
Sensor Minimization Problems with
Static or Dynamic Observers for Fault Diagnosis

Franck Cassez∗ Stavros Tripakis† Karine Altisen‡

Abstract

We study sensor minimization problems in the context of
fault diagnosis. Fault diagnosis consists in synthesizinga
diagnoser that observes a given plant and identifies faults
in the plant as soon as possible after their occurrence. Ex-
isting literature on this problem has considered the case of
static observers, where the set of observable events does
not change during execution of the system. In this paper, we
consider static as well as dynamic observers, where the ob-
server can switch sensors on or off, thus dynamically chang-
ing the set of events it wishes to observe.

1 Introduction

Monitoring, Testing, Fault Diagnosis and Control.
Many problems concerning the monitoring, testing, fault di-
agnosis and control of discrete event systems (DES) can be
formalized by using finite automata over a set ofobservable
eventsΣ, plus a set ofunobservableevents [7, 10]. The in-
visible actions can often be represented by a single unob-
servable eventε. Given a finite automaton overΣ ∪ {ε}
which is a model of aplant (to be monitored, tested, di-
agnosed or controlled) and anobjective(good behaviours,
what to test for, faulty behaviours, control objective) we
want to check if a monitor/tester/diagnoser/controller exists
that achieves the objective, and if possible to synthesize one
automatically.

The usual assumption in this setting is that the set of ob-
servable events is fixed (and this in turn determines the set
of unobservable events as well). Observing an event usually
requires some detection mechanism, i.e., asensorof some
sort. Which sensors to use, how many of them, and where
to place them are some of the design questions that are often

∗CNRS/IRCCyN, 1 rue de la Noë, BP 92101, 44321 Nantes Cedex 3,
France. Email: franck.cassez@cnrs.irccyn.fr

†Cadence Berkeley Labs, 1995 University Avenue, Berkeley, CA,
94704, USA, and CNRS, Verimag Laboratory, Centre Equation,2, avenue
de Vignate, 38610 Gières, France. Email: tripakis@cadence.com

‡INPG and Verimag Laboratory, Centre Equation, 2, avenue de Vig-
nate, 38610 Gières, France.

difficult to answer, especially without knowing what these
sensors are to be used for.

In this paper we study problems ofsensor minimization.
These problems are interesting since observing an event can
be costly in terms of time or energy: computation time must
be spent to read and process the information provided by the
sensor, and power is required to operate the sensor (as well
as perform the computations). It is then essential that the
sensors used really provide useful information. It is also im-
portant for the computer to discard any information given by
a sensor that is not really needed. In the case of a fixed set of
observable events, it is not the case that all sensors always
provide useful information and sometimes energy (sensor
operation and computer treatment) is spent for nothing. For
example, to diagnose a fault in the system described by the
automatonB, Figure 4, an observer only has to watch event
a, andwhena has occurred, to watch eventb: if the se-
quencea.b occurs, for sure a fault has occurred and the ob-
server can raise an alarm. It is then not useful to switch on
sensorb before ana has occurred.

Sensor Minimization and Fault Diagnosis. We focus
our attention on sensor minimization, without looking at
problems related to sensor placement, choosing between
different types of sensors, and so on. We also focus on a
particular observation problem, that offault diagnosis. We
believe, however, that the results we obtain are applicable
to other contexts as well.

Fault diagnosis consists in observing a plant and detect-
ing whether a fault has occurred or not. We follow the
discrete-event system (DES) setting of [8] where the behav-
ior of the plant is known and a model of it is available as
a finite-state automaton overΣ ∪ {ε, f} whereΣ is the set
of observable events,ε represents the unobservable events,
andf is a special unobservable event that corresponds to the
faults. Checkingdiagnosability(whether a fault can be de-
tected) for a given plant and afixedset of observable events
can be done in polynomial time [8, 11, 5]. (Notice that syn-
thesizing a diagnoser involves determinization in general,
thus cannot be done in polynomial time.)

We examine sensor optimization problems with both

1

staticanddynamicobservers. A static observer always ob-
serves the same set of events, whereas a dynamic observer
can modify the set of events it wishes to observe during the
course of the plant execution (this could be implemented
by switching sensors on and off in order to save energy, for
example).

In the static observer case, we consider both the standard
setting of observable/unobservable events as well as the set-
ting where the observer is defined as amaskwhich allows
some events to be observable but notdistinguishable(e.g.,
see [2]). Our first contribution is to show that the problems
of minimizingthe number of observable events (or distinct
observable outcomes in case of the mask) are NP-complete.
Membership in NP can be easily derived by reducing these
problems to the standard diagnosability problem, once a
candidate minimal solution is chosen non-deterministically.
NP-hardness can be shown using reductions of well-known
NP-hard problems, namely, clique and coloring problems in
graphs.

In the dynamic observer case, we assume that an ob-
server can decide after each new observation the set of
events it is going to watch. As a second contribution, we
provide a definition of thedynamic observer synthesis prob-
lemand then show that computing adynamic observerfor
a given plant, can be reduced to agame problem.

Related work. NP-hardness of finding minimum-
cardinality sets of observable events so that diagnosability
holds under the standard, projection-based setting has been
previously reported in [11]. Our result of section 3 can be
viewed as an alternative shorter proof of this result. Masks
have not been considered in [11]. As we show in section 4
a reduction from the mask version of the problem to the
standard version is not straightforward. Thus the result in
section 4 is useful and new.

