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Abstract—We introduce a framework for computing upper
bounds of WCET for hardware with caches and pipelines.
The methodology we propose consists of 3 steps: 1) given
a program to analyse, compute an equivalent (WCET-wise)
abstract program; 2) build a timed game by composing this
abstract program with a network of timed automata modelling
the architecture; and 3) compute the WCET as the optimal
time to reach a winning state in this game. We demonstrate
the applicability of our framework on standard benchmarks
for an ARM9 processor with instruction and data caches, and
compute the WCET with UPPAAL-TiGA. We also show that
this framework can easily accommodate dynamic changes in
the speed of the processor during program execution.

I. INTRODUCTION

Embedded real-time systems are composed of a set of
tasks (software) that run on a given architecture (hardware).
These systems are subject to strict timing constraints that
must be enforced by a scheduler. Designing an effective
scheduler is possible only if some bounds are known about
the execution times of each task. Performance wise, deter-
mining tight bounds is crucial as using rough over-estimates
might either result in a set of tasks being wrongly declared
non schedulable, or a lot of computation time might be
wasted in idling cycles and loss of computing power.
The WCET Problem. The execution-time, time(p, d,H),
of a program p, with input data d on the hardware H , is
measured as the number of cycles of the fastest component
of the hardware i.e., the processor. Data take their values
in a finite domain D. The program is given in binary
code or equivalently in the assembly language of the target
processor1. The worst-case execution-time of program p on
hardware H is defined by:

WCET(p,H) = sup
d∈D

time(p, d,H). (1)

The WCET problem asks the following: Given p and H ,
compute WCET(p,H).

In general, the WCET problem is undecidable because
otherwise we could solve the halting problem. However, for
programs that always terminate and have a bounded number
of paths, it is obviously computable. Indeed the possible runs
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1When we refer to the “source” code, we assume the program p was
generated by a compiler, and refer to the high-level program (e.g., in C)
that was compiled into p.

of the program can be represented by a finite tree. Notice
that this does not mean that the problem is tractable though.

If the input data are known or the program execution
time is independent from the input data, the tree contains a
single path and it is usually feasible to compute the WCET.
Likewise, if we can determine some input data that produces
the WCET (but this might be as difficult as computing the
WCET itself), we can compute the WCET on a single-path
program.

If is not often the case that the input data are known or
that we can determine an input that produces the WCET.
Rather the (values of the) input data are unknown, and the
number of paths to be explored might be extremely large:
for instance, for a Bubble Sort program with 100 data to be
sorted, the tree representing all the runs of the (assembly)
program on all the possible input data has more than 250

nodes. Although symbolic methods (e.g., using BDDs) can
be applied to analyse some programs with a huge number of
states, they will fail to compute the exact WCET on Bubble
Sort by exploring all the possible paths.

Another difficulty of the WCET problem stems from the
more and more complex architectures embedded real-time
systems are running on. They feature a multi-stage pipeline
and a fast memory component like a cache, and they both
influence in a complicated manner the WCET. It is then a
challenging problem to determine a precise WCET even for
relatively small programs running on complex architectures.
Methods and Tools for the WCET Problem. The reader
is referred to [1] for an exhaustive presentation of the
WCET computation techniques and tools. There are two
main classes of methods for computing WCET:
• Testing-based methods. These methods are based on

experiments i.e., running the program on some data,
using a simulator of the hardware or the real platform.
The execution time of an experiment is measured and,
on a large set of experiments, a maximal and minimal
bounds can be obtained. The maximal bound computed
this way is unsafe as not all the possible paths have
been explored. These methods might not be suitable for
safety critical embedded systems but they are versatile
and rather easy to implement.
RapiTime [2] (based on pWCET [3]) and Mtime [4]
are measurement tools that implement this technique.

• Verification-based methods. These methods often rely
on the computation of an abstract graph, the control
flow graph (CFG), and an abstract model of the hard-



ware. Together with a static analysis tool they can be
combined to compute WCET. The CFG should produce
a superset of the set of all feasible paths. Thus the
largest execution time on the abstract program is an
upper bound of the WCET. Such methods produce safe
WCET, but are difficult to implement. Moreover, the
abstract program can be extremely large and beyond
the scope of any analysis. In this case, a solution is to
take an even more abstract program which results in
drifting further away from the exact WCET.
Although difficult to implement, there are quite a
lot of tools implementing this scheme: Bound-T [5],
OTAWA [6], TuBound [7], Chronos [8], SWEET [9]
and aiT [10], [11] are static analysis-based tools for
computing WCET.

The verification-based tools mentioned above rely on the
construction of a control flow graph, and the determination
of loop bounds. This can be achieved using user annotations
(in the source code) or sometimes inferred automatically.
The CFG is also annotated with some timing information
about the cache misses/hits and pipeline stalls, and paths
analysis is carried out on this model e.g., by Integer Linear
Programming (ILP). The algorithms implemented in the
tools use both the program and the hardware specification
to compute the CFG fed to the ILP solver. The architecture
of the tools themselves is thus monolithic: it is not easy to
adapt an algorithm for a new processor. This is witnessed
by WCET’08 Challenge Report [12] that highlights the
difficulties encountered by the participants to adapt their
tools for the new hardware in a reasonable amount of time.
WCET and Model-Checking. Surprisingly enough, only a
few tools use model-checking techniques to compute WCET.
Considering that (i) modern architectures are composed of
concurrent components (the units of the different stages of
the pipeline, the caches) and (ii) the synchronization of these
components depends on timing constraints (time to execute
in one stage of the pipeline, time to fetch a data from the
cache), formal models like timed automata [13] and state-
of-the-art real-time model-checkers like UPPAAL [14], [15]
appear well-suited to address the WCET problem.

It has previously been claimed [16] that model-checking
was not adequate to compute WCET, but this statement has
since been revised. In [17], A. Metzner showed that model-
checkers could well be used to compute safe WCET on the
CFG for programs running on pipelined processors with an
instruction cache.

In [18], B. Huber and M. Schoeberl consider Java
programs and compare ILP-based techniques with model-
checking techniques using the model-checker UPPAAL.
Model-checking techniques seem slower but easily amenable
to changes (in the hardware model). The recommendation
is to use ILP tools for large programs and model-checking
tools for code fragments.

More recently, the TASM toolset [19] (M. Ouimet & K.

Lundqvist) has been used to compute WCET with UPPAAL:
the TASM machine is a high level machine not featuring
pipelining nor caches.
Related Work. The use of timed automata (TA) and the
model-checker UPPAAL for computing WCET on pipelined
processors with caches is reported in [20], [21] (META-
MOC, A. E. Dalsgard et al.). The METAMOC method
consists of: 1) computing a flow graph (FG) from a binary
program, 2) composing this FG with a (network of timed
automata) model of the processor and the caches. Computing
the WCET is then reduced to computing the longest path in
the network of TA.

The previous framework is very elegant yet has some
shortcomings: (1) METAMOC relies on a value analysis
phase that may not terminate, (2) some programs cannot be
analysed (if they contain register-indirect jumps), (3) some
manual annotations are still required on the binary program,
e.g., loop bounds and (4) the unrolling of loops is not safe
for some cache replacement policies (FIFO).
Our Contribution. In this paper we use timed game au-
tomata (TGA) and UPPAAL-TiGA [23] (UPPAAL for timed
games) to compute WCET. We model the WCET problem
as a two-player timed game: Player 1 is the program,
and Player 2 is in charge of deciding the outcome of
the comparison instructions (e.g., cmp, tst that set the
conditional branching conditions) that depend on the input
data. As the choice of the input data is not controllable by
Player 1, we obtain a two-player game. The problem we
solve on this game is an optimal time reachability problem:

“What is the optimal time for Player 1
to reach the end of the program ?”

