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Abstract difficult to answer, especially without knowing what these
sensors are to be used for.

We study sensor minimization problems in the context of  In this paper we study problems sénsor minimization
fault diagnosis. Fault diagnosis consists in synthesizang These problems are interesting since observing an event can
diagnoser that observes a given plant and identifies faults be costly in terms of time or energy: computation time must
in the plant as soon as possible after their occurrence. Ex- be spentto read and process the information provided by the
isting literature on this problem has considered the case of sensor, and power is required to operate the sensor (as well
static observers, where the set of observable events doeas perform the computations). It is then essential that the
not change during execution of the system. In this paper, wesensors used really provide useful information. Itis atso i
consider static as well as dynamic observers, where the ob-portant for the computer to discard any information given by
server can switch sensors on or off, thus dynamically chang-a sensor that is not really needed. In the case of a fixed set of
ing the set of events it wishes to observe. observable events, it is not the case that all sensors always

provide useful information and sometimes energy (sensor

operation and computer treatment) is spent for nothing. For
1 Introduction example, to diagnose a fault in the system described by the
automatorB, Figure 4, an observer only has to watch event
a, andwhena has occurredto watch evenb: if the se-
guenceu.b occurs, for sure a fault has occurred and the ob-
Server can raise an alarm. It is then not useful to switch on
sensob before aru has occurred.

Monitoring, Testing, Fault Diagnosis and Control.
Many problems concerning the monitoring, testing, fault di
agnosis and control of discrete event systems (DES) can b
formalized by using finite automata over a sebb§ervable
eventsy., plus a set ofinobservablevents [7, 10]. The in-

visible actions can often be represented by a single unob-Sensor Minimization and Fault Diagnosis. We focus
servable event. Given a finite automaton over U {e} our attention on sensor minimization, without looking at
which is a model of glant (to be monitored, tested, di- problems related to sensor placement, choosing between
agnosed or controlled) and amjective(good behaviours,  different types of sensors, and so on. We also focus on a
what to test for, faulty behaviours, control objective) we particular observation problem, thatfafult diagnosis We
want to check if a monitor/tester/diagnoser/controllesex  pelieve, however, that the results we obtain are applicable
that achieves the objective, and if possible to synthesiee 0 g other contexts as well.
automatically. Fault diagnosis consists in observing a plant and detect-
The usual assumption in this setting is that the set ofob—ing whether a fault has occurred or not. We follow the
servable events is fixed (and this in turn determines the setyjscrete-event system (DES) setting of [8] where the behav-
of unobservable events as well). Observing an event usuallyigr of the plant is known and a model of it is available as
requires some detection mechanism, i.eseasorof some a finite-state automaton ovErU {e, f} whereX is the set
sort. Which sensors to use, how many of them, and whereof ghservable events, represents the unobservable events,
to place them are some of the design questions that are oftegnq 1 is a special unobservable event that corresponds to the
“CNRS/IRCCyN, 1 rue de la Nog, BP 92101, 44321 Nantes Cedex 3, faults. Checkingliagnosability(whether a fault can be de-
France. Email: franck.cassez@cnrs.irccyn.fr tected) for a given plant andfixedset of observable events
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staticanddynamicobservers. A static observer always ob- have not been addressed previously in the literature.
serves the same set of events, whereas a dynamic observer

can modify the set of event_s it Wlshes to obser_ve during theOrganisation of the paper.
course of the plant execution (this could be implemented

by switching sensors on and off in order to save energy, for o tion 3 we show NP-completeness of the sensor mini-

example). mization problem for the standard projection-based obser-

In the static observer case, we consider both the standard,4;ion setting. In Section 4 we show NP-completeness of
setting of observable/unobservable events as well asthe se o sensor minimization problem for the mask-based set-

ting where the observer is defined amaskwhich allows ting. In Section 5 we introduce and study dynamic ob-

some events to be observable but distinguishablee.9.,  gervers. We define dynamic observers and show that the

see [2]_). .O.ur first contribution is to show that the pro_blt_ams most permissive dynamic observer can be computed as the
of minimizingthe number of observable events (or distinct strategy in a safety 2-player game.

observable outcomes in case of the mask) are NP-complete.

Membership in NP can be easily derived by reducing these Lo .

problems to the standard diagnosability problem, once a2 Preliminaries

candidate minimal solution is chosen non-determinidgical

NP-hardness can be shown using reductions of well-known2.1 Words and Languages
NP-hard problems, namely, clique and coloring problems in

graphs. _ Let X be a finite alphabet anflc = X U {¢}. %*
In the dynamic observer case, we assume that an obis the set of finite words oveE and contains: which
server can decide after each new observation the set ofs also the empty word. Aanguagel is any subset of

events it is going to watch. As a second contribution, we s+ v+ — ¥+ \ {¢}. Given two wordsp, o’ we de-
provide a definition of thelynamic observer synthesis prob- note p.p’ the concatenation gf and p’ (which is defined
lemand then show that computingdgnamic observefor in the usual way). |p| stands for the length of the word
a given plant, can be reduced tgame problem p and |p|, with A\ € X stands for the number of occur-
rences of\ in p. GivenX; C X, we define theprojection

Related work. NP-hardness of finding minimum- 7/, @ X% — X by: 75, (¢) = eandfora € X, p € ¥,
cardinality sets of observable events so that diagnosabili 7 /s: (a.p) = a.m /s, (p) if a € Xy andm /s, (p) otherwise.
holds under the standard, projection-based setting has bee
previously reported in [11]. Our result of section 3 can be 2.2 Finite Automata
viewed as an alternative shorter proof of this result. Masks
have not been considered in [11]. As we show in section 4 Let f ¢ ¥ be a fresh letter that corresponds to the fault
a reduction from the mask version of the problem to the action. Afinite automatond is a tuplé (Q, g0, 57, —)
standard version is not straightforward. Thus the result in with @ a finite set of statesg, € Q is the initial state,
section 4 is useful and new. —C Q x Y51 x Q is the transition relation. We write
. The complexity of finding “optlmal”observanon mask;, A ¢ if (¢, \q) €—. Forq € Q, en(q) is the set of
ie. asgt that cannot be reduced, has b_een considered in [6] tions enabled at. A run p of A from states is a se-
where it was shown that the problem is NP-hard for gen- . A1 Az An
eral properties. [6] also shows that finding optimal observa 14€N¢€ Of ransitionsy — 51 — s3- -+ $n—1 = $n

: st )\ € ¥/ andsg = s. We lettgt(p) = s,. The

tion ma_lsks is polynomlal for mask-monotonl_c _propertles set of runs froms in A is denotecRungs, A) and we de-
where increasing the set of observable (or distinguishable 7
events preserves the property in question. Diagnosalslity fine RungA) - Runggo, A). _The trace of the runp,