The complexity of finding “optimal” observation masks,
i.e. a set that cannot be reduced, has been considered in [6]
where it was shown that the problem is NP-hard for gen-
eral properties. [6] also shows that finding optimal observa-
tion masks is polynomial for “mask-monotonic” properties
where increasing the set of observable (or distinguishable)
events preserves the property in question. Diagnosabilityis
a mask-monotonic property. Notice that optimal observa-
tion masks are not the same as minimum-cardinality masks
that we consider in our work.

In [3], the authors investigate the problem of computing
a minimal-cost strategy that allows to find a subset of the
set of observable events s.t. the system is diagnosable. It
is assumed that each such subset has a known associated
cost, as well as a known a-priori probability for achieving
diagnosability.

To our knowledge, the problems of synthesizing dy-
namic observers for diagnosability, studied in Section 5,

have not been addressed previously in the literature.

Organisation of the paper. In Section 2 we fix notation
and introduce finite automata with faults to model DES. In
Section 3 we show NP-completeness of the sensor mini-
mization problem for the standard projection-based obser-
vation setting. In Section 4 we show NP-completeness of
the sensor minimization problem for the mask-based set-
ting. In Section 5 we introduce and study dynamic ob-
servers. We define dynamic observers and show that the
most permissive dynamic observer can be computed as the
strategy in a safety 2-player game.

2 Preliminaries

2.1 Words and Languages

Let Σ be a finite alphabet andΣε = Σ ∪ {ε}. Σ∗

is the set of finite words overΣ and containsε which
is also the empty word. AlanguageL is any subset of
Σ∗. Σ+ = Σ∗ \ {ε}. Given two wordsρ, ρ′ we de-
noteρ.ρ′ the concatenation ofρ andρ′ (which is defined
in the usual way). |ρ| stands for the length of the word
ρ and |ρ|λ with λ ∈ Σ stands for the number of occur-
rences ofλ in ρ. GivenΣ1 ⊆ Σ, we define theprojection
π/Σ1

: Σ∗ → Σ∗
1 by: π/Σ1

(ε) = ε and fora ∈ Σ, ρ ∈ Σ∗,
π/Σ1

(a.ρ) = a.π/Σ1
(ρ) if a ∈ Σ1 andπ/Σ1

(ρ) otherwise.

2.2 Finite Automata

Let f 6∈ Σε be a fresh letter that corresponds to the fault
action. A finite automatonA is a tuple1 (Q, q0, Σ

ε,f ,→)
with Q a finite set of states,q0 ∈ Q is the initial state,
→⊆ Q × Σε,f × Q is the transition relation. We write

q
λ
−→ q′ if (q, λ, q′) ∈→ . For q ∈ Q, en(q) is the set of

actions enabled atq. A run ρ of A from states is a se-

quence of transitionss0

λ1−−→ s1

λ2−−→ s2 · · · sn−1

λn−−→ sn

s.t. λi ∈ Σε,f and s0 = s. We let tgt(ρ) = sn. The
set of runs froms in A is denotedRuns(s, A) and we de-
fine Runs(A) = Runs(q0, A). The trace of the run ρ,
denotedtr(ρ), is the word obtained by concatenating the
symbolsλi appearing inρ, for thoseλi different fromε.
Given a setR ⊆ Runs(A), Tr(R) = {tr(ρ) for ρ ∈ R} is
the set of traces of the runs inR. A run ρ is k-faulty if
there is some1 ≤ i ≤ n s.t. λi = f andn − i ≥ k.
Faulty≥k(A) is the set ofk-faulty runs ofA. A run is faulty
if it is k-faulty for somek ∈ N and Faulty(A) denotes
the set of faulty runs. It follows thatFaulty≥k+1(A) ⊆
Faulty≥k(A) ⊆ · · · ⊆ Faulty≥0(A) = Faulty(A). Finally

1In this paper we only use finite automata that generate prefix-closed
languages, hence we do not need to use a set of final or accepting states.

2

NonFaulty(A) = Runs(A) \ Faulty(A) is the set onnon-
faulty runs ofA. We letFaultytr

≥k(A) = Tr(Faulty≥k(A))

andNonFaultytr(A) = Tr(NonFaulty(A)).
A word w is acceptedby A if w = tr(ρ) for some

ρ ∈ Runs(A). The languageL(A) of A is the set of words
accepted byA.

We assume that each faulty run ofA of length n can
be extended into a run of lengthn + 1. This is required
for technical reasons (in order to guarantee that the set of
faulty runs where sufficient time has elapsed after the fault
is well-defined) and can be achieved by addingε loop transi-
tions to each deadlock state ofA. Notice that this transfor-
mation does not change the observations produced by the
plant, thus, any observer synthesized for the transformed
plant also applies to the original one.

3 Sensor Minimization with Static Observers

In this section we address the sensor minimization prob-
lem forstatic observers. We point out that the result in this
section was already obtained in [11] and we only give here
an alternative shorter proof. We are given a finite automa-
ton A = (Q, q0, Σ

ε,f ,→). The maximal set of observable
events isΣ (ε is not observable). We want to decide whether
there is a subsetΣo (Σ such that the faults can be detected
by observing only events inΣo. Moreover, we would like
to find an “optimal” suchΣo.