What is similar to METAMOC is the use of network of timed
automata to model the cache2 and pipeline stages. To obtain
a model (automaton) of the program we use a radically
different approach: (1) we build a graph without any need
for annotations and (2) we propose a new and very compact
encoding of the program and pipeline stages’ states whereas
METAMOC uses a values analysis phase and requires loop
bounds annotations to obtain an (unfolded) graph of the
program. First this enables us to compute the WCET for
14 programs3 (see Table I) of the Mälardalen University
benchmark programs with concrete data and instructions
caches, including some programs that cannot be analyzed by
METAMOC (although METAMOC reports WCET results
for 21 programs of the same benchmark). Second, compared
to METAMOC that requires a computer with 32GB RAM
and 2.5Ghz Quad Core, we can compute the results on a
laptop computer, 2Ghz Dual Core, with 2GB RAM, within
a few seconds (only two programs require more than one

2Note that a similar model is reportedly due to A. P. Ravn in [18].
3The remaining programs contain assembly instructions that are currently

not supported by our compiler from ARM assembly language to UPPAAL.
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Program loc† N‡
UPPAAL-TiGA

time/space¶
METAMOC

time£ WCET Abs§ Low
Power

Single-Path Programs
fac 26 0 0.35s/6.91MB 1.35s 1883 4/34 26/1.3%
fib 74 0 0.25s/5.68MB 1.52s 571 4/22 26/4.5%
janne-complex∗ 65 0 0.54s/7.76MB 1.92s 792 0/23 176/22%
matmult∗ 162 0 119.2s/936.75MB Out of Mem. 614827 31/107 800/0.001%
jfdcint 374 0 7.13s/55.99MB 16min46s 49017 394/454 108/0.22%
expint(50,1) 81 0 6.08s/59.16MB 12s 65042 0/124 70/1.7%
expint(50,21) 81 0 3.65s/43.21MB 12s 41015 0/124 71/1.7%
fdct 238 0 2.83s/26.79MB 41m22 26099 0/286 90/0.3%
edn∗ 284 0 22.28s/230.98MB NA 62968 0/460 26/0.04%
recursion∗ 41 0 2.68s/28.82MB NA 10335 0/38 32/0.3%

Multiple-Paths Programs
bs 174 5 0.52s/6.52MB 0.52s 366 0/22 30/8.2%
cnt∗ 115 100 100.25s/377.02MB 4s 6483 0/82 40/0.06%
insertsort∗ 91 675 9.36s/81.27MB 2.44s 27061 0/53 400/1.4%
ns∗ 497 625 12.38s/110.92MB 7s 43239 0/41 32/0.0007%

†lines of code in the C source file ‡N = Max number of Player 2 moves along a path
§Abstracted instructions/Instructions ∗Program selected for the WCET Challenge 2006 [22]
¶On Intel Dual Core 2Ghz 2GB RAM (FIFO Caches) £On Intel Quad Core 2.5Ghz 32GB RAM (LRU Caches)

Table I
RESULTS (C PROGRAMS COMPILED WITH GCC -O2)

hundred seconds). Third, using timed games instead of
timed automata is also notably different: (i) the on-the-
fly algorithm [24] implemented in UPPAAL-TiGA [23] is
different from the one running in UPPAAL, and it can also
compute the optimal time (in the presence of adversary) to
reach a designated state; thus we do not need to do a binary
search or use a tailored version of UPPAAL to compute
the results; and (ii) solving a game allows us to prove that
the program always terminates which validates the model
of hardware (pipeline and caches) we use in the sense that
they produce no deadlocks.

Finally, we also show that taking into account processor
speed variations is easy in a framework using timed games.
This can be important as it is possible to adjust the speed of
the processor depending on the program to be run. For some
programs, the saved power can be up to 22% (see Table I
and Section V for detailed comments).
Outline of the Paper. In Section II, we briefly introduce
the ARM9 architecture and the assumptions we make on
the assembly programs to be analysed. Section III describes
how to encode an assembly program with non-deterministic
choices into a game. In Section IV we give the timed
automata models of the architecture we use to compute the
WCET. Section V gives an overview of the tool chain we
propose and the components (compiler) we have designed
together with some comments on the case studies presented
in Table I. [25] is an extended version of this paper.

II. ASSEMBLY PROGRAMS AND ARM9 ARCHITECTURE

Runs of a Program. A program p is a list of instructions
p = i1, i2, · · · , ir and i1 is the initial instruction. The control
usually goes from instruction ij to ij+1 except for branching
instructions that give the next instruction ib to be performed.
Each instruction performs some basic operations (arithmetic,

logic, memory load or store, branching) and has a duration
which gives the amount of time it takes in each stage of
the pipeline of the processor4. We assume this duration
is independent from the content of the operands of the
instructions5. In the sequel we use the variable ι to denote
an instruction of p.

The hardware H on which p runs has a pool of registers
(different from the main memory and the caches). We let
R = {r0, · · · , rk} be the set of registers of H . For example
on the ARM9 processor [26] there are 16 registers. A
designated register pc (register 15 on the ARM9) contains
the program counter and points to the next instruction to be
performed.

We let M = {m1,m2, · · · ,mn} be the set of memory
cells’ addresses used by the program (we assume the pro-
gram can access M). The content of the memory cells and
registers is in a finite domain D (e.g., 32 bit integers). A
state of a computation of p is a mapping v :M∪R→ D.
We let V be the set of states and B = {TRUE, FALSE}.

As we do not want to simulate p for each single possible
value of each input data, we assume that the initial values
of these data can be arbitrarily chosen and thus can have
an arbitrary and unknown value. To formalise this, we use
an extended domain for the values of the registers and
memory cells: D ∪ {⊥} where ⊥ is a special unknown
value. V⊥ denotes the set of states on the extended domain.
At the beginning of the computation, every register (except
pc) and every memory cell is set to ⊥. The initial state

4A particular case is a processor with one stage and 1 time unit for each
instruction.

5This is not always the case as for instance the duration of the instruction
mull (multiplication on long integers) on the ARM9 depends on how large
one of the operand is. However, we can always take the longest duration
to obtain a safe upper bound of the WCET.
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of the computation of p is thus v0 with v0(x) = ⊥ for
x ∈ (R \ {pc}) ∪ M and v(pc) = i1 where i1 is the
address of the first instruction of program p.

An example of an assembly program is given in Listing 1.
This program performs a binary search on an array of 14
elements. The address of an instruction appears on the left
hand side of a line and we refer to an instruction using
this address. Instruction at 24 loads register r3 with the
content of memory cell at address v(r4) + (v(r2) ∗ 8). As
we do not know the values stored in M, the value of r3
is unknown after this instruction has been performed. r0
contains the value we are looking for in the search: it is set
to 9 by the instruction at 0. The result of the comparison
(cmp r3,r0) between the registers r0 and r3 performed
by the instruction at 2c is undetermined as the value of
r3 is unknown: thus setting the initial value of r0 to 9
does not restrict the set of paths defined using our extended
domain values. The outcome of the comparison is used later
in conditional6 instructions (e.g., ldreq r5, [r1, #4]
and subgt ip,r2,#1) and branching instructions beq
44. Two status bits7 are needed to encode the result of the
comparison of the instruction at 2c: whether r3 is “lower
or equal” than r0 and whether r3 is “equal” to r0. This is
indicated by the two predicates8 eq and le between / . . . /.� �

00000000 <main>:
0: e3a00009 mov r0, #9 ; 0x9
4: eaffffff b 8 <binary_search>

00000008 <binary_search>:
8: e92d4030 stmdb sp!, {r4, r5, lr}
c: e59f4040 ldr r4, [pc, #64] ;
10: e3a0e000 mov lr, #0 ; 0x0
14: e3a0c00e mov ip, #14 ; 0xe
18: e3e05000 mvn r5, #0 ; 0x0
1c: e08e300c add r3, lr, ip
20: e1a020c3 mov r2, r3, asr #1
24: e7943182 ldr r3, [r4, r2, lsl #3]
28: e0841182 add r1, r4, r2, lsl #3
2c: e1530000 cmp r3, r0 / eq le /
30: 05915004 ldreq r5, [r1, #4]
34: 024ec001 subeq ip, lr, #1 ; 0x1
38: 0a000001 beq 44 <binary_search+0x3c>
3c: c242c001 subgt ip, r2, #1 ; 0x1
40: d282e001 addle lr, r2, #1 ; 0x1
44: e15e000c cmp lr, ip / le /
48: c1a00005 movgt r0, r5
4c: dafffff2 ble 1c <binary_search+0x14>
50: e8bd8030 ldmia sp!, {r4, r5, pc}
54: 00000158 .word 00000158� �

Listing 1. Binary Search Program

We assume that for each program p, when a memory
cell is referenced, its actual address is known (although the
content of it might be unknown). This address only depends

6A conditional instruction is executed only if the condition is true.
7On the ARM9 processor, bits V and Z.
8The needed predicates are computed by our program ARM2UPP, see

section V.

on the path (sequence of instructions) that has been taken in
the program from the initial state. This means that we rule
out programs that can access unknown memory addresses
that depend on the values of the input data. This is not an
important restriction and this requirement was fulfilled by
all the programs we have encountered so far.