’ denotedtr(p), is the word obtained by concatenating the

a mask-monotonic property. Notice that optimal observa- o )
. o S symbols); appearing inp, for those)\,; different frome.
tion masks are not the same as minimum-cardinality masks

L Given a setR C RungA), Tr(R) = {tr(p) forp € R} is
that we consider in our work. = A), (.) {r(p) bl } .
. : . the set of traces of the runs iR. A run p is k-faulty if
In [3], the authors investigate the problem of computing : ) .
- . thereissomd < i < nst N\, = fandn —i > k.
a minimal-cost strategy that allows to find a subset of the

set of observable events s.t. the system is diagnosable. I't:a.UI.tka(A) s the set ok-faulty runs ofA. A run isfaulty

.  If it is k-faulty for somek € N and Faulty(A) denotes

is assumed that each such subset has a known assomateeﬁe set of faulty runs. It follows thafaulty (4) C
. >k+1 =

cost, as well as a known a-priori probability for achieving c...c - .
diagnosability. Faulty. , (A) C C Faulty,,(A) = Faulty(A). Finally

T(_) our knowledge, .the prOb_l?mS of _SyntheSiZinQ dy- 1 this paper we only use finite automata that generate petdsed
namic observers for diagnosability, studied in Section 5, languages, hence we do not need to use a set of final or aqgsjies.

In Section 2 we fix notation
and introduce finite automata with faults to model DES. In




NonFaultfA) = RungA) \ Faulty(A) is the set omon-

faulty runs of A. We letFaulty”, (A) = Tr(Faulty, . (A)) %' ¢ A
andNonFaulty (A) = Tr(NonFaulty A)). - a

A word w is acceptedby A if w = tr(p) for some s“
p € RungA). Thelanguagel(A) of A is the set of words b oQ €

accepted by.

We assume that each faulty run df of lengthn can
be extended into a run of length+ 1. This is required
for technical reasons (in order to guarantee that the set ofobservation as the non-faulty runs* (in casea is the ob-
faulty runs where sufficient time has elapsed after the fault servable event) or the non-faulty rbre”* (in caseb is the
is well-defined) and can be achieved by additgop transi- ~ observable event). Consequently, the diagnoser cannot dis
tions to each deadlock state df Notice that this transfor-  tinguish between the two no matter how long it waits. If
mation does not change the observations produced by théyotha and b are observable, however, then we can define:
plant, thus, any observer synthesized for the transformedD(a.b.p) = 1 for anyp € {a,b}* and D(p) = 0 otherwise.
plant also applies to the original one. Disa({a,b},2)-diagnoser forA.

Figure 1. The automaton A

. ) . For givenA andy, it is known how to check diagnosability
3 Sensor Minimization with Static Observers  gndbuild a diagnoser (e.g., see [8]). Checking whethisr
Y,-diagnosable can be done in polynomial time in the size
In this section we address the sensor minimization prob-of A, more precisely irO(| A|?). Computing the minimum
lem for static observersWe point out that the resultin this & s.t. A is (X,, k)-diagnosable can be done @(|A[?).
section was already obtained in [11] and we only give here Moreover in cased is 3,-diagnosable, there is a diagnoser
an alternative shorter proof. We are given a finite automa- D that can be represented by a finite automaton. Computing
ton A = (Q, g0, ¥/, —). The maximal set of observable this finite automaton is iD(2!4!). Algorithms for solving
eventsist (e is not observable). We want to decide whether these problems are given in appendix A in [1]. These algo-
there is a subsél, C ¥ such that the faults can be detected rithms use the fact that is (X, k)-diagnosable iff

by observing only events ik,. Moreover, we would like
to find an “optimal” suchz,. 75, (Faulty . (4)) N7 s, (NonFaulty (A4)) =0 (1)

A diagnoseiis a device that observes the plant and raises or in other words, there is no pair of rufisi, p2) With p; €
an “alarm” whenever it detects a fault. We allow the diag- Faulty., (A), po € NonFaultfA) s.t. p; andp, give the
noser to raise an alarm not necessarily immediately aftersame observations an,. In this section we address the
the fault occurs, but possibly some time later, as long asproblem offindinga set of observable everis that allows

this time is bounded by some € N, whereN is the set  faults to be detected. We would like to detect faults using as
of non-negative integers. We model time by counting the few observable events as possible.

“moves” the plant makes (including observable and unob- o
servable ones). If the system generates a wobdt only Problem 1 (Minimum Number of Observable Events)
a subsell, C 3 is observable, the diagnoser can only see INPUT: 4, n € Ns.t.n < [X].

75, (p)- PROBLEM:
o _ o (A) Is there anyx, € ¥ with [X,| = n, such thatA is
Definition 1 ((3,, k)-Diagnoser) Let A be a finite au- ¥.,-diagnosable ?

tomaton overss/, k € N, ¥, C . A mappingD :

¥% — {0,1} is a (%,, k)-diagnoser forA if (i) for each ~ (B) Ifthe answerto (A) is “yes”, find the minimum such
p € NonFaultyA), D(r 5, (tr(p))) = 0, and i) for each that there exists3, C ¥ with [5,| = no and A is
p € Faulty, . (A), D(m s, (tr(p))) = 1. [ ¥,-diagnosable.

If we know how to solve Problem 1(A) efficiently then
we can also solve Problem 1(B) efficiently: we perform a
binary search oven between0 and |X|, and solve Prob-
lem 1(A) for each such, until we find the minimurnmn,
for which Problem 1(A) gives a positive answetnfortu-

Ais (X,, k)-diagnosable if there is @,, k)-diagnoser for
A. Ais X¥,-diagnosable if there is sonlec N s.t. A is
(3., k)-diagnosable.

Example 1 Let A be the automaton shown on Fig. 1. The
run f is in Faulty.,(A), the runf.a is in Faulty.., (A) and 2Notice that knowingno does not imply we know the required set
a.c2isin NonFauIt;(A). of observe}ble events,! Wg can find (one of the possmly many),

. . . . L. by searching over all possible subséts of X of size ng (there are
Ais neither{a}-diagnosable, no'{b}'dmgnqsable- Thisis (|5, ng) such combinations) and check for each sithwhether A
because, for any, the faulty runf.a.b.c* gives the same  is 3,-diagnosable, using the methods described in the appendi{}.




nately, Problem 1(A) is a combinatorial problem, exponen-
tial in |X|, as we show next.

Theorem 1 Problem 1(A) is NP-complete.