A diagnoseris a device that observes the plant and raises
an “alarm” whenever it detects a fault. We allow the diag-
noser to raise an alarm not necessarily immediately after
the fault occurs, but possibly some time later, as long as
this time is bounded by somek ∈ N, whereN is the set
of non-negative integers. We model time by counting the
“moves” the plant makes (including observable and unob-
servable ones). If the system generates a wordρ but only
a subsetΣo ⊆ Σ is observable, the diagnoser can only see
π/Σo

(ρ).

Definition 1 ((Σo, k)-Diagnoser) Let A be a finite au-
tomaton overΣε,f , k ∈ N, Σo ⊆ Σ. A mappingD :
Σ∗

o → {0, 1} is a (Σo, k)-diagnoser forA if (i) for each
ρ ∈ NonFaulty(A), D(π/Σo

(tr(ρ))) = 0, and (ii) for each
ρ ∈ Faulty≥k(A), D(π/Σo

(tr(ρ))) = 1. �

A is (Σo, k)-diagnosable if there is a(Σo, k)-diagnoser for
A. A is Σo-diagnosable if there is somek ∈ N s.t. A is
(Σo, k)-diagnosable.

Example 1 LetA be the automaton shown on Fig. 1. The
run f is in Faulty≥0(A), the runf.a is in Faulty≥1(A) and
a.ε2 is in NonFaulty(A).
A is neither{a}-diagnosable, nor{b}-diagnosable. This is
because, for anyk, the faulty runf.a.b.εk gives the same

•

• • •

•

ε

ε

f
a b

a

b

Figure 1. The automaton A

observation as the non-faulty runa.εk (in casea is the ob-
servable event) or the non-faulty runb.εk (in caseb is the
observable event). Consequently, the diagnoser cannot dis-
tinguish between the two no matter how long it waits. If
botha andb are observable, however, then we can define:
D(a.b.ρ) = 1 for anyρ ∈ {a, b}∗ andD(ρ) = 0 otherwise.
D is a ({a, b}, 2)-diagnoser forA.

For givenA andΣo it is known how to check diagnosability
and build a diagnoser (e.g., see [8]). Checking whetherA is
Σo-diagnosable can be done in polynomial time in the size
of A, more precisely inO(|A|2). Computing the minimum
k s.t. A is (Σo, k)-diagnosable can be done inO(|A|3).
Moreover in caseA is Σo-diagnosable, there is a diagnoser
D that can be represented by a finite automaton. Computing
this finite automaton is inO(2|A|). Algorithms for solving
these problems are given in appendix A in [1]. These algo-
rithms use the fact thatA is (Σo, k)-diagnosable iff

π/Σo
(Faultytr

≥k(A)) ∩ π/Σo
(NonFaultytr(A)) = ∅ (1)

or in other words, there is no pair of runs(ρ1, ρ2) with ρ1 ∈
Faulty≥k(A), ρ2 ∈ NonFaulty(A) s.t. ρ1 andρ2 give the
same observations onΣo. In this section we address the
problem offindinga set of observable eventsΣo that allows
faults to be detected. We would like to detect faults using as
few observable events as possible.

Problem 1 (Minimum Number of Observable Events)
INPUT: A, n ∈ N s.t.n ≤ |Σ|.
PROBLEM:

(A) Is there anyΣo ⊆ Σ with |Σo| = n, such thatA is
Σo-diagnosable ?

(B) If the answer to (A) is “yes”, find the minimumn0 such
that there existsΣo ⊆ Σ with |Σo| = n0 and A is
Σo-diagnosable.

If we know how to solve Problem 1(A) efficiently then
we can also solve Problem 1(B) efficiently: we perform a
binary search overn between0 and |Σ|, and solve Prob-
lem 1(A) for each suchn, until we find the minimumn0

for which Problem 1(A) gives a positive answer.2 Unfortu-

2Notice that knowingn0 does not imply we know the required set
of observable eventsΣo! We can find (one of the possibly many)Σo

by searching over all possible subsetsΣo of Σ of size n0 (there are
C(|Σ|, n0) such combinations) and check for each suchΣo whetherA
is Σo-diagnosable, using the methods described in the appendix Aof [1].

3

nately, Problem 1(A) is a combinatorial problem, exponen-
tial in |Σ|, as we show next.

Theorem 1 Problem 1(A) is NP-complete.

Proof: Membership in NP is proved using the result in ap-
pendix A in [1]: if we guess a solutionΣo we can check
thatA is Σo-diagnosable in time polynomial in|A|. Here
we provide the proof of NP-hardness by giving a reduction
of then-clique problem. LetG = (V, E) be a (undirected)
graph whereV is set of vertices andE ⊆ V × V is a set of
edges (we assume that(v, v′) ∈ E ⇐⇒ (v′, v) ∈ E). A
cliquein G is a subsetV ′ ⊆ V such that for all(v, v′) ∈ V ′,
(v, v′) ∈ E. Then-cliqueproblem asks the following: de-
termine whetherG contains a clique ofn vertices. The re-

q0 • • •

• • •

• • •

f a b

ε

f

a′ b′

ε

f

a′′ b′′

ε

Figure 2. The automaton AG

duction is as follows. GivenG, we build a finite automa-
ton AG such that there is an-clique in G iff AG is Σo-
diagnosable, where|Σ\Σo| = n. Notice that sinceΣo ⊆ Σ,
|Σ \ Σo| = n is equivalent to|Σo| = |Σ| − n. Thus, there
is a n-clique in G iff n events fromΣ do not need to be
observed i.e. iff Problem 1(A) gives a positive answer for
|Σ|−n. LetΣ = V . Then we defineAG as shown in Fig. 2:
q0 is the initial state and the “branches”f.a.b, f.a′.b′, · · ·
are obtained from the pairs of nodes(a, b), (a′, b′), · · · that
arenot linked with an edge inG: (a, b), (a′, b′), · · · 6∈ E.