A run of program p is a sequence of instructions. What
is important to notice is that some instructions may have
more than one outcome (e.g., comparisons) because the input
data are considered to have an unknown value. Thus the set
of runs of p on all possible input data is represented by a
tree, tree(p). We make the assumption that all runs of p
are bounded, and thus tree(p) has bounded depth: this is a
common assumption when computing WCET and amounts
to saying that all loops are bounded9.
Execution Time of a Run. If each instruction was performed
one after the other, the execution-time of a run would be the
sum of the execution times of each instruction. On pipelined
architecture, the execution of an instruction is split into two
or more stages (fetch, decode, execute, memory and so on).
On pipelined architectures with caches, the execution-time
solely depends on:

1) the sub-sequences of instructions: pipeline stalls can
occur, for instance because one instruction (e.g., in
the execute stage) reads a register written to by the
instruction in the next stage (e.g., memory stage).

2) the time to read/write a memory cell: instructions that
perform memory transfers (load and store) might take
different durations if a cache is used, depending on
whether the memory cell is already in the cache or not.

The duration of a run ρ on architecture H , possibly featuring
pipelining and caching, is denoted time(ρ,H). As each path
ρ ∈ tree(p) corresponds to a run of p on some input data
d ∈ D and conversely, and as tree(p) is finite, we can rewrite
Equation ?? as follows:

WCET(p,H) = max
ρ∈tree(p)

time(ρ,H).

This function might be rather complex (because of pipeline
stalls, cache misses) but is yet well-defined.

III. FROM PROGRAMS TO GAMES

In this section we describe how to encode an assembly
program into a game.

Given a program p, we define a two-player game to model
the runs of the program. Player 1 executes the instructions
of p. The role of Player 2 is to set the values of the
status bits that record the outcome of a comparison: when
an instruction that modifies them is encountered and some
operands have unknown values, the result is undetermined;
the outcome is thus picked up non-deterministically.

On the ARM9 processor, there are 4 status bits. A simple
encoding would be to have 4 boolean variables to model the

9Notice that we do not require to annotate the program with loop bounds.
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value of each bit. As we let Player 2 choose the outcome,
this corresponds to choosing four values for Player 2: N
(negative), Z (zero), V (overflow) and C (carry). This could
create 24 = 16 different next states in a computation and
thus as many new potential branches in the game. Most of
the time, it is not necessary to know the actual values of
the 4 status bits. For instance the result of a comparison
instruction cmp r0, r1 with, say r1 unknown, could be used
later on only to check whether r0 = r1. In this case the
value of the Z-status bit is required but the values of the
other status bits are irrelevant.

To reduce the number of branches (choices of Player 2)
in the game, we determine, for each instruction ι of p that
sets a status bit, the next instructions that depend on the
outcome of ι. This can be automatically computed on the
program p. For each instruction ι that sets a status bits, we
let flags(ι) be the set of predicates used after ι. For instance
in the example code of Listing 1, page 4, the result of the
instruction cmp r3, r0 line 2c is used at 30, 34, 38, 3c
and 40, and the predicates needed are le and eq (gt is the
negation of le). In the worst case we still need 4 variables
to encode the outcome of an instruction ι that sets the status
bits, but we reduce the choices of Player 2 to the predicates
in flags(ι). In the previous examples, instead of having 16
branches from the current state, there will be only 4.
To model program p in UPPAAL, and simulate it, we need:
• an array, val, of 16 variables for the registers of the

ARM9 processor;
• at most 4 Boolean variables for the encoding of the

status bits (we use cmple, cmplt, cmpls, cmpeq
instead of the actual status bits N, Z, V and C, but this
is equivalent);

• a stack10 of size K (the size of the stack is determined
in a previous stage using a C program to simulate p).

Although the model-checker UPPAAL is very efficient, we
have to be careful when encoding p: some information can
be encoded using variables, but they will be part of the state
of the network of TA we build, and will be encoded in the
BDD representation of each state. Some information is not
dynamic but rather static (e.g., the type of an instruction
ι, or the registers read/written by an instruction). They are
only used to make a decision when moving from one state
to another (i.e., as guard) and thus can be encoded using
UPPAAL functions. This saves space as functions are not
part of the encoding of a state. This encoding is a major
difference compared to the one used in METAMOC. Given
a program p, we define the functions:
• SetStatusB : p → B which, given an instruction ι ∈
p, returns TRUE if ι sets some status bits (comparison
instructions cmp, tst and instructions with the “s” flag
like subs, adds etc) and FALSE otherwise;

10We simulate the program stack as well, as it is used extensively to pass
parameters and store return addresses.

• cmpU : p× V⊥ → B returns TRUE if the result of ι in
state v is unknown and FALSE otherwise.

As a shorthand we write NDcmp(ι, v) = SetStatusB(ι) ∧
cmpU(ι, v) and this indicates whether instruction ι, when
executed from state v, should be played by Player 2 (some
status bits have to be set but an operand is unknown).

In addition to this, we define another function update :
V⊥ → V⊥ which updates the values of the registers and the
status bits if required: this function encodes the semantics
of each instruction on the extended domain.

All these functions are computed by our compiler
(ARM2UPP, Fig. 6, Section V), and the result for the binary
search program is given in Listings 2 and 3, Appendix B.

prog_completed!

initialize!

fetch!

init_val() !NDcmp(pPC[FETCH_STAGE])

NDcmp(pPC[FETCH_STAGE])

n:int[0,1],z:int[0,1]

update()

(val[pc]==INIT_LR)
!(val[pc]==INIT_LR)

setcmp(pPC[FETCH_STAGE],n,z)

Figure 1. Generic Automaton Prog to Simulate a Program

The generic automaton to simulate a program p is given
in Fig. 1. We assume that program p is called by a caller
and a particular value INIT_LR gives the return point when
p terminates. The automaton Prog (Fig. 1) performs some
initialisation (init_val()) and then computes the next
state until the end of the program is reached: this is when the
value of the pc register is equal to the return point INIT_LR
(guard val[pc]=INIT_LR). To simulate each instruction,
the automaton Prog performs the following steps:

1) feed the current instruction ι to the first stage of the
pipeline when it is empty (to do so it has to synchronise
with the first stage of the pipeline on the fetch! chan-
nel) and compute the next state (update() function).
This also sets the next value of register pc. The result
of update() is that the number of the current instruc-
tion is stored into the variable pPC[FETCH_STAGE]
which is part of the first stage (#0) of pipeline.

2) if the instruction ι in pPC[FETCH_STAGE]
is an undetermined comparison, the function
NDcmp(pPC[FETCH_STAGE]) evaluates to TRUE
and the upper dashed transition is taken: Player 2
chooses two values n and z and the predicates that
must be set (cmple, cmplt, etc) are set by setcmp
(Listing 2, page 12). If ι does not set any flag or
the outcome is determined by the current state (the
operands are all known), the middle plain transition is
taken (Player 2 does not have to play).
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Abstractions. All instructions have side effects but some of
them can be ignored as they have no influence on the WCET.
Indeed the effect of an instruction does not always have to be
taken into account: for instance, in the Fibonacci program,
we are not interested in the actual result of the computation,
but only in the time it takes to compute it. Some instructions
can thus be abstracted away by only advancing the pc
register without modifying the other registers.

