decidable for RFAs.

Proposition 1. The Quasi-liveness Problem is decidable for RFAs.

Proof. If t = (¢ — ¢') is a T-transition or if ¢ is an emission transition of the
Control Automaton C| then ¢ is quasi-live if and only if ¢ is a reachable control

state of (', which is decidable. A reception transition qﬁ)q’ of C'is quasi-live if
and only if Lr(g) N X, eX* # (), which is decidable because a regular expression
for L£x(q) is computable. O

5 Relationships between Reactive Fiffo Automata and
Finite Automata

In the previous section, we have precisely described the reachability set of a
Reactive Fiffo Automaton. We now analyse the set of executions of a RFA| and
we establish a comparison between RFAs and Finite Automata. We first study
the general case of trace inclusion between a RFA and a Finite Automaton. We
then analyse the model checking of L'TL.

5.1 Trace inclusions

One may believe that Reactive Fiffo Automata are essentially equivalent to Fi-
nite Automata, because reception transitions are not blocking (as for each re-

ception transition ¢ LN q' of a Control Automaton, there exists a T-transition
¢ = ¢') and emission transitions can be repeated arbitrarily often. But the
following undecidability results prove that this is not the case.

We define the trace language of a RFA in the usual way : we introduce a new
alphabet of actions .4 and every transition of a Control Automaton is labelled
by an action a € A or by the empty word . The set of finite (resp. infinite)
traces T*(R) (resp. T¥(R)) of a RFA R is the set of finite (resp. infinite) words
on A corresponding to finite (resp. infinite) executions of R.

It is clear that for every regular language L (resp. w-regular language L),
there exists a RFA R such that 7*(R) = L (resp. T¥(R) = L). The following
theorem shows that from a trace language point of view, inclusions between
RFAs and Finite Automata are undecidable.

Theorem 4. The four following problems are undecidable :

i) Given a RFA R and a regular language L, is T*(R) C L ¢

it) Given a RFA R and a regular language L, is T*(R) D L ¢
iii) Given a RFA R and an w-regular language L, is T*(R) C L ¢
iv) Given a RFA R and an w-regular language L, is TY(R) D L ¢

As RFAs contain all Finite Automata, we obtain the following corollary.

Corollary 2. The two following problems are undecidable :

i) Given two RFAs Ry and Ra, is T*(R1) CT*(Ra) ?
it) Given two RFAs Ry and Ry, s T¥(R1) C T¥(R2) ?

5.2 Model checking with LTL

We prove, in this section, that the linear temporal logic LTL [MP92,Eme90]
without the temporal operator next, which we denote by LTL\X, is decidable
for Reactive Fiffo Automata. This result especially allows to check liveness and
safety properties, and also to decide the Reccurent State Problem for RFAs.

Notation. For every transition system T'S = (S, sg, A, =), we write L¥(T'S) for
the set of w-sequences of states corresponding to infinite executions of 7'S:

LYTS) ={sos1-sn-+ [VIiEN 8; = siy1}

In the following, we consider a finite set AP of atomic propositions on which
are based LTL formulas. Unless specified, we assume that the atomic propositions
label control states. Two w-sequences of states are equivalent modulo stuttering
iff they display the same w-sequence of states when two repeated consecutive
states are seen as one state only.

Theorem 5 ([Lam83]). Two w-sequences of states equivalent modulo stutter-
ing satisfy the same LTTI\X formulas.

We will now prove that a Control Automaton C' and the Reactive Fiffo Au-
tomaton R associated with C satisfy the same LTL\X formulas. In this way,
Model-checking of LTL\X is decidable for Reactive Fiffo Automata. In order
to demonstrate this result, we introduce a Finite Automaton, Restr(('), built
from C. We will actually show that C, R and Restr(C') satisfy the same LTL\X

formulas.

Definition 6 (Restricted Control Automaton). The Restricted Control
Automaton Restr(C) associated with a Control Automaton C' = (Q, qo, ({!,7} %
YU {r}, =) is the finite transition system Restr(C) = (S, 50, A, D reawniey) de-
fined as follows:

S=QuUQ, withQ=1{7/ q € Q} acopy of Q, is the set of states, and,
$o = qo 15 the inmitial state, and,
A= ({1} x Z)U{r} is the set of actions, and,
the set of transitions —rg..wo) 15 the smallest subset of S x A x S verifying
for all q,q' € Q the two following properties:
1. ifq 5 ¢ then g ;Rem(c) q', and,

2. ifq g q then we have q iﬁem(c) q and also q gmm(c) q.

We notice that, according to point 2. of Definition 1, each state of a Con-
trol Automaton is the source of a transition. Furthermore, this property holds
for Reactive Fiffo Automata and Restricted automata too. In this way, model
checking of LTL is well-defined for these transitions system.

In the following, in order to simplify the presentation, we identify states q
and § of a Restricted Control Automaton. Moreover, if @ x X* is the set of
states of a Reactive Fiffo Automaton, we will write proj, for the projection
on control states: projg is the morphism projg : (@ x Z*)* — @Q* defined by
projg (g, w) = q.

The two following lemmas express close relations between Control Automata,
Reactive Fiffo Automata and Restricted Control Automaton.

Lemma 3. Let R be the Reactive Fiffo Automaton associated with a Control
Automaton C' = (Q, qo, ({, 7} x) U {7}, —). We have:

L%(Restr(C)) € projo(L(R)) © LY(C)

Lemma 4. Let C = (Q, qo, ({1,7} x Z) U {r}, =) be a Control Automaton. For
every w-sequence v € LY(C'), there exists an w-sequence v’ € L¥(Restr(C')) such
that v and v' are equivalent modulo stuttering.