Proof: Membership in NP is proved using the result in ap-
pendix A in [1]: if we guess a solutiol, we can check
that A is ,-diagnosable in time polynomial ij4|. Here
we provide the proof of NP-hardness by giving a reduction
of then-clique problem. LetG = (V, E) be a (undirected)
graph wheré/ is set of vertices and C V' x V is a set of
edges (we assume thatv’) € E < (v/,v) € E). A
cliguein G isa subseV’ C V such that for allv,v’) € V’,
(v,v") € E. Then-clique problem asks the following: de-
termine whethefz contains a clique of vertices. The re-
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Figure 2. The automaton Ag

duction is as follows. Giveli7, we build a finite automa-
ton Ag such that there is a-clique in G iff Ag is X,-
diagnosable, whel&\ X,| = n. Notice that sinc&, C X,
|2\ X,| = nis equivalenttdX,| = |X| — n. Thus, there

is an-clique in G iff n events from% do not need to be
observed i.e. iff Problem 1(A) gives a positive answer for
|2| —n. LetX = V. Then we definels as shown in Fig. 2:

qo is the initial state and the “branchegla.b, f.a’.b’, - - -

are obtained from the pairs of nodes b), (a’,b’), - - - that
arenotlinked with an edge ifi: (a,b), (a’,b'),--- ¢ E.

If part. Assume Problem 1(A) gives a positive answer for
|X| — n. This means that there exisis, C X such that
|2, = |Z]—n,or|2\X,| = n, andAg is X,-diagnosable.
Then we claimtha€ = ¥\ X, is a clique inG. AssumeC

is not a clique. Then there must be sofeeb} C C such
that (a,b) ¢ E. By the construction of Fig. 2, there is a
branchf.a.b in Ag and thus bothh = £ andp’ = f.a.b.e¥
are runs ofAg, for anyk. As{a,b} C C, {a,b} N, =0
and the observation of both rupsandy’ is €, no diagnoser
exists that can distinguish between the two runs, foriany

Only if part. Assume there exists @-clique inG. Let
¥, = ¥\ C. We claim thatAq is (3,, 2)-diagnosable

(thus alsoX,-diagnosable). Suppose not. Then there exist

two runsp andp’ such thaty’ € NonFaultfAs) andp =
p1-f.p2, and|pz| > 2, andm s, (p) = 75, (p'). Then,p

must be of the formp = f.a.b.e*, with (a, b) ¢ E. Also, the
only way p’ can be non faulty i9’ = . Thenw s (p') =
€ = w5, (p), thus, botha andb must be non-observable,
thus{a, b}NX, = @ which entails{a, b} C C. Thisimplies
that(a, b) € E which is a contradiction. [ |

4 Sensor Minimization with Masks

So far we have assumed that observable events are also
distinguishable However, there are cases where two events
a andb are observable but not distinguishable, that is, the
diagnoser knows that or b occurred, but not which of the
two. This is not the same as consideringndb to be unob-
servable, since in that case the diagnoser would not be able
to detect occurrence af or b. Distinguishability of events
is captured by the notion ofrmask

Definition 2 (Mask) A mask(M,n) overX is a total, sur-
jective functionM : ¥ — {1,--- ,n} U {e}. |

M induces a morphisnd/* : ¥* — {1,--- ,n}*. For
example, if = {a,b,¢,d}, n = 2andM(a) = M(b)
1, M(¢) = 2, M(d) = ¢, then we havél/*(a.b.c.b.d) =
1.1.2.1 = M*(a.a.d.c.a).

Definition 3 ((M, n), k)-diagnoser) Let (M, n) be a mask
over ¥. A mapping D {1,---,n}* — {0,1}
is a ((M,n), k)-diagnoserfor A if (i) for eachp €
NonFaultfA), D(M*(p)) 0 and @4) for eachp €
Faultys.,(A), D(M*(p)) = 1. [ |

A is ((M,n),k)-diagnosable if there is &(M,n),k)-
diagnoser fotd. A is (M, n)-diagnosable if there is some
k such thatd is ((M, n), k)-diagnosable.

Given A and a mask'M,n), checking whethe is
(M, n)-diagnosable can be done in polynomial time. In fact
it can be reduced to checking,-diagnosability of a modi-
fied automatom ,,, with X, = {1,...,n}. A, is obtained
from A by renaming the actions € X by M (a). It can be
seen thatd is ((M, n)-diagnosable iffAy, is {1,--- ,n}-
diagnosable. Notice thal is ((M,n), k)-diagnosable iff
M*(Faultys, . (A)) N M*(NonFaultyf A)) = 0.

As in the previous section, we are mostly interested in
minimizing the observability requirements while maintain
ing diagnosability. In the context of diagnosis with masks,
this means minimizing the numberof distinct outputs of
the mask) . We thus define the following problem:

Problem 2 (Minimum Mask)
INPUT: A, n € Ns.it.n < |X].
PROBLEM:

(A) Is there any masKM,n) such thatA is (M, n)-
diagnosable ?



(B) Ifthe answerto (A) is “yes”, find the minimum such
that there is a maskM, ng) such thatA is (M, ng)-
diagnosable.

As with Problem 1, if we know how to solve Prob-
lem 2(A) efficiently we also know how to solve Prob-
lem 2(B) efficiently: again, a binary search arsuffices.

We will prove that Problem 2 is NP-complete. One might

think that this result follows easily from Theorem 1. How-

ever, this is not the case. Obviously, a solution to Problem 1

provides a solution to Problem 2: assume there exists
such thatd is (X, k)-diagnosable an®l, = {a1, ..., an};
defineamask/ : ¥ — {1, --- ,n} such thatM (a;) = i
and for anya € ¥\ ¥,, M(a) = e. Then, A is

((M,n), k)-diagnosable. However, a positive answer to Mustbe of the form = v; .c.u; -
Problem 2(A) does not necessarily imply a positive answe

to Problem 1(A), as shown by the example that follows.

Example 2 Consider again the automato# of Fig. 1. Let
M(a) = M(b) = 1. ThenAis ((M,1),2)-diagnosable
because we can build a diagnosBrdefined by:D(e) =
0,D(1) = 0,D(1%2.p) = 1 for anyp € 1*. However, as we
said before, there is no strict subset{af, b} that allows A
to be diagnosed.

Theorem 2 Problem 2 is NP-complete.

Proof: Membership in NP is again justified by the fact that

color mapping defined bg'(v) = M (v). We need to prove
that C'(u;) # C(v;) for any (u;,v;) € E. This holds by
construction ofA; and the fact thad/ (u;) # M(v;) as

shown above.