If part. Assume Problem 1(A) gives a positive answer for
|Σ| − n. This means that there existsΣo ⊆ Σ such that
|Σo| = |Σ|−n, or |Σ\Σo| = n, andAG is Σo-diagnosable.
Then we claim thatC = Σ\Σo is a clique inG. AssumeC
is not a clique. Then there must be some{a, b} ⊆ C such
that (a, b) 6∈ E. By the construction of Fig. 2, there is a
branchf.a.b in AG and thus bothρ = ε andρ′ = f.a.b.εK

are runs ofAG, for anyk. As {a, b} ⊆ C, {a, b} ∩ Σo = ∅
and the observation of both runsρ andρ′ is ε, no diagnoser
exists that can distinguish between the two runs, for anyk.

Only if part. Assume there exists an-clique in G. Let
Σo = Σ \ C. We claim thatAG is (Σo, 2)-diagnosable
(thus alsoΣo-diagnosable). Suppose not. Then there exist
two runsρ andρ′ such thatρ′ ∈ NonFaulty(AG) andρ =
ρ1.f.ρ2, and|ρ2| ≥ 2, andπ/Σo

(ρ) = π/Σo
(ρ′). Then,ρ

must be of the formρ = f.a.b.εk, with (a, b) 6∈ E. Also, the
only wayρ′ can be non faulty isρ′ = ε. Thenπ/Σo

(ρ′) =
ε = π/Σo

(ρ), thus, botha andb must be non-observable,
thus{a, b}∩Σo = ∅ which entails{a, b} ⊆ C. This implies
that(a, b) ∈ E which is a contradiction.

4 Sensor Minimization with Masks

So far we have assumed that observable events are also
distinguishable. However, there are cases where two events
a andb are observable but not distinguishable, that is, the
diagnoser knows thata or b occurred, but not which of the
two. This is not the same as consideringa andb to be unob-
servable, since in that case the diagnoser would not be able
to detect occurrence ofa or b. Distinguishability of events
is captured by the notion of amask.

Definition 2 (Mask) A mask(M, n) overΣ is a total, sur-
jective functionM : Σ → {1, · · · , n} ∪ {ε}. �

M induces a morphismM∗ : Σ∗ → {1, · · · , n}∗. For
example, ifΣ = {a, b, c, d}, n = 2 andM(a) = M(b) =
1, M(c) = 2, M(d) = ε, then we haveM∗(a.b.c.b.d) =
1.1.2.1 = M∗(a.a.d.c.a).

Definition 3 ((M, n), k)-diagnoser) Let (M, n) be a mask
over Σ. A mapping D : {1, · · · , n}∗ → {0, 1}
is a ((M, n), k)-diagnoserfor A if (i) for each ρ ∈
NonFaulty(A), D(M∗(ρ)) = 0 and (ii) for each ρ ∈
Faulty≥k(A), D(M∗(ρ)) = 1. �

A is ((M, n), k)-diagnosable if there is a((M, n), k)-
diagnoser forA. A is (M, n)-diagnosable if there is some
k such thatA is ((M, n), k)-diagnosable.

Given A and a mask(M, n), checking whetherA is
(M, n)-diagnosable can be done in polynomial time. In fact
it can be reduced to checkingΣo-diagnosability of a modi-
fied automatonAM , with Σo = {1, ..., n}. AM is obtained
from A by renaming the actionsa ∈ Σ by M(a). It can be
seen thatA is ((M, n)-diagnosable iffAM is {1, · · · , n}-
diagnosable. Notice thatA is ((M, n), k)-diagnosable iff
M∗(Faulty≥k(A)) ∩ M∗(NonFaulty(A)) = ∅.

As in the previous section, we are mostly interested in
minimizing the observability requirements while maintain-
ing diagnosability. In the context of diagnosis with masks,
this means minimizing the numbern of distinct outputs of
the maskM . We thus define the following problem:

Problem 2 (Minimum Mask)
INPUT: A, n ∈ N s.t.n ≤ |Σ|.
PROBLEM:

(A) Is there any mask(M, n) such thatA is (M, n)-
diagnosable ?

4

(B) If the answer to (A) is “yes”, find the minimumn0 such
that there is a mask(M, n0) such thatA is (M, n0)-
diagnosable.

As with Problem 1, if we know how to solve Prob-
lem 2(A) efficiently we also know how to solve Prob-
lem 2(B) efficiently: again, a binary search onn suffices.

We will prove that Problem 2 is NP-complete. One might
think that this result follows easily from Theorem 1. How-
ever, this is not the case. Obviously, a solution to Problem 1
provides a solution to Problem 2: assume there existsΣo

such thatA is (Σo, k)-diagnosable andΣo = {a1, ..., an};
define a maskM : Σ → {1, · · · , n} such thatM(ai) = i

and for anya ∈ Σ \ Σo, M(a) = ε. Then, A is
((M, n), k)-diagnosable. However, a positive answer to
Problem 2(A) does not necessarily imply a positive answer
to Problem 1(A), as shown by the example that follows.