In our framework, we can check (see Section V) whether
an instruction can be safely abstracted. As witnessed by
Table I, for some programs (matmult and jfdcint), a
large part of the instructions can be abstracted away (the
abstraction only abstracts the effect of the instructions on the
registers but they are still fed into the pipeline with their tim-
ing constraints). This results in smaller ranges for registers
and a more compact representation of the state of the system
in UPPAAL, and consequently a faster analysis. Actually the
two programs matmult and jfdcint generate a huge
range of registers values without abstraction which may
prevent their analysis or badly impact the computation time
as witnessed on Table I by the results of METAMOC on
these programs. Using abstraction, we were able to compute
the WCET using a very small amount of time and memory.

IV. MODEL OF THE HARDWARE

In this section we give a UPPAAL model for the archi-
tecture of the ARM920T processor and the caches.

A. Model of the Pipeline

Each stage of the pipeline contains an instruction and
some other information and this is stored in arrays: pPC[k]
gives the index of the instruction in stage k; Todo[k]
is a Boolean value and indicates whether the instruction
pPC[k] is scheduled (some instructions are conditional and
are skipped); dataAdr[k] contains the address11 of the
memory cell referenced by pPC[k] (−1 if none). There
are 5 stages in the pipeline of the ARM9:

• stage 1: fetch stage. It fetches the next instruction
(pointed to by pc) from the cache and this instruction
becomes the current instruction at stage 1;

• stage 2: decode stage. It decodes the instruction.
• stage 3: execute stage. It carries out the computation

(addition, comparisons, etc) of the instruction.
• stage 4: memory stage. It carries out the memory

transfers (from registers to cache/main memory or
cache/main memory to registers) of the instruction.

• stage 5: writeback stage. It writes the values of registers
that are (“writeback”) operands of the instruction.

11For multiple loads and stores, this should be a range of addresses; this
information is used only for determining whether a stall should occur in the
pipeline. For multiple loads and stores, we force a stall in a pipeline until
the end of the multiple loads/stores instruction. This is a safe encoding as
the ARM9 does not exhibit timing anomalies.

An instruction ι enters the pipeline at stage 1. It is transferred
from stage i to i + 1 as soon as possible. When it exits
stage 5, it is completed. The execution of a program is
completed when its last instruction is completed.
Pipeline Stalls. The goal of pipelining is to split the ex-
ecution of an instruction into different simple steps. The
idea being that each step can be carried out concurrently
for different instructions: while stage 1 fetches the next
instruction ιk, stage 2 decodes instruction ιk−1, etc. It
may happen that the simple steps of some sequences of
instructions cannot be carried out concurrently. A pipeline
stall is a situation when one stage i of the pipeline cannot
perform its computation because it has to wait for another
stage j > i to complete its computation.

To handle pipeline stalls we only transfer an instruction
from the decode stage to the (next) execute stage if no
write/read dependencies exist between the registers (and
memory cells) at stage 2 and the registers at stage > 2.
In the UPPAAL model (Fig. 2) of the decode stage, the
transition copy(me,me+1) which feeds the next stage
me + 1 of the pipeline with the information from stage
me, is guarded by the function !stall() (“no stall”). The
registers read from/written to by an instruction are encoded
using a function reg (see Appendix B, Listing 4.)
Branch Prediction. When a conditional branch instruction
enters the pipeline, the next instruction to flow in is deter-
mined by the truth value of the condition. This value might
not yet be available when the branch instruction is in the
first stage of the pipeline. If the condition is determined by
the value of a variable which is not in the cache, it might
take a few cycles before the result becomes available. In this
case, we should stall until the outcome of the comparison
is computed. This might however be inefficient.

Some heuristics, branch prediction, can be applied to
guess the most plausible next instruction after a conditional
branching. After the prediction, the chosen instruction flows
in the pipeline. If the guess was right the result is a shortest
execution-time for this part of the program. If the guess
was wrong, the computations of the mistakenly taken branch
have to be undone, and the pipeline flushed which results in
a longer execution-time. We do not discuss here the choice
of a good heuristics, but there are some options that give
good results on average. In our model we implement the
ARM920T pipeline where there is no branch prediction.
UPPAAL Pipeline Model. The timed automata models we
introduce are close to the ones proposed in [20]. However
there are some differences as we do not have the same model
for the program.

The timed automata for each stage (ARM9, 5 stages) are
depicted on Fig. 2–5. The stage modelled by each automaton
can be inferred by the synchronisation channel from the
initial state (e.g., decode?). The first stage of the pipeline
is of particular importance as it models the case of a wrong
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decode?

execute!

t==CYCLE

copy(me,me+1)

!stall()

t<=CYCLE

fetch_completed?

t=0

decode_completed!

execute?

decode_completed?

copy(me,me+1)

t=0,DUR_INSTR=dur()

t==DUR_INSTR

t<=DUR_INSTR

execute_completed!

memory!

Figure 2. Timed Automata for the Decode and Execute Stages.

fetch? CacheReadStart[INSTR_CACHE]!

CacheReadEnd[INSTR_CACHE]?

CacheReadEnd[INSTR_CACHE]?

copy(me,me+1)

fetch_completed!

prog_completed?

CacheReadStart[INSTR_CACHE]!

type_of(pPC[me])==G4c && Todo[me]

PC+=BLK_SIZE

!(type_of(pPC[me])==G4c && Todo[me])

PC+=BLK_SIZE

decode!

CacheReadEnd[INSTR_CACHE]?

CacheReadEnd[INSTR_CACHE]?

CacheReadStart[INSTR_CACHE]!

Figure 3. Timed Automata Model of the ARM9 Pipeline

guess in an branch prediction. The automaton of Fig. 3
models the fetch stage:

1) it accepts a fetch? synchronisation when it is idle;
2) after accepting an instruction (fetch? synchro-

nises with fetch! in the automaton Prog of
Fig. 1), it actually fetches the instruction from
main memory via the instruction cache (on chan-
nel CacheReadStart[INSTR_CACHE]!, where
INSTR_CACHE is the ID or the instruction cache);

3) when the instruction has been read from the cache there
are two options:

a) the instruction to be processed is a conditional
branch (e.g., type_of(pPC[me])==G4c) and the
variable Todo[me] indicates whether the condition
was evaluated to TRUE or FALSE. In case it is a
conditional branch and the condition was TRUE, we
simulate two “instruction read from the cache” steps:
indeed our branch prediction algorithm is “never
branch” and thus if it happened that we had to
branch, we should simulate a pipeline flush. As we
do not execute the instructions in the pipeline (but
rather when we feed the first stage of the pipeline),

this can be modelled by reading the next two in-
structions (the “never branch” prediction) without
executing them, and then resuming the simulation
from the target address of the branch instruction.

b) the instruction to be processed is not a conditional
branching or the condition was evaluated to FALSE;
in this case the prediction was right and nothing has
to be undone.

After an instruction has been fetched in the fetch
stage, it is fed to the next stage. This is modelled by the
decode! synchronisation and the copy(me,me+1)
transition. copy(me,me+1) copies the informa-
tion in the variables pPC[me], Todo[me] and
dataAdr[me] to the next stage me+1.

B. Model of the Caches

We use two caches (instruction and data) with FIFO re-
placement policy and assume write allocate on a write/miss.
The automaton modeling the behaviour of a cache (together
with the model of the main memory automaton) is given in
Fig. 7, appendix B. The caches are j-way caches where the
L-line cache is partitioned into L/j sets. In the example of
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execute_completed?
writeback!

memory?

CacheReadStart[DATA_CACHE]!

memory_completed!

memory?

CacheWriteStart[DATA_CACHE]!
Todo[me-1] && (
type_of(pPC[me-1])==G2LDR || 
type_of(pPC[me-1])==G2STR)

t==CYCLE

!Todo[me-1] || (
type_of(pPC[me-1])!=G2LDR && 
type_of(pPC[me-1])!=G2STR)

t<=CYCLE

type_of(pPC[me])==G2LDR
type_of(pPC[me])==G2STR

CacheWriteEnd[DATA_CACHE]?

t=0

CD=dataAdr[me]
CD=dataAdr[me]

CacheReadEnd[DATA_CACHE]?

copy(me,me+1)

t=0

Figure 5. Timed Automata for the Memory Stage

writeback?

memory_completed?

t=0

t<=CYCLE

DONE

clean()

t==CYCLEt=0

Figure 4. Timed Automata for the Writeback Stage

Table I, we use caches with 16 lines and 4 sets. The length of
a line is set to be 4 words. The caches are initially empty but
the initial set can be set to any value (could be fully filled).
Notice that the two caches share the same main memory
and thus synchronization with this memory is necessarily
serialized (The main memory automaton of Fig. 7 can only
accept one request at a time).