Only if part. AssumeG is n-colorizable. There exists a
color mappingC : V. — {1,2,--- ,n} s.t. if(v,v') € E
thenC(v) # C(v'). Define the mas®/ by M (a) = C(a)
fora € V. We claim thatdq is (M, n), 1)-diagnosable
(thus, also(M, n)-diagnosable). Assume on the contrary
that A is not ((M,n), 1)-diagnosable. Then there exist
two wordsp € Faulty,;(Ag) andp’ € NonFaultfAg)
such thatM (7 5(p)) = M(m/s(p')). As p is faulty it

rJ andk > 0. Notice thatM (a) # ¢ for alla € V. There-

fore, M (75 (p)) = M(v1).M(uy) - - - M (u;).M(v;), and
|M (7 /5(p))| = 2i. Consequently|M (7,5 (p"))| = 2i.
The only possible such’ which is also non-faulty i®’ =
vi.euy - veu. Now, M(m s(p) = M(w/s(p')),
which impliesM (v;) = M (u;) i.e. C(v;) = C(u;). But
(u;,v;) € E, and this contradicts the assumption thais
a valid coloring ofG. [ ]

5 Dynamic Observers

In this section we introducdynamic observersTo il-

checking whether a guessed mask works can be done ifsyate why dynamic observers can be helpful consider the

polynomial time (it suffices to rename the events of the sys-

tem according td/ and apply the algorithm of appendix A
in [1]). We show NP-hardness using a reduction of the
coloring problem. The:-coloring problem asks the follow-
ing: given an undirected graphl = (V, E), is it possible
to color the vertices with colors ifil, 2, --- ,n} so that no
two adjacent vertices have the same color ?et (V, E)

following example.

Example 3 (Dynamic Observation) Assume we want to
detect faults in automatoB of Fig. 4. A static diagnoser
that observe& = {a, b} works, however, no proper subset
of X can be used to detect faults /i Thus the minimum
value for Problem 1 ig. If we want to use a mask, the min-
imum value for Problem 2 i8 as well. This means that a

be an undirected graph. L&t= {e1, es, - - - , ¢;} be the set
of edges withe; = (u;,v;). We letX = V and define the
automatond¢ as pictured in Fig. 3. The initial state df;
iS ¢o. We claim thatG is n-colorizable iff Ag is (M, n)-

diagnoser will have to be receptive to at least two inputs at
each point in time to detect a fault . One can think of
being receptive as switching on a device to sense an event.

diagnosable. This consumes energy. We can be more efficient using a
dynamic observer, that only turns on sensors when needed,
If part. AssumeAg is (M, n)-diagnosable fon > 0. We thus saving energy. In the caseffthis can be done as fol-

lows: in the beginning we only switch on thesensor; once

an a occurs thea-sensor is switched off and thesensor is
switched on. Compared to the previous diagnosers we use
twice as less energy.

first show that foralk = 1,..., 5, M (u;) # ¢, M(v;) # ¢
and M (u;) # M(v;). For anyk, we can defingp =
vi.euy - up fooef andp’ = wvieuy vy I ei-
ther M (u;) = € or M (v;) = € or M (u;) = M (v;) holds,
then M*(m 5;(p)) = M*(m/x(p’)). This way for anyk,
there is a faulty run of length with more tharevents after
the fault, and a non-faulty run which gives the same obser-
vation through the mask. Henckcannot be((M, n), k)-
diagnosable for any and thusA is not(M, n)-diagnosable
which contradicts diagnosability of.

Note that the above implies in particular that> 1.
We can now prove thatr is n-colorizable. LetC be the

5.1 Diagnosers and Dynamic Observers

We formalize the above notion of dynamic observation
usingobservers The choice of the events to observe can
depend on the choices the observer has made before and on
the observations it has made. Moreover an observer may
haveunboundednemory.
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Figure 4. The automaton 5

Definition 4 (Observer) An observer Obsover ¥ is a
deterministic labeled automato@bs = (S, s, %, 4, L),
whereS is a (possibly infinite) set of stateg € S is the
initial state, X is the set of observable evenis,Sx ¥ — S
is the transition function (a total function), add: S — 2*

is a labeling function that specifies the set of events that th

observer wishes to observe when it is at staté/e require
for any states and anya € %, if a € L(s) thend(s,a) = s:

Example 4 Let Obs be the observer of Fig. 5. Obs
maps the following inputs as follows: Qbsab) =
ab, Obgbababbaab) = ab, Obgbbbbba) = a and

Obgbbaaa) = a.

Definition 5 ((Obs k)-diagnoser) Let Obsbe an observer
over ¥. A mappingD : ¥* — {0,1} is a (Obs k)-
diagnosefor A if (i) Vp € NonFaultyf.A), D(Obgp)) =0
and (7) Vp € Faulty, . (A), D(Obg)p)) = 1. [ ]

A is (Obs k)-diagnosable if there is afDbs k)-diagnoser
for A. Ais Obs-diagnosabile if there is sorheuch thatd
is (Obs k)-diagnosable. As foE-diagnosability, we have
the following equivalence:A is (Obs k)-diagnosable iff
ObgFaulty..,(A)) N ObgNonFaulty.4)) = 0.

Problem 3 (Finite-State Obs-Diagnosability)
INPUT: A, Obsa finite-state observer.

this means the observer does not change its state when apg o5, em:
event it chose not to observe occurs. We use the notation

d(s0, w) to denote the statereached after reading the word

wandL(§(sp, w)) is the set of eventss observes aftew.
]

An observer implicitly defines &ransducerthat consumes

(A) Is A Obsdiagnosable ?

(B) If the answer to (A) is “yes”, compute the minimum
such thatA is (Obs k)-diagnosable.

an input event, € ¥ and, depending on the current state Theorem 3 Problem 3 is in P.

s, either outputs: (whena € L(s)) and moves to a new

stated (s, a), or outputs nothing of, (whena ¢ L(s)) and

Proof: The proof runs as follows: we build @oductau-

remains in the same state waiting for a new event. Thus,tomatorf A ® Obs such that:A is (Obs k)-diagnosable

an observer defines a mapping Obs frafmto >* (we use

the same name “Obs” for the automaton and the mapping).

< A® Obsis(%, k)-diagnosable.
Let A = (Q,qo, %/, —) be a finite automaton and

Given a runp, Obgp) is the output of the transducer when Obs = (S,s0,%, 4, L) be a finite-state observer. We de-

it readsp. It is called theobservatiorof p by Obs. We next

fine the automatonl ® Obs= (Q x S, (qo, 50), 257, —)

provide an example of a particular case of observer whichas follows:

can be represented by a finite-state machine.

b a a
a Q b
@ N\ @3’?

L(0) ={a} L(1)={b} L(2)=0

Figure 5. A Finite-State Observer Obs

e (q,5) A, (¢',s)iff INe Us.t.q 2, q,s =0d(s,\)
andg = \if A € L(s), 8 = € otherwise;

® (¢,5) 2, (¢,s)iff IX e {s,f}s.t.ng'.

To prove Theorem 3 we use the following lemmas:

SWe use® to clearly distinguish this product from the synchronous
productx.



Lemmal Let p € Faulty,,(A). There is a wordy €
Faulty., (A ® Obg s.t. Obgp) mx(v). Letp €
NonFaultyf A). There is a word”” € NonFaultf A ® Obs

s.t.Obgp’) = 7/5(v).