Example 2 Consider again the automatonA of Fig. 1. Let
M(a) = M(b) = 1. ThenA is ((M, 1), 2)-diagnosable
because we can build a diagnoserD defined by:D(ε) =
0, D(1) = 0, D(12.ρ) = 1 for anyρ ∈ 1∗. However, as we
said before, there is no strict subset of{a, b} that allowsA
to be diagnosed.

Theorem 2 Problem 2 is NP-complete.

Proof: Membership in NP is again justified by the fact that
checking whether a guessed mask works can be done in
polynomial time (it suffices to rename the events of the sys-
tem according toM and apply the algorithm of appendix A
in [1]). We show NP-hardness using a reduction of then-
coloring problem. Then-coloring problem asks the follow-
ing: given an undirected graphG = (V, E), is it possible
to color the vertices with colors in{1, 2, · · · , n} so that no
two adjacent vertices have the same color ? LetG = (V, E)
be an undirected graph. LetE = {e1, e2, · · · , ej} be the set
of edges withei = (ui, vi). We letΣ = V and define the
automatonAG as pictured in Fig. 3. The initial state ofAG

is q0. We claim thatG is n-colorizable iff AG is (M, n)-
diagnosable.

If part. AssumeAG is (M, n)-diagnosable forn ≥ 0. We
first show that for alli = 1, ..., j, M(ui) 6= ε, M(vi) 6= ε

and M(ui) 6= M(vi). For anyk, we can defineρ =
v1.ε.u1 · · ·ui.f.vi.ε

k and ρ′ = v1.ε.u1 · · · vi.ε.ui. If ei-
therM(ui) = ε or M(vi) = ε or M(ui) = M(vi) holds,
thenM∗(π/Σ(ρ)) = M∗(π/Σ(ρ′)). This way for anyk,
there is a faulty run of length with more thank events after
the fault, and a non-faulty run which gives the same obser-
vation through the mask. HenceA cannot be((M, n), k)-
diagnosable for anyk and thusA is not(M, n)-diagnosable
which contradicts diagnosability ofA.

Note that the above implies in particular thatn ≥ 1.
We can now prove thatG is n-colorizable. LetC be the

color mapping defined byC(v) = M(v). We need to prove
that C(ui) 6= C(vi) for any (ui, vi) ∈ E. This holds by
construction ofAG and the fact thatM(ui) 6= M(vi) as
shown above.

Only if part. AssumeG is n-colorizable. There exists a
color mappingC : V → {1, 2, · · · , n} s.t. if (v, v′) ∈ E

thenC(v) 6= C(v′). Define the maskM by M(a) = C(a)
for a ∈ V . We claim thatAG is ((M, n), 1)-diagnosable
(thus, also(M, n)-diagnosable). Assume on the contrary
that AG is not ((M, n), 1)-diagnosable. Then there exist
two wordsρ ∈ Faulty≥1(AG) andρ′ ∈ NonFaulty(AG)
such thatM(π/Σ(ρ)) = M(π/Σ(ρ′)). As ρ is faulty it
must be of the formρ = v1.ε.u1 · · ·ui.f.vi.ε

k with 1 ≤ i ≤
j andk ≥ 0. Notice thatM(a) 6= ε for all a ∈ V . There-
fore,M(π/Σ(ρ)) = M(v1).M(u1) · · ·M(ui).M(vi), and
|M(π/Σ(ρ))| = 2i. Consequently,|M(π/Σ(ρ′))| = 2i.
The only possible suchρ′ which is also non-faulty isρ′ =
v1.ε.u1 · · · vi.ε.ui. Now, M(π/Σ(ρ)) = M(π/Σ(ρ′)),
which impliesM(vi) = M(ui) i.e. C(vi) = C(ui). But
(ui, vi) ∈ E, and this contradicts the assumption thatC is
a valid coloring ofG.

5 Dynamic Observers

In this section we introducedynamic observers. To il-
lustrate why dynamic observers can be helpful consider the
following example.

Example 3 (Dynamic Observation) Assume we want to
detect faults in automatonB of Fig. 4. A static diagnoser
that observesΣ = {a, b} works, however, no proper subset
of Σ can be used to detect faults inB. Thus the minimum
value for Problem 1 is2. If we want to use a mask, the min-
imum value for Problem 2 is2 as well. This means that a
diagnoser will have to be receptive to at least two inputs at
each point in time to detect a fault inB. One can think of
being receptive as switching on a device to sense an event.
This consumes energy. We can be more efficient using a
dynamic observer, that only turns on sensors when needed,
thus saving energy. In the case ofB, this can be done as fol-
lows: in the beginning we only switch on thea-sensor; once
ana occurs thea-sensor is switched off and theb-sensor is
switched on. Compared to the previous diagnosers we use
twice as less energy.

5.1 Diagnosers and Dynamic Observers

We formalize the above notion of dynamic observation
usingobservers. The choice of the events to observe can
depend on the choices the observer has made before and on
the observations it has made. Moreover an observer may
haveunboundedmemory.