We now present the main result of this section, which especially allow to
check liveness and safety properties on RFAs.

Theorem 6. Model-checking of LTL\X is decidable for Reactive Fiffo Automata
and is PSPACE-complete.

Proof. Let R be a RFA associated to a Control Automaton C' = (@, g0, ({!,7} x
2)U{r},—). According to Lemma 3, to Lemma 4 and to Theorem 5, we obtain
that C', R and Restr(C') satisfy the same LTL\X formulas. Now, model-checking
of LTL\X is PSPACE-complete for Finite Automata [SC85], which concludes
the proof. a

Corollary 3. The Reccurent Control State Problem is decidable for Reactive
Fiffo Automata.

We finally show that the model-checking of LTI with atomic propositions
on transitions is undecidable. Let us remark that this result is stronger than
Teorem 4 i7).

Theorem 7. Model-checking of LTL with atomic propositions on transitions is
undecidable for Reactiwe Fiffo Automata.

6 Conclusion

In this work, we were interested in the verification of Reactive Fiffo Automata,
an new class of infinite systems that models Electre programs.

We have shown in this paper that Reactive Fiffo Automata have a recog-
nizable reachability set and that it is effectively computable. This result allows
to decide several problems involved in verification of RFAs, for instance the
Reachability Problem, the Finite Reachability Set Problem and the Inclusion of
Reachability Sets Problem.

This work is a first step towards the assesment of response times of the system
for taking into account memorized occurrences of events. This will be of a great
significance for real-life systems.

We have also analysed the relationships between Reactive Fiffo Automata
and Finite Automata. We have proved that from a trace language point of view,
inclusions between RFAs and Finite Automata are undecidable. But fortunately,
we obtained that the linear temporal logic LTL without the temporal operator
next (LTL\X) is decidable for Reactive Fiffo Automata. This result especially
allows to check liveness and safety properties.

The decidability of fragments of CTL has already been investigated in [Sut97].
The decidability of LTL (with atomic propositions on states) and the decidability
of CTL remain open problems.

References

[ABJ9S] P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems
with unbounded, lossy fifo channels. In Proc. of the 10" Conference on
Computer-Aided Verification (CAV), 1998.

[AT93] P. Adulla and B. Jonsson. Verifying programs with unreliable channels. In
Proc. of the 8th IFEFE Symposium on Logic in Computer Science, 1993.

[BBnRR9g] F.Boniol, A. Burguefio, O. Roux, and V. Rusu. Etude d’un modéle hybride
discret - continu pour la spécification de systémes temps-réel embarqués.
Rapport de contrat CERT/ONERA - IRCyN N° DERI 3703-33, February
1998.

[BGI6] B. Boigelot and P. Godefroid. Symbolic verification of communication pro-
tocols with infinite state spaces using qdds. In Proc. of the 8 Conference
on Computer-Aided Verification (CAV), volume 1102, pages 1-12. LNCS,
August 1996.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of qdds.
In Proceedings of SAS’97, September 1997.

[BHO7]

[BZ83]

[CF97]

[CFPY6]

[CHPT71]

[CRO5]

[CR97]
[Eme90]

[FCS87]

[FMo7]
[1J93]

[Lam83]

[MP92]

[Pac87]

[Quevs)

[SCs5]

[Sut97]

A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-
channel systems with nonregular sets of configurations. In Proc. of the
24th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 1256, pages 560-570. LNCS, July 1997.

D. Brand and P. Zafiropulo. On communicating finite-state machines.
JACM, 30(2):323-342, 1983.

G. Cécé and A. Finkel. Programs with quasi-stable channels are effec-
tively recognizable. In Proc. of the 9" Conference on Computer-Aided
Verification (CAV), volume 1254, pages 304 315. LNCS, June 1997.

G. Cécé, A. Finkel, and 1. S. Purushothaman. Unreliable channels are
easier to verify than perfect channels. Information and Computation,
124(1):20-31, 1996.

P. J. Courtois, F. Heymans, and D. L.. Parnas. Concurrent control with
“readers” and “writers”. Communications of the ACM, 14(10):667-668,
October 1971.

F. Cassez and O. Roux. Compilation of the Electre reactive language into
finite transition systems. Theoretical Computer Science, 146(1-2):109-143,
July 1995.

F. Cassez and O. Roux. Modelling and verifying reactive systems with
event memorisation. Revised version submitted, 1997.

E. A. Emerson. Handbook of Theoretical Computer Science, chapter 16,
pages 996-1072. Elsevier Science Publishers, 1990.

A. Finkel and A. Choquet. Simulation of linear fifo nets by petri nets
having a structured set of terminal markings. In Proc. of the 8th European
Workshop on Application and Theory of Petri Nets, Saragoza, pages 95—
112, 1987.

A. Finkel and P. McKenzie. Verifying identical communicating processes
is undecidable. Theoretical Computer Science, 174:217-230, 1997.

T. Jéron and C. Jard. Testing for unboundedness of fifo channels. Theo-
retical Computer Science, 113:93-117, 1993.

L. Lamport. What good is temporal logic ? In Information Processing’83.
Proc. IFIP 9th World Computer Congress, pages 657-668. North-Holland,
September 1983.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

J. K. Pachl. Protocol description and analysis based on a state transition
model with channel expressions. In Proc. of Protocol Specification, Testing
and Verification, VII, 1987.

Y. M. Quemener. Vérification de protocoles a espace d’états infini
représentable par une grammaire de graphes. PhD thesis, Université de
Rennes 1 (FRANCE), 1996.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733-749, 1985.

G. Sutre. Vérification de propriétés sur les automates a file réactifs produits
par compilation de programmes Electre. Mémoire de DEA, Univ. Paris VII
et Ecole Polytechnique, 1997.