C. Timing Anomalies

Timing anomalies [1] can occur because of the complex
architecture of the hardware H . The term refers to counter-
intuitive observations in the sense that larger local execution-
times may not result in larger global execution-times on
some given hardware. Pre-fetching instructions can lead to
such observations on some processors. This can also be
observed on complex pipeline architectures (e.g., out-of-
order execution of instructions).

The ARM9 processor does not exhibit timing anomalies.

[21] reports that using a FIFO cache on the ARM9 can cause
a domino effect. This is not related to actual hardware timing
anomalies but to timing anomalies related to abstractions
of programs, specifically when unrolling loops. We do not
use loop unrolling but perform a fair simulation of a binary
program and thus the domino effect does not affect our
method which is another difference with METAMOC.

V. TOOL CHAIN AND CASE STUDIES

The model we check to compute the WCET consists of
the automata Prog 1, the automata the different stages of
the pipeline 2–5 and the automata modelong the instruction
and data caches (the reader is refered to http://www.irccyn.
fr/franck/wcet for details of the models).
Tool Chain. The tool chain to compute WCET is depicted
on Fig. 6. The component we have developed are ARM2UPP
to generate a game model g of a program and PATCH_UPP
to replace some constants in g (e.g., maximum stack size,
range of registers) once they are computed:
• ARM2UPP takes as input a program in assembly code

(file.arm) and generates four files:
– file.{xml,q} that contain respectively the

UPPAAL network automata (and functions like
update()) modelling the execution of the pro-
gram on the architecture of the ARM9 and the
UPPAAL queries to compute the WCET;

– file-reach.cpp is a C++ program that sim-
ulates the program in file.arm. It does so
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using the extended domain for variables using
the unknown ⊥. When a comparison is unknown
both branches are explored. This ensures that
our simulation explores at all the actual possible
paths of the program (and maybe some infeasi-
ble ones). file-reach.cpp is compiled into
file-reach.exe. When this program termi-
nates the file file.inf contains some useful
information (like maximal stack size, registers
ranges, etc) that can be used further on.

– file-equiv.cpp is a C++ program that checks
whether an abstraction mapping (which is given
by a function) is valid or not, i.e., the abstracted
program is equivalent WCET-wise to the non-
abstracted one. The abstracted instructions are
given (by the user as a list). This program is
compiled into an executable file-equiv.exe
that returns either TRUE if equivalence holds and
FALSE otherwise; equivalence by that checking
the synchnonized product of the non-abstracted
program and the abstracted one generate exactly
the same sequence of instructions into the pipeline
and the same memory references.

• PATCH_UPP modifies some constants in the network
of TA of file.xml to incorporate the information
from file.inf (like stack size, registers range) and
can also include the function giving the abstracted
instructions.

Notice that we assume the input is a C program but the entry
point can be the compiled binary ELF program.
UPPAAL-TiGA Queries. In order to compute the WCET
of a program, we can check whether the program always
terminates within k time units. This can be computed using
a binary search with UPPAAL. The drawback of this check
is that some deadlocks may occur in the system, yielding a
biased value of the WCET.

An alternative way of computing the WCET is to check
a control property: “Can Player 1 enforce termination of
the program and if yes, what is the best duration he can
guarantee?” This optimal time reachability control objective
can be checked in one query (see [24]) with UPPAAL-
TiGA [23], provided we know an upper bound of the WCET
and this can be roughly over-estimated on the program.

Program termination in the UPPAAL model hap-
pens when the location DONE is reached in the
writeBackStage automaton (last stage of the pipeline).
Technically, the optimal time is computed using the
control_t* modality of UPPAAL-TiGA as follows:

control_t*(#n,0):A[true U writeBackStage.DONE]

where #n is an upper bound of the expected WCET.
Case Studies & Results. We have applied the framework
described in Fig. 6 to a number of benchmark programs
from Mälardalen University. We could not analyse the full

set of programs because of the current limitations of our
tools: floating point operations are not supported yet; a
few operators (e.g., ror) of the ARM9 assembly language
are not supported yet. To evaluate the relevance of our
method, we compare our results concerning the time/space
needed to compute WCET to the ones obtained with the
METAMOC method [21]. We have chosen to implement
FIFO caches because we want to compare our computed
results to the actual execution times of the programs running
on our testbed which is an ARM920T. This means that
the actual WCET computed with METAMOC and ours are
not comparable as we use FIFO caches vs LRU caches in
METAMOC.

There are 21 programs that can be analysed by META-
MOC using a concrete instruction and data caches. Using
our encoding and tool chain, we could analyse 14 programs
(the remaining contain unsupported operations) with con-
crete instruction and data caches. Moreover, the time/space
needed to compute the results is very small compared to
the resources used in METAMOC. Table I, page 3, gives
the values of WCET for each program, and the time for
UPPAAL-TiGA12 to compute the result. The time needed to
compute the intermediary files is negligible. The UPPAAL
files are available from http://www.irccyn.fr/franck/wcet.

It is to be noticed that abstraction seems to be an
important point to be able to handle programs with a large
number of states/paths: indeed for matmult and jfdcint
we can compute the WCET in less than 2mins whereas
METAMOC runs out of memory or needs around 16mins
(on a faster machine than ours).
Energy/Power Consumption Optimisation. Dealing with
power consumption is also a strength of the timed automata
based approach (METAMOC shares this feature). It is very
easy to model dynamic changes in the speed of the pro-
cessor: it suffices to set the value of the processor speed
in the models: the processor speed can be switched during
the execution of the program using a timed automaton to
set the current speed. As an example, we have computed
the WCET when only one switch is allowed during the
program execution. The processor starts at 1/4th of its fastest
speed and at some fixed point in time switches to full speed.
The last column of Table I gives the percentage of time the
processor can run at the slower clock rate without any impact
on the WCET: this is due to the initial transient phase of the
execution of a program where instructions are loaded into
the cache. For some small programs the result is impressive
(22% for janne-complex).

VI. CONCLUSION & FUTURE WORK

In this paper we have presented a framework based
on timed games and the model checker UPPAAL-TiGA

12We used version 0.12 for MacOS (http://www.cs.aau.dk/∼adavid/tiga/).
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file-patch.q UPPAAL-TiGA

WCET
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Figure 6. Tool Chain Overview

to compute WCET for programs running on architectures
featuring pipelining and caching.
The advantages of our approach are many-fold (META-
MOC [21] shares 1–3,6):

1) it is very easy to implement as it consists of two
separate and independent phases: 1) computation of
a model of the program to be analysed; this only
requires a (formal) semantics of the assembly language
of the target processor13; 2) computation of the WCET
with UPPAAL-TiGA and the models for the caches,
pipelines which specify the timing features.

2) the design of the models for pipeline stages and caches
can be stressed by simulating some simple sample
programs; this enables us to get more confidence in
the model of the hardware as this is not hidden in
the analysis algorithm; this is especially important for
concurrent architectures like pipelined processors that
can be hard to describe;

3) UPPAAL or UPPAAL-TiGA can be used to simulate
the program on the architecture. It is thus a quick way
of obtaining a simulator for a given hardware;

4) (manual) annotations are not required. On the 14 pro-
grams of Table I, the analysis is fully automatic; notice
though that if termination is ensured by an input data
dependent check in the program we cannot discover it.

5) we solve an optimal time reachability problem on the
program p of the form: “what is the optimal time to
enforce termination of program p ?”. This at once 1)
proves that p running on our hardware model terminates
on every input data, and 2) computes the WCET.

6) using timed automata, it is easy to add power related
constraints in the model e.g., processor speed switches;

7) we can check that an abstract program (with the effect
of some instructions ignored) is equivalent to a concrete
one and reduce the size of the encoding of a state of a
computation.