5

Widget fore2

q0

• • •

• • •

• • •

• • • •

• • •

• • •

u1

f v1

u2

f v2

uj
f vj

v1
ε u1

v2
ε u2

vj
ε uj

· · ·

ε

ε

ε

ε

Figure 3. Automaton AG for n-colorizability

•

• • •

•• ε

εf
a b

b
a

Figure 4. The automaton B

Definition 4 (Observer) An observer Obsover Σ is a
deterministic labeled automatonObs = (S, s0, Σ, δ, L),
whereS is a (possibly infinite) set of states,s0 ∈ S is the
initial state,Σ is the set of observable events,δ : S×Σ → S

is the transition function (a total function), andL : S → 2Σ

is a labeling function that specifies the set of events that the
observer wishes to observe when it is at states. We require
for any states and anya ∈ Σ, if a 6∈ L(s) thenδ(s, a) = s:
this means the observer does not change its state when an
event it chose not to observe occurs. We use the notation
δ(s0, w) to denote the states reached after reading the word
w andL(δ(s0, w)) is the set of eventsobs observes afterw.

�

An observer implicitly defines atransducerthat consumes
an input eventa ∈ Σ and, depending on the current state
s, either outputsa (whena ∈ L(s)) and moves to a new
stateδ(s, a), or outputs nothing orε, (whena 6∈ L(s)) and
remains in the same state waiting for a new event. Thus,
an observer defines a mapping Obs fromΣ∗ to Σ∗ (we use
the same name “Obs” for the automaton and the mapping).
Given a runρ, Obs(ρ) is the output of the transducer when
it readsρ. It is called theobservationof ρ by Obs. We next
provide an example of a particular case of observer which
can be represented by a finite-state machine.

0

L(0) = {a}

1

L(1) = {b}

2

L(2) = ∅

a

b

b

a a

b

Figure 5. A Finite-State Observer Obs

Example 4 Let Obs be the observer of Fig. 5. Obs
maps the following inputs as follows: Obs(baab) =
ab, Obs(bababbaab) = ab, Obs(bbbbba) = a and
Obs(bbaaa) = a.

Definition 5 ((Obs, k)-diagnoser) Let Obsbe an observer
over Σ. A mappingD : Σ∗ → {0, 1} is a (Obs, k)-
diagnoserfor A if (i) ∀ρ ∈ NonFaulty(A), D(Obs(ρ)) = 0
and (ii) ∀ρ ∈ Faulty≥k(A), D(Obs(ρ)) = 1. �

A is (Obs, k)-diagnosable if there is an(Obs, k)-diagnoser
for A. A is Obs-diagnosable if there is somek such thatA
is (Obs, k)-diagnosable. As forΣ-diagnosability, we have
the following equivalence:A is (Obs, k)-diagnosable iff
Obs(Faulty≥k(A)) ∩ Obs(NonFaulty(A)) = ∅.

Problem 3 (Finite-State Obs-Diagnosability)
INPUT: A, Obsa finite-state observer.
PROBLEM:

(A) IsA Obs-diagnosable ?

(B) If the answer to (A) is “yes”, compute the minimumk
such thatA is (Obs, k)-diagnosable.

Theorem 3 Problem 3 is in P.

Proof: The proof runs as follows: we build aproductau-
tomaton3 A ⊗ Obs such that:A is (Obs, k)-diagnosable
⇐⇒ A ⊗ Obs is(Σ, k)-diagnosable.

Let A = (Q, q0, Σ
ε,f ,→) be a finite automaton and

Obs = (S, s0, Σ, δ, L) be a finite-state observer. We de-
fine the automatonA ⊗ Obs= (Q × S, (q0, s0), Σ

ε,f ,→)
as follows:

• (q, s)
β
−→ (q′, s′) iff ∃λ ∈ Σ s.t. q

λ
−→ q′, s′ = δ(s, λ)

andβ = λ if λ ∈ L(s), β = ε otherwise;

• (q, s)
λ
−→ (q′, s) iff ∃λ ∈ {ε, f} s.t. q

λ
−→ q′.

To prove Theorem 3 we use the following lemmas:

3We use⊗ to clearly distinguish this product from the synchronous
product×.

6

Lemma 1 Let ρ ∈ Faulty≥k(A). There is a wordν ∈
Faulty≥k(A ⊗ Obs) s.t. Obs(ρ) = π/Σ(ν). Let ρ′ ∈
NonFaulty(A). There is a wordν′ ∈ NonFaulty(A ⊗ Obs)
s.t.Obs(ρ′) = π/Σ(ν).

Lemma 2 Let ν ∈ Faulty≥k(A ⊗ Obs). There is a word
ρ ∈ Faulty≥k(A) s.t. Obs(ρ) = π/Σ(ν). Let ν′ ∈
NonFaulty(A ⊗ Obs). There is a wordρ′ ∈ NonFaulty(A)
s.t.Obs(ρ′) = π/Σ(ν).

The proofs of these lemmas are given in [1]. Now as-
sumeA is (Obs, k)-diagnosable andA⊗ Obs is not(Σ, k)-
diagnosable. There are two wordsν ∈ Faulty≥k(A ⊗ Obs)
andν′ ∈ NonFaulty(A ⊗ Obs) s.t. π/Σ(ν) = π/Σ(ν′).
By Lemma 2, there are two wordsρ ∈ Faulty≥k(A) and
ρ′ ∈ NonFaulty(A) s.t. Obs(ρ) = π/Σ(ν) = π/Σ(ν′) =
Obs(ρ′) and thusA is not(Obs, k)-diagnosable.