Lemma 2 Letrv € Faulty., (A ® Obs. There is a word
p € Faulty,,(A) st. Obgp) (V). Letr €
NonFaultf A ® Obs. There is a wordy’ € NonFaultyf A)
s.t.Obgp’) = 7/5(v).

The proofs of these lemmas are given in [1]. Now as-
sumeA is (Obs k)-diagnosable and ® Obs is not(%, k)-
diagnosable. There are two words Faulty.., (A ® Obg
andv’ € NonFaultf4 ® Obs s.t. 7w/s(v) = m/s(V/).
By Lemma 2, there are two words € Faulty, . (A4) and
P € NonFaultfA) s.it. Obgp) = 7 /5(v) = 7/5(V) =
Obgp’) and thusA is not(Obs k)-diagnosable.
Assume A ® Obs is (X, k)-diagnosable andA
not (Obs k)-diagnosable. There are two worgs
Faulty. . (A) and p’ € NonFaultfA) with Obgp)
Obgy’). By Lemma 1, there are two words &
Faulty. (A ® Obs andv’ € NonFaultfA ® Obs s.t.
Obgp) = ms(v) and w/=(v') = Obgy’) and thus
/5 (v) andw 5 (v). This would imply that4 @ Obs is
not (X, k)-diagnosable.
The number of states of ® Obs is at mos{Q|.|S| and
the number of transitions is bounded by the number of tran-
sitions of A. Hence the size of the product is polynomial in
the size of the input4| 4+ |Obg. Checking thatd @ Obs
is diagnosable can be done in polynomial time (appendix A
in [1]) thus Problem 3 is in P. This completes the proai

is
€

Problem 5 (Dynamic+-Diagnosability)

INPUT: Aandk € N.

PrROBLEM: Compute the se&b of all observers such that
is (Obs k)-diagnosable ifObse O.

5.2 Problem 5 as a Game Problem

To solve Problem 5 we reduce it tosafety2-player
game. The definitions and results for such games are given
in appendix A. We also provide an intuitive explanation of
such games in this section, as we construct our reduction
proof. In short, the reduction we propose is the following:

e Player 1 chooses the set of events it wishes to observe,
then it hands over to Player 2 ;

e Player 2 chooses an event and tries to produce a run
which is the observation of A-faulty run and a non-
faulty run.

Player 2 wins if it can produce such a run. Other-
wise Player 1 wins. Player 2 has complete information
of Player 1's moves (i.e., it can observe the sets that
Player 1 chooses to observe). Player 1, on the other hand,
only has partial information of Player 2's moves because
not all events are observable (details follow). Lé&t=

(Q, qo, 5, —) be afinite automaton. To define the game,
we use two copies of automaten A% andA,. The accept-

ing states ofA¥ are those corresponding to runsfvhich

are faulty and more thahsteps occurred after the fault,

is a copy ofA where thef-transitions have been removed.

For Problem 3, we have assumed that an observer wasrha game we are going to play is the following (see Fig. 6,

given. It would be even better if we coulsynthesize

an observer Obs such that the plant is diagnosable with

Player 1 states are depicted with square boxes and Player 2’
states with round shapes):

Obs. Before attempting to synthesize such an observer, we

should first check that the plant }5-diagnosable: if it is
not, then obviously no such observer exists; if the plant
is X-diagnosable, then the trivial observer that observes all
events inY at all times work&. Therefore, we need a way
to eliminate such trivial diagnosers. Hence we define the
problem of computing the set afl valid observers.

Problem 4 (Dynamic-Diagnosability)

INPUT: A.

ProBLEM: Compute the s&D of all observers such that
is Obsdiagnosable ifobse O.

We do not have a solution to the above problem: it can be
reduced to finding a trace-based winning strategy for Biichi
game with partial observation. We know how to do this for
safety games (Appendix A) but we do not have a solution
to solve Biichi games of this type. Instead, we introduce a
restricted variant:

“Notice that this also shows that existence of an observeligmpxis-
tence of a finite-state observer, since the trivial obses/énite-state.

1. the game starts in an stdtg, ¢2) corresponding to the
initial state of the product ofi¥ and A,. Initially, it is
Player 1's turn to play. Player 1 chooses a set of events
it is going to observe i.e. a subsktof 3. and hands it
over to Player 2;

. assume the automatd and A, are in statesq, g2).
Player 2 can change the state4df and A, by:

(a) firing an action which is not iX in either A} or
A, (no synchronization). In this case a new state
(q,¢") is reached and Player 2 can play again
from this state;

(b) firing an action\ in X: to do this bothA¥ and
Az must be in a state wheteis possible (syn-
chronization); after the action is fired a new state
(g1, ¢5) is reached: now it is Player 1's turn to
play, and the game continues as in step 1 above
(from the new statéq], ¢5)).



Player 1 chooseX C %

(Q17q2)

A& X

)\4¢X/\3€X oy € X
.« . /

VD,

'NaEX

(41, 45)

(41, 47)

Figure 6. Game Reduction for Problem 5

Player 2 wins if he can reach a stdig, ¢2) in A¥ x A,
where ¢; is an accepting state ofi¥ (this means that
Player 1 wins if it can avoid ad infinitum this set of states).

In this sense this is a safety game for Player 1 (and a reach-

ability game for Player 2). Formally, the ganié,
(S1 W Sa, 80,21 W X, 0) is defined as followsl{ denotes
union of disjoint sets):

e 51 =(Q x{-1,--- ,k}) x Q is the set of Player 1
states; a statéq;, j), ¢» indicates thatd¥ is in state
q1, j steps have occurred after a fault, apdis the
current state ofd,. If no fault has occurred;, = —1
and if more thark steps occurred after the fault, we
usej = k.

e S = (Q x {-1,---,k}) x Q x 2% is the set of
Player 2 states. For a statén, j), ¢2, X ), the com-
ponent(q1, j), g2 has the same meaning as fr, and

2. eitherg) = q1, ¢2 N ¢ is a step ofdy, ¢ ¢
X (and? # f),and ifi > 0 j = max(i +
1, k), otherwisej = i.

A visible move can be taken by Player 2 if both

A¥ and A, agree on doing such a move. In

this case the game proceeds to a Player 1 state:

((QI72)7Q2aX)7€7((QLJ)’Q&)) €90 if ¢ S X:
Loy k Lo

@1 — ¢y is a step ofA}, g2 — ¢ is a step

of Ag, and ifi > 0 j = max(i + 1, k), otherwise

j=1i.