The results we have obtained support the claim that model
checking is adequate for computing WCET. Also to be

13In contrast, the verification-based tools would need a description of the
hardware to compute the CFG.

noticed is that UPPAAL-TiGA could be tuned to handle
WCET computation even more efficiently: priorities be-
tween processes can reduce unnecessary interleavings and
there are not yet implemented in UPPAAL-TiGA (though
they are in UPPAAL); a lot of time is spent checking whether
a new state has already been encountered: this will never be
the case in the programs we check (otherwise there would be
an infinite loop). Disabling this check would also reduce the
time to compute the results. We advocate the combination
of different techniques like model-checking and absraction
to solve the WCET problem. Indeed Abstract Interpretation
(AI) combined with Integer Linear Programming (ILP) have
given very good results [11] but this method is yet to prove
that: (1) it can be easily adapted to different processors or
multi-core processors and (2) it can take into account power
related features (like change of speed of the processor).

Our ongoing work focuses on the following aspects:

1) compare the WCET computed with our method to
WCET obtained on the actual hardware using a testbed
whihc is an ARM920T;

2) extend the set of supported instructions and provide
models for other architectures (like ARM11);

3) refine the models of the architecture to reflect more
accurately the actual hardware;

4) compute an abstract program automatically (currently
given as an input file). This has been recently imple-
mented using the technique of slicing [27] and thus an
abstract program is computed automatically;

5) prune the execution tree of the program. The goal of
this step is to reduce the number of paths of the program
still preserving the paths giving the WCET. Indeed
using an over-approximation (having more paths) of a
program may result in over-estimated WCET or over-
sized models that cannot be model checked. Another
solution is to use an under-approximation (less paths
to explored) that preserves the paths yielding to the
WCET. Techniques can be developed to try and prune
the tree (an example of such techniques was used to
compute optimal job shop scheduling [28]).
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APPENDIX

A. Caches

A cache is a fast memory device. It is characterised by
its size K (usually in Kbytes), the length of a cache line (B
in Bytes) and the number of cache lines L = K

B .
Fig. 7 depicts an automaton to implement a cache read-

/write. The variable PMT give the number of memory
transfers needed for the data to be in the cache: as we use
dirty bits, it may be the case that two transfers are needed.
Fig. 8 gives the TA for the main memory component.

MainMemStart?

MainMemEnd!

t<=MAINMEMTRANS

t=0

t==MAINMEMTRANS

Figure 8. Timed Automata Models for the Caches and main memory

B. Functions Used to Simulate a Program

The following code is generated by ARM2UPP in the tool
chain (Fig. 6).
C Code for SetStatusB, cmpU and NDcmp� �
1: /∗ f u n c t i o n t o d e t e r m i n e whe ther s t a t u s b i t s s h o u l d ne s e t ∗ /
2: bool SetStatusB( i n t i) { / / i i s t h e PC o f i n s t r u c t i o n ;

f u n c t i o n t h a t t e l l s whe ther s t a t u s b i t s s h o u l d be s e t
3: / / compar i sons f o r f u n c t i o n f i b
4: / / compar i sons f o r f u n c t i o n main
5: /∗ cmp / cmn f o r f u n c t i o n main s t a r t i n g 0 e nd i ng 4 ∗ /
6:
7: / / end d e f o f cmp / cmn f o r f u n c t i o n main
8: / / compar i sons f o r f u n c t i o n b i n a r y s e a r c h
9: /∗ cmp / cmn f o r f u n c t i o n b i n a r y s e a r c h s t a r t i n g 8 end in g 80 ∗ /

10: i f (i==44) { / / s e t t i n g s t a t u s b i t s f o r i n s t r u c t i o n cmp a t 44
[0 x2c ]

11: return true ;
12: }
13: i f (i==68) { / / s e t t i n g s t a t u s b i t s f o r i n s t r u c t i o n cmp a t 68

[0 x44 ]
14: return true ;
15: }
16:
17: / / end d e f o f cmp / cmn f o r f u n c t i o n b i n a r y s e a r c h
18: return false ;
19: }
20:
21: /∗ se tcmp f o r i n s t r u c t i o n s used i n t h e program ∗ /
22: void setcmp( i n t i,bool n1,bool n2) {
23: /∗ res comp f o r f u n c t i o n b i n a r y s e a r c h s t a r t i n g 8 e nd in g 80 ∗ /
24: i f (i==44) { / / i n s t r u c t i o n cmp r3 , r0 a t 44 [0 x2c ]
25: cmpeq=n1;
26: cmple=n2;
27: }
28: i f (i==68) { / / i n s t r u c t i o n cmp l r , i p a t 68 [0 x44 ]
29: cmple=n1;
30: }
31:
32: } / / end se tcmp o f i n s t r u c t i o n
33:
34: bool NDcmp( i n t i) {
35: return SetStatusB(i) && cmpU(i) ;
36: }� �

Listing 2. C Code for SetStatusB, cmpU and NDcmp

C Code for update function� �
1: void update() { / / up da t e f u n c t i o n
2: i n t nextpc,nextfp,tmp;
3: /∗
4: u p d a t e s f o r f u n c t i o n main s t a r t i n g 0 e nd in g 4
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CacheReadEnd[num]!

Hurry!

CacheWriteEnd[num]!

initialize?

CacheReadStart[num]?
CacheWriteStart[num]?

MainMemEnd?

MainMemStart!

PMT==0

x==CACHE_SPEED && op_write

PMT>0 && m>=0

x==CACHE_SPEED && !op_write

x<=CACHE_SPEED

PMT--

op_write=0
initCache()

x=0

op_write=0

PMT=is_in(m)?update(m,1):insert(m,1)
PMT=is_in(m)?update(m,0):insert(m,0)

Figure 7. Timed Automata Models for the Caches and main memory

5: ∗ /
6: i f (val[pc]==0) { / / I n s t r u c t i o n mov r0 , #9 a t 0 x0
7: nextpc=val[pc]+4;
8: i f (!is_abstracted(val[pc])) {
9: val[r0]=(9);

10: SET(0,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 0 , no memory
a c c e s s and s c h e d u l e d

11: }
12: else SET(0,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
13: } / / end mov a t 0 x0
14: i f (val[pc]==4) { / / I n s t r u c t i o n b 8 , ( u n c o n d i t i o n a l ) a t 0 x4
15: nextpc=8; / / t o 0 x8
16: SET(4,-1,1) ; / / i n s t r u c t i o n s c h e d u l e d , no mem acces s ,

b r a n c h i n g
17: } / / end b a t 0 x4
18:
19: /∗
20: end o f u p d a t e s f o r f u n c t i o n main
21: ∗ /
22:
23: /∗
24: u p d a t e s f o r f u n c t i o n b i n a r y s e a r c h s t a r t i n g 8 e nd in g 80
25: ∗ /
26: i f (val[pc]==8) { / / I n s t r u c t i o n stmdb sp ! ,{ r4 , r5 , l r ,} a t 0 x8
27: nextpc=val[pc]+4;
28: / / push s h o u l d f i r s t d e c r e a s e v a l [ pc ] and t h e n s t o r e i n

s t a c k ( v a l [ pc ] )
29: push(val[lr]);
30: push(val[r5]);
31: push(val[r4]);
32: SET(8,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 8 , no memory

a c c e s s
33: } / / end stmdb a t 0 x8
34: i f (val[pc]==12) { / / I n s t r u c t i o n l d r r4 , [ pc , # 6 4 ] a t 0 xc
35: nextpc=val[pc]+4;
36: val[r4]=content(84);
37: SET(12,content(84),1); / / i n s t r u c t i o n s c h e d u l e d i s 12 ,

memory a c c e s s t o c o n t e n t ( 8 4 )
38: } / / end l d r a t 0 xc
39: i f (val[pc]==16) { / / I n s t r u c t i o n mov l r , #0 a t 0 x10
40: nextpc=val[pc]+4;
41: i f (!is_abstracted(val[pc])) {
42: val[lr]=(0);
43: SET(16,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 16 , no memory

a c c e s s and s c h e d u l e d
44: }
45: else SET(16,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
46: } / / end mov a t 0 x10
47: i f (val[pc]==20) { / / I n s t r u c t i o n mov ip , #14 a t 0 x14
48: nextpc=val[pc]+4;
49: i f (!is_abstracted(val[pc])) {
50: val[ip]=(14);
51: SET(20,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 20 , no memory