Assume A ⊗ Obs is (Σ, k)-diagnosable andA is
not (Obs, k)-diagnosable. There are two wordsρ ∈
Faulty≥k(A) and ρ′ ∈ NonFaulty(A) with Obs(ρ) =
Obs(ρ′). By Lemma 1, there are two wordsν ∈
Faulty≥k(A ⊗ Obs) and ν′ ∈ NonFaulty(A ⊗ Obs) s.t.
Obs(ρ) = π/Σ(ν) and π/Σ(ν′) = Obs(ρ′) and thus
π/Σ(ν) andπ/Σ(ν′). This would imply thatA ⊗ Obs is
not(Σ, k)-diagnosable.

The number of states ofA ⊗ Obs is at most|Q|.|S| and
the number of transitions is bounded by the number of tran-
sitions ofA. Hence the size of the product is polynomial in
the size of the input|A| + |Obs|. Checking thatA ⊗ Obs
is diagnosable can be done in polynomial time (appendix A
in [1]) thus Problem 3 is in P. This completes the proof.

For Problem 3, we have assumed that an observer was
given. It would be even better if we couldsynthesize
an observer Obs such that the plant is diagnosable with
Obs. Before attempting to synthesize such an observer, we
should first check that the plant isΣ-diagnosable: if it is
not, then obviously no such observer exists; if the plant
is Σ-diagnosable, then the trivial observer that observes all
events inΣ at all times works4. Therefore, we need a way
to eliminate such trivial diagnosers. Hence we define the
problem of computing the set ofall valid observers.

Problem 4 (Dynamic-Diagnosability)
INPUT: A.
PROBLEM: Compute the setO of all observers such thatA
is Obs-diagnosable iffObs∈ O.

We do not have a solution to the above problem: it can be
reduced to finding a trace-based winning strategy for Büchi
game with partial observation. We know how to do this for
safety games (Appendix A) but we do not have a solution
to solve Büchi games of this type. Instead, we introduce a
restricted variant:

4Notice that this also shows that existence of an observer implies exis-
tence of a finite-state observer, since the trivial observeris finite-state.

Problem 5 (Dynamic-k-Diagnosability)
INPUT: A andk ∈ N.
PROBLEM: Compute the setO of all observers such thatA
is (Obs, k)-diagnosable iffObs∈ O.

5.2 Problem 5 as a Game Problem

To solve Problem 5 we reduce it to asafety2-player
game. The definitions and results for such games are given
in appendix A. We also provide an intuitive explanation of
such games in this section, as we construct our reduction
proof. In short, the reduction we propose is the following:

• Player 1 chooses the set of events it wishes to observe,
then it hands over to Player 2 ;

• Player 2 chooses an event and tries to produce a run
which is the observation of ak-faulty run and a non-
faulty run.

Player 2 wins if it can produce such a run. Other-
wise Player 1 wins. Player 2 has complete information
of Player 1’s moves (i.e., it can observe the sets that
Player 1 chooses to observe). Player 1, on the other hand,
only has partial information of Player 2’s moves because
not all events are observable (details follow). LetA =
(Q, q0, Σ

ε,f ,→) be a finite automaton. To define the game,
we use two copies of automatonA: Ak

1 andA2. The accept-
ing states ofAk

1 are those corresponding to runs ofA which
are faulty and more thank steps occurred after the fault.A2

is a copy ofA where thef -transitions have been removed.
The game we are going to play is the following (see Fig. 6,
Player 1 states are depicted with square boxes and Player 2’
states with round shapes):

1. the game starts in an state(q1, q2) corresponding to the
initial state of the product ofAk

1 andA2. Initially, it is
Player 1’s turn to play. Player 1 chooses a set of events
it is going to observe i.e. a subsetX of Σ and hands it
over to Player 2;

2. assume the automataAk
1 andA2 are in states(q1, q2).

Player 2 can change the state ofAk
1 andA2 by:

(a) firing an action which is not inX in eitherAk
1 or

A2 (no synchronization). In this case a new state
(q, q′) is reached and Player 2 can play again
from this state;

(b) firing an actionλ in X : to do this bothAk
1 and

A2 must be in a state whereλ is possible (syn-
chronization); after the action is fired a new state
(q′1, q

′
2) is reached: now it is Player 1’s turn to

play, and the game continues as in step 1 above
(from the new state(q′1, q

′
2)).

7

(q1, q2) (q1, q2) · · ·

(q, q′)

· · ·

(q′1, q
′
2)

(q′′1 , q′′2)

Player 1 choosesX ⊆ Σ λ1 6∈ X

σ1 ∈ X

λ2 6∈ X

λ3 6∈ X
σ2 ∈ X

λ4 6∈ X

Figure 6. Game Reduction for Problem 5

Player 2 wins if he can reach a state(q1, q2) in Ak
1 × A2

where q1 is an accepting state ofAk
1 (this means that

Player 1 wins if it can avoid ad infinitum this set of states).
In this sense this is a safety game for Player 1 (and a reach-
ability game for Player 2). Formally, the gameGA =
(S1 ⊎ S2, s0, Σ1 ⊎ Σ2, δ) is defined as follows (⊎ denotes
union of disjoint sets):

• S1 = (Q × {−1, · · · , k}) × Q is the set of Player 1
states; a state(q1, j), q2 indicates thatAk

1 is in state
q1, j steps have occurred after a fault, andq2 is the
current state ofA2. If no fault has occurred,j = −1
and if more thank steps occurred after the fault, we
usej = k.