We can show that for any observ@rs.t. A is (O, k)-dia-
gnosable, there is a strategyO) for Player 1 inG 4 s.t.
f(O) istrace-base@nd winning. Astrategyfor Player 1 is
amapping’ : RungG 4) — %, that associates a moyép)

in 33; to each rurp of G 4 that ends in & -state. A strategy

f is trace-based (see appendix A for details), if given two

X is the set of moves Player 1 has chosen to observerunsp, o/, if tr(p) = tr(p’) thenf(p) = f(p'). Conversely,

on its last move.

e 50 = ((qo, —1), qo) is the initial state of the game be-
longing to Player 1;

e ¥; = 2% is the set of moves of Player £, = X

for any trace-based winning strategy(for Player 1), we
can build an observed(f) s.t. Ais (O(f), k)-diagnosable.
LetO = (S, so, %, 6, L) be an observer fad. We define
the strategyf (O) on finite runs ofG 4 ending in a Player 1
state by:f(O)(p) = L(d(s0, 7™ /5(tr(p)))). The intuition is

is the set of moves of Player 2 (as we encode the faultthat we take the rupin G 4, take the trace of (choices of

into the state, we do not need to distingujsfrom ¢).

e the transition relatiod C (57 x 31 x S3) U (S X
{e} x S2) U (S2 x X x S) is defined by:

— Player 1 moves: let € ¥; ands; € S;. Then
(81,0'7 (81,0')) €.

— Player 2 moves: a move of Player 2 is either
a silent move §) i.e. a move ofA¥ or A,
or a joint move ofA’f and A, with an observ-
able action inX. Consequently, ailent move
((q1,1),q2,X),¢,(q1,7), ¢4, X)) isin ¢ if one of
the following conditions holds:

1. eitherg) = ¢2, o1 £ q; is a step ofA¥,
¢ ¢ X,andifi > 0thenj = max(i + 1, k);
if i = —1thenif¢ = f j = 0 otherwise
j=i.

Player 1 and moves of Player 2) and remove the choices of
Player 1. This gives a run in*. The strategy for Player 1
for p is the set of events the observeichooses to observe

after readingr /. (tr(p)) i.e. L(d(so, /5 (tr(p)))).

Theorem 4 Let O be an observer s.t. A is (O, k)-dia-
gnosable. Therf(O) is a trace-based winning strategy in
Ga.

Proof: First f(O) is trace-based by definition. We have
to prove thatf(O) is winning. We denoteut(G, f) the

set of outcomes i.e. the set of possible runs of a géme
when the strategy is played by Player 1 (see appendix A
for a formal definition of Out(G 4, f)). Assume on the
contrary f(O) is not winning. This implies that there is
a runp in Out(Ga, f(O)) as defined by equations (2-5).
Each part of the run given by equations (2-5) consists of
a choice of Player 1X; move) followed by a number of



po= (00 2 (g, 00,42 X0 2 (gh (1), ko(1), @3(1). Xo - (@(7): ko)) (). Xo- - 25 (2)
(g}, k1), a2 25 (g k), g2, Xa 25 (g1 (1), B (1), 2 (1), X -+ (gL (), ka () 23, X - 2 (3)
(49.k2), 45 (4)
(64 kn)y @2 225 (@) bn)s 2 X (@ (5) Fn ()0 23y X -+ 2 (g1 (@), K@), @2 (@), X (5)

v o= g gy 2L g A A g A M 1) (6)
Vo= g g N g A A e A ) (7)

moves by Player 1)@ actions). The last state encoun-
tered inp, (¢l (a), k,()), ¢ (a), X, is a losing state for
Player 1, which means thaf, («) > k, by definition of los-
ing states inG 4. From the runp, we can build two runs
v andv’ defined by equations (6) and (7). By definition of
G a, each)] is either a common visible action off and
A, and it is in3, or a silent actiond) i.e. it comes from
an action ofA¥ or A, that is not in the current set of visible
actionsX;. We can remove frony (resp. v’) the actions
¢ that are obtained from an action df, (resp. A%Y) leav-
ing the state ofd¥ (resp. A2) unchanged. Let andi’ be
the runs obtained this way. By definition 6f4, tr(7) €
Faulty.,(A) andtr(#') € NonFaultfA). We claim that
O(tr(#)) = O(tr(7")). Indeed, each part of the runs from
q;---qi, andg?-- - g7, yields the same observation by
O: itis the sequence of events, --- \;, ~s.t. eachy;, isa
letter of bothA} and A, and isX;. As there are two words
tr(2) € Faulty.,, (A) andtr(#') € NonFaulty A) with the
same observation is not (O, k)-diagnosable which con-
tradicts the assumption. Hen¢€O) must be winning. =
Conversely, with each trace-based strateflyof the
game(G,4 we can associate a transition systémf) =
(S, s0, 2,9, L) defined by:

o S = {mx(tr(p))|p € Out(Ga,f)andtglp) €
S1}s

Sp = €,

§(v,0) = v if v € S,v = v and there is a run

p € Out(Ga, f)with p = go ~% gb = g5 2%
X1 1 ¢€" ny A2 e Nnp_1 Ak
Q=g =Gt T QG Gl T G

with eachg; € Si, ¢! € Sa, v = 7/5(tr(p)), and

p=rp Xe, ar <, a." L qr4+1 With gry1 € 51,
e Xg.
d(v,)) =vifve Sandl ¢ f(p);

o L(v) = f(p) if v = ms(tr(p)).

Lemma 3 O(f) is an observer.

Proof: We first have to prove thad(f) (more precisely
L) is well defined. Assume = m/x(tr(p)) andv
m/s(tr(p)). As f is trace-based(p) = f(p’) and there is
unique value fot(v).

We also have to prove that the last requirement of Defi-
nition 4 is satisfied i.e. it ¢ L(s) thend(s,a) = s. If £ &
L(v), thent & f(m,s(tr(p))) foranyps.t.v = m /s (tr(p))
becausd is trace-based. Thugv, ¢) = v. [

Theorem 5 Let f be a trace-based winning strategy(Gh, .
ThenA is (O(f), k)-diagnosable.

Proof: AssumeA is not(O(f), k)-diagnosable. There are
two wordsy € Faultys, (4) andv’ € NonFaultfA) s.t.
O(v) = O(V). Assumer = w_1\gWoA 1wy - - - ApWp
and v W dowh A w] - Apwl, with w;,wi &
O(f)(MoAr--- ;) fori > 0andw_1,w" ; € O(f)(e), and
Ait1 € O(f)(AoA1 -+ A;). We build a run inOut(Ga4, f)
as follows:

1. Player 1 chooses the s&) = O(f)(e) which is by
definition equal tof ((¢4,0),¢2) where (¢, 0), 4¢3 is
the initial state of the game.

. Player 2 chooses actionsdn U w/. The game moves
through S, states because each action is an invisible
move. Finally Player 2 chooseg. The game reaches
a news;-state(q1, k1), ¢3.