a c c e s s and s c h e d u l e d
52: }
53: else SET(20,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
54: } / / end mov a t 0 x14
55: i f (val[pc]==24) { / / I n s t r u c t i o n mvn r5 , #0 a t 0 x18
56: nextpc=val[pc]+4;
57: i f (!is_abstracted(val[pc])) {
58: val[r5]=-(0+1);
59: SET(24,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 24 , no memory

a c c e s s and s c h e d u l e d
60: }
61: else SET(24,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
62: } / / end mvn a t 0 x18
63: i f (val[pc]==28) { / / I n s t r u c t i o n add r3 , l r , i p a t 0 x1c
64: nextpc=val[pc]+4;
65: i f (!is_abstracted(val[pc])) {
66: i f (val[lr]==UNKNOWN||val[ip]==UNKNOWN) {
67: val[r3]=UNKNOWN;
68: }
69: else {
70: val[r3]=(val[lr]+val[ip]);
71: }
72: SET(28,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 28 , no memory

a c c e s s and s c h e d u l e d
73: }
74: else SET(28,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
75: } / / end add a t 0 x1c
76: i f (val[pc]==32) { / / I n s t r u c t i o n mov r2 , r3 a s r #1 a t 0 x20
77: nextpc=val[pc]+4;
78: i f (!is_abstracted(val[pc])) {
79: i f (val[r3]==UNKNOWN) {
80: val[r2]=UNKNOWN;
81: }
82: else {
83: val[r2]=((val[r3] >> 1));
84: }
85: SET(32,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 32 , no memory

a c c e s s and s c h e d u l e d
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86: }
87: else SET(32,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
88: } / / end mov a t 0 x20
89: i f (val[pc]==36) { / / I n s t r u c t i o n l d r r3 , [ r4 , r2 l s l #3] a t 0 x24
90: nextpc=val[pc]+4;
91: val[r3]=content(val[r4]+(val[r2] << 3));
92: SET(36,val[r4]+(val[r2] << 3),1); / / i n s t r u c t i o n s c h e d u l e d

i s 36 , memory a c c e s s t o v a l [ r4 ]+( v a l [ r2 ] << 3)
93: } / / end l d r a t 0 x24
94: i f (val[pc]==40) { / / I n s t r u c t i o n add r1 , r4 , r2 l s l #3 a t 0 x28
95: nextpc=val[pc]+4;
96: i f (!is_abstracted(val[pc])) {
97: i f (val[r4]==UNKNOWN||val[r2]==UNKNOWN) {
98: val[r1]=UNKNOWN;
99: }

100: else {
101: val[r1]=(val[r4]+(val[r2] << 3));
102: }
103: SET(40,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 40 , no memory

a c c e s s and s c h e d u l e d
104: }
105: else SET(40,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
106: } / / end add a t 0 x28
107: i f (val[pc]==44) { / / I n s t r u c t i o n cmp r3 , r0 a t 0 x2c
108: nextpc=val[pc]+4;
109: i f (!is_abstracted(val[pc])) {
110: / / Shou ld s e t t h e Z and N and C b i t s
111: i f ((val[r3]-val[r0])==0) cmpeq=1 ; else cmpeq=0;
112: i f ((val[r3]-val[r0])<=0) cmple=1 ; else cmple=0;
113: SET(44,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 44 , no memory

a c c e s s and s c h e d u l e d
114: }
115: else SET(44,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
116: } / / end cmp a t 0 x2c
117: i f (val[pc]==48) { / / I n s t r u c t i o n l d r e q r5 , [ r1 , # 4 ] a t 0 x30
118: nextpc=val[pc]+4;
119: i f (eq()) {
120: val[r5]=content(val[r1]+4);
121: SET(48,val[r1]+4,1); / / i n s t r u c t i o n s c h e d u l e d i s 48 ,

memory a c c e s s t o v a l [ r1 ]+4
122: }
123: else SET(48,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
124: } / / end l d r e q a t 0 x30
125: i f (val[pc]==52) { / / I n s t r u c t i o n subeq ip , l r , #1 a t 0 x34
126: nextpc=val[pc]+4;
127: i f (!is_abstracted(val[pc]) && eq()) {
128: i f (val[lr]==UNKNOWN) {
129: val[ip]=UNKNOWN;
130: }
131: else {
132: val[ip]=(val[lr]-1);
133: }
134: SET(52,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 52 , no memory

a c c e s s and s c h e d u l e d
135: }
136: else SET(52,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
137: } / / end subeq a t 0 x34
138: i f (val[pc]==56 && (!eq())) { / / I n s t r u c t i o n beq 44 , a t 0 x38
139: nextpc=val[pc]+4;
140: SET(56,-1,0) ; / / i n s t r u c t i o n s c h e d u l e d , no mem acces s , no

b r a n c h i n g
141: } / / end beq a t 0 x38 [ cond f a l s e ]
142: i f (val[pc]==56 && eq()) { / / I n s t r u c t i o n beq 44 , a t 0 x38
143: nextpc=68; / / t o 0 x44
144: SET(56,-1,1) ; / / i n s t r u c t i o n s c h e d u l e d , no mem acces s ,

b r a n c h i n g
145: } / / end beq a t 0 x38 [ cond t r u e ]
146: i f (val[pc]==60) { / / I n s t r u c t i o n s u b g t ip , r2 , #1 a t 0 x3c
147: nextpc=val[pc]+4;
148: i f (!is_abstracted(val[pc]) && gt()) {
149: i f (val[r2]==UNKNOWN) {
150: val[ip]=UNKNOWN;
151: }
152: else {
153: val[ip]=(val[r2]-1);
154: }
155: SET(60,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 60 , no memory

a c c e s s and s c h e d u l e d
156: }
157: else SET(60,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
158: } / / end s u b g t a t 0 x3c
159: i f (val[pc]==64) { / / I n s t r u c t i o n a d d l e l r , r2 , #1 a t 0 x40
160: nextpc=val[pc]+4;
161: i f (!is_abstracted(val[pc]) && le()) {
162: i f (val[r2]==UNKNOWN) {

163: val[lr]=UNKNOWN;
164: }
165: else {
166: val[lr]=(val[r2]+1);
167: }
168: SET(64,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 64 , no memory

a c c e s s and s c h e d u l e d
169: }
170: else SET(64,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
171: } / / end a d d l e a t 0 x40
172: i f (val[pc]==68) { / / I n s t r u c t i o n cmp l r , i p a t 0 x44
173: nextpc=val[pc]+4;
174: i f (!is_abstracted(val[pc])) {
175: / / Shou ld s e t t h e Z and N and C b i t s
176: i f ((val[lr]-val[ip])<=0) cmple=1 ; else cmple=0;
177: SET(68,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 68 , no memory

a c c e s s and s c h e d u l e d
178: }
179: else SET(68,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
180: } / / end cmp a t 0 x44
181: i f (val[pc]==72) { / / I n s t r u c t i o n movgt r0 , r5 a t 0 x48
182: nextpc=val[pc]+4;
183: i f (!is_abstracted(val[pc]) && gt()) {
184: i f (val[r5]==UNKNOWN) {
185: val[r0]=UNKNOWN;
186: }
187: else {
188: val[r0]=(val[r5]);
189: }
190: SET(72,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 72 , no memory

a c c e s s and s c h e d u l e d
191: }
192: else SET(72,-1,0) ; / / i n s t r u c t i o n n o t s c h e d u l e d , no mem

a c c e s s
193: } / / end movgt a t 0 x48
194: i f (val[pc]==76 && (!le())) { / / I n s t r u c t i o n b l e 1c , a t 0 x4c
195: nextpc=val[pc]+4;
196: SET(76,-1,0) ; / / i n s t r u c t i o n s c h e d u l e d , no mem acces s , no

b r a n c h i n g
197: } / / end b l e a t 0 x4c [ cond f a l s e ]
198: i f (val[pc]==76 && le()) { / / I n s t r u c t i o n b l e 1c , a t 0 x4c
199: nextpc=28; / / t o 0 x1c
200: SET(76,-1,1) ; / / i n s t r u c t i o n s c h e d u l e d , no mem acces s ,

b r a n c h i n g
201: } / / end b l e a t 0 x4c [ cond t r u e ]
202: i f (val[pc]==80) { / / I n s t r u c t i o n ldmia sp ! ,{ r4 , r5 , pc ,} a t 0 x50
203: nextpc=val[pc]+4;
204: val[r4]=pop();
205: val[r5]=pop();
206: nextpc=pop();
207: SET(80,-1,1); / / i n s t r u c t i o n s c h e d u l e d i s 80 , no memory

a c c e s s
208: } / / end ldmia a t 0 x50
209:
210:
211: /∗
212: end o f u p d a t e s f o r f u n c t i o n b i n a r y s e a r c h
213: ∗ /
214:
215: val[pc]=nextpc;
216: } / / end up da t e� �

Listing 3. C Code for update function

C Code for reg; Use reg(in,1) (resp. reg(in,0)) for
written to (resp. read from) registers� �
1: /∗ r e g i s t e r s used i n t h e program ∗ /
2: i n t[0,65536] reg( i n t instruction, bool w) {
3: i n t[0,65536] res=0;
4: /∗ R e g i s t e r s f o r f u n c t i o n main s t a r t i n g 0 en d i ng 4 ∗ /
5: i f (instruction==0) { / / r e g i s t e r s used i n i n s t r u c t i o n mov

r0 , #9 a t 0 x0
6: i f (w) res=(1 << r0);
7: else res=(0);
8: } / / end mov a t 0 x0
9: i f (instruction==4) { / / r e g i s t e r s used i n i n s t r u c t i o n b 8 ,

a t 0 x4
10: i f (w) res=0;
11: else res=0;
12: } / / end b a t 0 x4
13:
14: /∗ R e g i s t e r s f o r f u n c t i o n b i n a r y s e a r c h s t a r t i n g 8 end in g

80 ∗ /
15: i f (instruction==8) { / / r e g i s t e r s used i n i n s t r u c t i o n

stmdb sp ! ,{ r4 , r5 , l r ,} a t 0 x8
16: i f (w) res=(1 << sp);
17: else res=( 0 | (1 << r4) | (1 << r5) | (1 << lr))

;
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18: } / / end stmdb a t 0 x8
19: i f (instruction==12) { / / r e g i s t e r s used i n i n s t r u c t i o n l d r

r4 , [ pc , # 6 4 ] a t 0 xc
20: i f (w) res=r4;
21: else res=((1 << pc));
22: } / / end l d r a t 0 xc
23: i f (instruction==16) { / / r e g i s t e r s used i n i n s t r u c t i o n mov

l r , #0 a t 0 x10
24: i f (w) res=(1 << lr);
25: else res=(0);
26: } / / end mov a t 0 x10
27: i f (instruction==20) { / / r e g i s t e r s used i n i n s t r u c t i o n mov

ip , #14 a t 0 x14
28: i f (w) res=(1 << ip);
29: else res=(0);
30: } / / end mov a t 0 x14
31: i f (instruction==24) { / / r e g i s t e r s used i n i n s t r u c t i o n mvn

r5 , #0 a t 0 x18
32: i f (w) res=(1 << r5);
33: else res=(0);
34: } / / end mvn a t 0 x18
35: i f (instruction==28) { / / r e g i s t e r s used i n i n s t r u c t i o n add

r3 , l r , i p a t 0 x1c
36: i f (w) res=(1 << r3);
37: else res=((1 << lr) | (1 << ip));
38: } / / end add a t 0 x1c
39: i f (instruction==32) { / / r e g i s t e r s used i n i n s t r u c t i o n mov

r2 , r3 a s r #1 a t 0 x20
40: i f (w) res=(1 << r2);
41: else res=(0 | (1 << r3));
42: } / / end mov a t 0 x20
43: i f (instruction==36) { / / r e g i s t e r s used i n i n s t r u c t i o n l d r

r3 , [ r4 , r2 l s l #3] a t 0 x24
44: i f (w) res=r3;
45: else res=((1 << r4) | (1 <<r2));
46: } / / end l d r a t 0 x24
47: i f (instruction==40) { / / r e g i s t e r s used i n i n s t r u c t i o n add

r1 , r4 , r2 l s l #3 a t 0 x28
48: i f (w) res=(1 << r1);
49: else res=((1 << r4) | (1 << r2));
50: } / / end add a t 0 x28
51: i f (instruction==44) { / / r e g i s t e r s used i n i n s t r u c t i o n cmp

r3 , r0 a t 0 x2c
52: i f (w) res=0;
53: else res=((1 << r3) | (1 << r0));
54: } / / end cmp a t 0 x2c
55: i f (instruction==48) { / / r e g i s t e r s used i n i n s t r u c t i o n

l d r e q r5 , [ r1 , # 4 ] a t 0 x30
56: i f (w) res=r5;
57: else res=((1 << r1));
58: } / / end l d r e q a t 0 x30
59: i f (instruction==52) { / / r e g i s t e r s used i n i n s t r u c t i o n

subeq ip , l r , #1 a t 0 x34
60: i f (w) res=(1 << ip);
61: else res=((1 << lr));
62: } / / end subeq a t 0 x34
63: i f (instruction==56) { / / r e g i s t e r s used i n i n s t r u c t i o n beq

44 , a t 0 x38
64: i f (w) res=0;
65: else res=0;
66: } / / end beq a t 0 x38
67: i f (instruction==60) { / / r e g i s t e r s used i n i n s t r u c t i o n

s u b g t ip , r2 , #1 a t 0 x3c
68: i f (w) res=(1 << ip);
69: else res=((1 << r2));
70: } / / end s u b g t a t 0 x3c
71: i f (instruction==64) { / / r e g i s t e r s used i n i n s t r u c t i o n

a d d l e l r , r2 , #1 a t 0 x40
72: i f (w) res=(1 << lr);
73: else res=((1 << r2));
74: } / / end a d d l e a t 0 x40
75: i f (instruction==68) { / / r e g i s t e r s used i n i n s t r u c t i o n cmp

l r , i p a t 0 x44
76: i f (w) res=0;
77: else res=((1 << lr) | (1 << ip));
78: } / / end cmp a t 0 x44
79: i f (instruction==72) { / / r e g i s t e r s used i n i n s t r u c t i o n

movgt r0 , r5 a t 0 x48
80: i f (w) res=(1 << r0);
81: else res=(0 | (1 << r5));
82: } / / end movgt a t 0 x48
83: i f (instruction==76) { / / r e g i s t e r s used i n i n s t r u c t i o n b l e

1c , a t 0 x4c
84: i f (w) res=0;
85: else res=0;
86: } / / end b l e a t 0 x4c
87: i f (instruction==80) { / / r e g i s t e r s used i n i n s t r u c t i o n

ldmia sp ! ,{ r4 , r5 , pc ,} a t 0 x50
88: i f (w) res=((1 << sp) | (1 << r4) | (1 << r5) | (1

<< pc));
89: else res=( 1 << sp);

90: } / / end ldmia a t 0 x50
91:
92: return res;
93: }
94:
95: bool stall() {
96: bool resmem=false,resreg=false;
97: bool tododec=true,todomem=true,todowb=true;
98:
99: / / check f o r r e g i s t e r s d e p e n d e n c i e s

100: / / one o f my read reg i s w r i t t e n t o by MEMORY STAGE
or WRITE BACK STAGE

101: i f (pPC[DECODE_STAGE]==-1) tododec=false;
102: i f (pPC[MEMORY_STAGE]==-1) todomem=false;
103: i f (pPC[WRITE_BACK_STAGE]==-1) todowb=false;
104:
105: resreg=(tododec & (reg(pPC[DECODE_STAGE],0))) & ((reg

(pPC[MEMORY_STAGE],1) & todomem )| (reg(pPC[
WRITE_BACK_STAGE],1) & todowb)) ;

106:
107: i f (type_of(pPC[DECODE_STAGE])==G2LDR && tododec &&

type_of(pPC[MEMORY_STAGE])==G2STR && todomem ) {
108: resmem=(dataAdr[DECODE_STAGE] == dataAdr[

MEMORY_STAGE]);
109: }
110:
111: return resreg || resmem ;
112: }� �

Listing 4. C Code for reg; Use reg(in,1) (resp. reg(in,0)) for
written to (resp. read from) registers
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