. from(qi, k1), ¢3, the strategyf is to playX; which by
definition isO(\g). Thus Player 2 can play moves in
we U wh and finally A\,

We can iteratively build a run iDut(G 4, f) that reaches
astate(q}, k,), ¢2 with k,, > k and thusOut(G 4, f) con-
tains a losing run. Hencgis not winning which contradicts
the assumption. This way we conclude thais (O(f), k)-
diagnosable. [ ]



The result orG 4 (Appendix A) is that, if there is a win-

This enables us to solve Problem 5 and compute a finite

ning trace-based strategy for Player 1, then there is a mostepresentation of the sé of all observers such that is

permissive strateg§ 4 which has finite memory. It can be
represented by a finite automatsp, = (W; Wy, sg, ZU
2E,AA) S.t. AA - (W1 X 2% x WQ) U (WQ X X X Wl)
which has size exponential in the size@f,. For a given
runp € (X U2%)* ending in al¥; -state, we havéF 4 (w) =
enA 4 (s, w)).

5.3 Most Permissive Observer

We now define the notion of a mgsermissiveobserver

(O, k)-diagnosable ifD € O.

ComputingF 4 can be done i0(2/¢41) (Appendix A).
The size ofG 4 is linear in|A| and exponential in the size
of ¥ andk i.e. |Ga| = O(|A|.21¥1.2%). This means that
computingF 4 can be done in exponential time in the size
of A and doubly exponential time in the sizeXfandk.

Example 5 For the automaton4 of Fig. 1, we obtain the
most permissive observéi, of Fig. 7. In the square states,
the observer chooses what to observe and in the round
states it moves according to what it observers. When the

and show the existence of a most permissive observer for 8ystem starts, it can choose eithfer, b} or {a}. Once an

system in casdl is diagnosableF 4 is the mapping defined
at the end of the previous section.

For an observed) = (S,s0,%,d,L) we let L(p) be
the setL(d(so,p)). Given a runp € RungA), we recall
that O(p) is the observation of by O. AssumeO(p) =
ap---ap. Letp = L(e).e.L(ag).ao. - - - L(O(p)(k)).ax i.e.

p contains the history of whad has chosen to observe at
each step and the events that occurred.

Let O : (2¢ x 2%)* — 227, O is the most permissive
observer for( 4, k) if the following holds:

0= (Sv 5072567[’)
is an observerand <=
Alis (O, k)-diagnosable

Yw € ¥*
L((s0,w)) € O(w)

AssumeA is (X, k)-diagnosable. Then there is an observer

O s.t. Ais (O, k)-diagnosable because the constant ob-

server that observasis a solution. By Theorem 4, there is
a trace-based winning strategy for Player 1Gin. As said

a has been observed it can choose any subset containing
b. When ab has been observed the observer can choose to
observe the empty set.

6 Conclusion and Future Work

In this paper we have addressed sensor minimization
problems in the context of fault diagnosis, using both stati
and dynamic observers. We showed that computing the
smallest number of observable events necessary to achieve
diagnosis with a static observer is NP-complete: this re-
sult also holds in the mask-based setting which allows to
consider events that are observable but not distinguishabl
We then focused on dynamic observers and proved that,
for a given such observer, diagnosability can be checked
in polynomial time (as in the case of static observers). We
also solved the synthesis problem of dynamic observers and
showed that a most-permissive dynamic observer can be

at the end of the previous section, in this case there is a mosEMPuted in doubly-exponential time.

permissive trace-based winning strategy whicltis
Theorem 6 F4 is the most permissive observer.

Proof: LetO = (S, so, X, 0, L) be an observer such thadt
is (O, k)-diagnosable. We have to prove tHa® (s, w)) €
Fa(w) for any w € X*. By Theorem 4, the strat-
egy f(O) is a winning state-based strategy and this im-
plies thatf(O)(v) € Fa(v) for any runv of G4. By
definition of w, 7 /5(w) = w. By definition of f(O),
F(O)w) = L(§(so, m/n(w))) = L(d(s0,w)) and thus
L(6(so,w)) € Fa(w).

Conversely, assum@ is such thavw € ¥*, L(sg, w) €
Fa(w). We have to prove thatl is (O, k)-diagnosable.
Again, we build f(O). As before, f(O) is a winning
trace-based strategy iy and thusO(f(O)) is such
that A is (O(f(0)), k)-diagnosable by Theorem 5. As-
sumeO(f(0)) = (5, sy, %,0',L")). By construction of
O(f(0)), L'(&(sh,w)) = F(O)(p) if w = ms5(tr(p)).
HenceO(f(0)) = O andA is (O, k)-diagnosable. [ |

10

We are currently investigating the following directions:

e Problem 4 has not been solved so far. The major im-
pediment to solve it is that the reduction we propose in
section 5 yields a Biichi game. The algorithm we give
in appendix A does not work for Biichi games and can-
not be extended trivially.

e Problem 5 is solved in doubly exponential time. To
reduce the number of states of the most permissive ob-
server, we point out that ontypinimalsets of events we
need to observe are need. Indeed, if we can diagnose
a system by observing only from some point on, we
surely can diagnose it using any superdeD A. So
far we keep all the sets that can be used to diagnose
the system. We could possibly take advantage of the
previous property using techniques described in [4].

e Another line of work is to define a notion abstfor
dynamic observers. This can be done and an optimal
observer can be computed as it is reported in [1].



{a,b}

Figure 7. Most Permissive Observer for the Automaton A of Fig. 1
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A Results For Safety 2-Player Games Definition 8 (Player 1 Strategy) A strategy for playet is
a mappingf : Rung(G) — X;. A strategyf is trace-based

In this section we give results on games with partial ob- If fo/r all p,p € Rung(G), tr(p) = tr(p') implie/sf(p) =
servation where two players are playing, but Player 1 cannot/ (#')- A str;’;\tegyf ismemoryles#tgt(p) = tgt(p’) implies
observe all Player 2 moves. The proofs of lemmas and the-f(0) = f(p')-

orems in this section are given in Appendix B of [1]. The Definition 9 (outcome) Given a strategy for playerl, the

aim of Player 1 is to win but with #&race-basedstrategy ;
i.e. a strategy that is based on the set of moves that havé):;t;:gmeom(a f) of the gameC: under f s the set of

been observed. In each state of the game, it is either upD — ol /
to Player 1 to play or to Player 2. The game starts in a p=dot1d1 " Gntnt1dntt -t

Player 1 state. Player 1 only plays one moveXjy) and  such that for eacly; € Q1, {1 = f(p(i)).

hands it over to player 2. Player 2 can play two types of o o o ]
moves: invisible moves:(is the invisible action) and visi-  D€finition 10 (Objective) An objectives for Player 1 is a
ble moves E-actions). If Player 2 plays an invisible move SUPsetof@1 U Q2) U (Q1 U Q2)".

g, itis again his turn to play. Otherwise if he plays a visible
move, the turn switches to Player 1. This setting is formally 0
defined by:

Given a pair (G,¢), a strategy f is winning if
ut(G, f) C ¢. A stateq of G is winning if there is a
winning strategy frong.

The usual control problem on two-playeigames asks

Definition 6 (Two-Player e-Games) A two-players-game the following:

Gis atuple(Q1 ¥ Q2, qo, X1 ¥ X5, §) with:
P » Problem 6 (Control Problem)
e (; is afinite set of states for playéyi = 1, 2; INPUT: A two-player:-gameG;, an objectives.

. I PROBLEM: Is there a winning strategy fdiGG, ¢) ?
e ¢o € Q1 is theinitial state of the game; g 9y falct, 9)

_ o _ ¢ is a safety objective if there is a SBtC 1 UQ2 such
e Y; is afinite set of actions for playeri = 1, 2; thaty = F“ U F*. If G is as-game and a safety objective
we say that the paifG, ¢) is a safety gameF’ is the set of

* § C (Q1xX1xQ2)U(Qax{e} xQ2)U(Qax T2 x Q1) safestates. To solve safety two-playeigames we define
is the transition relation.

the theCpre operator [9]:
We assume that the game is deterministic w.r.t Player Cpre(S) = {s€Qi]3o1 €Z1|d(s,01) €S} (8)
moves, i.e. for aly; € Q1,01 € X, there is at most one U {s€Qs|Vos € 55]0(s,02) €S} (9)
stategs € Q2 such that(qy,01,¢2) € 4. For(g,a,q’) € §
we use the notatiop % ¢’ or qaq’. We leten(q) = It is well-known [9] that iteratingCpre and computing the

{o|3¢ |6(¢g,0) = ¢'} i.e. the set of moves enabled in a fixpoint Cpre*(F) gives the set of winning statesf the
stateq. If G contains noe transitions,G is an alternat- game. In casé& is finite this computation terminates and
ing fully-observable two-player game (we use the term two- can be done in linear time for safety games [9]. If the ini-
player game in this case). tial state of the game, € Cpre*(F), there is a strategy for
Player 1 to win. Moreover for this type of gamesemo-
Definition 7 (Play, Trace) Aplayin G is a finite or infinite rylessstrategy are sufficient to win. Indeed, as we can see

sequence the state of the game,transitions are not really unobserv-
p=qol1qr - Gnlni1Gnit- - able (or invisible) and thus knowing the current state gives
some useful information. Moreover we can definmast
such that for each, g; —% ¢;.1. We writeqy 2%, permissive stratedy : Q; N Cpre'(F) — 2%\ { by:

@n it Gol1qy - - - Lngy is a finite play inG. We let Rung?) F(q) ={o|d(g,0) € Cpre’(F)}. Thisis the most permis-
be the set of plays i and Run$(G) be the set of finite ~ sive strategy in the following sensg:is a winning strategy
plays. Runs(G),i = 1,2 are the sets of finite runs ending for (G, ¢) iff for any p € Rung(G), f(p) € F(tgt(p)), i.e.
in a Q;-state. Theraceof p, denoted tfp) is the sequenée  every move defined by is a move of the most permissive
boly -+l strategy.

The problem we want to solve is the following:

We letp(i) be the prefix ofp up to statey;, s0(0) = qo, SNotice that by definition ofSpre, Player 1 cannot win by refusing to

p(n) = qof1q1 - - gn, and so on. play.
7According to Definition 8, it is not a strategy as it prescsitzeset of
5As ¢ also stands for the empty word, a trace does not contains moves for a given state instead of one move.
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Problem 7 (Trace-Based Control)
INPUT: a gameG, an objectivep.
PROBLEM: Is there a trace-based winning strategy for

(G 9)?

This problem is more demanding than the usual Control
Problem 6 that asks only for a winning strategy for Player 1,
i.e. a strategy in which full observation of the state is as-

From the proof of Theorem 7 (see Appendix B of [1])
we obtain an algorithm for Problem 7 and as the siz€ pf
is exponential in the siz€&":

Theorem 8 Problem 7 is in EXPTIME.

Given Gy and Fy we can compute the most permis-
sive strategyF . GivenFy we define the mapping on

sumed. To solve Problem 7, we reduce it to a problem of aRUNS(G): F(p) = Fu(tgt(5(tr (p))))-

fully-observable two player game.
We define the following operator far € X5, s € Q-,

Nexb(s,0) = {s'| s AN s’} (10)

It follows that if o € X5, Next(s,0) C Q and ifo = ¢,
Next(s,0) C Q2. Leto € X1 and@ C Q. We define

Next (@, o)

We address Problem 7 whegeis safety objective i.e.
¢ = F“ U F*. To solve(G, ¢), we build a fully-observable
two player gaméG g, Fir) (noe transitions) such that:

{s'| s =d(s,o) withs € Q} (11)

Theorem 7 There is a (standard) winning strategy in
(Gu, Fy) iff there is a trace-based winning strategy in
(G, F).

Definition 11 AssumeG = (Q1 W Q2,q0,%1 W (X2 U
{e}),d). The game&r g = (S, s0, X', A) is defined by:

o W =W wW,withW; = (291U_L,) are the Player 1
statesV, = (292 U L) are Player 2 states;

® S0 = {lJo},

e ¥ =3, UXY whereu is a fresh name, antl; is the
set Player 1 moves aridy the set of Player 2 moves;

o A C (W xXy xWa)U(Wa x XYy x W) is defined by:
(S,0,5") € Aiff one of the three conditions holds:

Ci: S C Q1,0 € ¥1andS’ = Nexi (S, o) if for all
s € 5,0 € en(s) and otherwises” = L o;

Co: S C Q2,0 € X, 5" =Next(S,0) and S’ # 0;

C3: S C Q2,0 =u, Next(S,e)NF # andS’ =
14.

We letFy = {Q € S|Q C F}i.e. Fy be the set of safe
states folG . 11 and_L, are not safe state§G g, Fy) isa
safety game as well. Notice also tliat; is a turn-based two
player game in which the moves of the two players alternate.
The following fact holds as well:

Fact 1 By definitionG is deterministic. Hence for any
word w € (o1 U o¥)*, there is a unique runs(w)
s0 — 5" in Gy with tr(8(w)) = w and a unique last state
A(sp,w) = s'.
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Theorem 9 F is the most permissive trace-based strategy
for G.

Corollary 1 The most permissive trace-based stratégy
for (G, ¢) can be represented by an automaton which has
at most an exponential number of states.

This follows from the fact thatz 7 is exponential in the size

of G. The most permissive trace-based strategy is obtained
from G by removing from each statgthe transitions that
are notinFg(q).