• S2 = (Q × {−1, · · · , k}) × Q × 2Σ is the set of
Player 2 states. For a state((q1, j), q2, X), the com-
ponent(q1, j), q2 has the same meaning as forS1, and
X is the set of moves Player 1 has chosen to observe
on its last move.

• s0 = ((q0,−1), q0) is the initial state of the game be-
longing to Player 1;

• Σ1 = 2Σ is the set of moves of Player 1;Σ2 = Σε

is the set of moves of Player 2 (as we encode the fault
into the state, we do not need to distinguishf from ε).

• the transition relationδ ⊆ (S1 × Σ1 × S2) ∪ (S2 ×
{ε} × S2) ∪ (S2 × Σ × S1) is defined by:

– Player 1 moves: letσ ∈ Σ1 ands1 ∈ S1. Then
(s1, σ, (s1, σ)) ∈ δ.

– Player 2 moves: a move of Player 2 is either
a silent move (ε) i.e. a move ofAk

1 or A2

or a joint move ofAk
1 andA2 with an observ-

able action inX . Consequently, asilent move
((q1, i), q2, X), ε, (q′1, j), q

′
2, X)) is in δ if one of

the following conditions holds:

1. eitherq′2 = q2, q1

ℓ
−→ q′1 is a step ofAk

1 ,
ℓ 6∈ X , and if i ≥ 0 thenj = max(i + 1, k);
if i = −1 then if ℓ = f j = 0 otherwise
j = i.

2. eitherq′1 = q1, q2

ℓ
−→ q′2 is a step ofA2, ℓ 6∈

X (andℓ 6= f), and if i ≥ 0 j = max(i +
1, k), otherwisej = i.

A visiblemove can be taken by Player 2 if both
Ak

1 and A2 agree on doing such a move. In
this case the game proceeds to a Player 1 state:
((q1, i), q2, X), ℓ, ((q′1, j), q

′
2)) ∈ δ if ℓ ∈ X ,

q1

ℓ
−→ q′1 is a step ofAk

1 , q2

ℓ
−→ q′2 is a step

of A2, and ifi ≥ 0 j = max(i + 1, k), otherwise
j = i.

We can show that for any observerO s.t. A is (O, k)-dia-
gnosable, there is a strategyf(O) for Player 1 inGA s.t.
f(O) is trace-basedand winning. Astrategyfor Player 1 is
a mappingf : Runs(GA) → Σ1 that associates a movef(ρ)
in Σ1 to each runρ of GA that ends in aS1-state. A strategy
f is trace-based (see appendix A for details), if given two
runsρ, ρ′, if tr(ρ) = tr(ρ′) thenf(ρ) = f(ρ′). Conversely,
for any trace-based winning strategyf (for Player 1), we
can build an observerO(f) s.t.A is (O(f), k)-diagnosable.

Let O = (S, s0, Σ, δ, L) be an observer forA. We define
the strategyf(O) on finite runs ofGA ending in a Player 1
state by:f(O)(ρ) = L(δ(s0, π/Σ(tr(ρ)))). The intuition is
that we take the runρ in GA, take the trace ofρ (choices of
Player 1 and moves of Player 2) and remove the choices of
Player 1. This gives a run inΣ∗. The strategy for Player 1
for ρ is the set of events the observerO chooses to observe
after readingπ/Σ(tr(ρ)) i.e. L(δ(s0, π/Σ(tr(ρ)))).

Theorem 4 Let O be an observer s.t.A is (O, k)-dia-
gnosable. Thenf(O) is a trace-based winning strategy in
GA.

Proof: First f(O) is trace-based by definition. We have
to prove thatf(O) is winning. We denoteOut(G, f) the
set of outcomes i.e. the set of possible runs of a gameG

when the strategyf is played by Player 1 (see appendix A
for a formal definition ofOut(GA, f)). Assume on the
contraryf(O) is not winning. This implies that there is
a runρ in Out(GA, f(O)) as defined by equations (2–5).
Each part of the run given by equations (2–5) consists of
a choice of Player 1 (Xi move) followed by a number of

8

ρ = (q1
0 , 0), q2

0

X0−−→ (q1
0 , 0), q2

0 , X0

λ1
0−→ (q1

0(1), k0(1)), q2
0(1), X0 · · · (q

1
0(j), k0(j)), q

2
0(j), X0 · · ·

λ
n0
0−−→ (2)

(q1
1 , k1), q

2
1

X1−−→ (q1
1 , k1), q

2
1 , X1

λ1
1−→ (q1

1(1), k1(1)), q2
1(1), X1 · · · (q

1
1(j), k1(j)), q

2
1(j), X1 · · ·

λ
n1
1−−→ (3)

(q1
2 , k2), q

2
2 · · · (4)

(q1
n, kn), q2

n
Xn−−→ (q1

n, kn), q2
n, Xn · · · (q1

n(j), kn(j)), q2
n(j), Xn · · ·

λα

0−−→ (q1
n(α), kn(α)), q2

n(α), Xn (5)

ν = q1
0

λ1
0−→ q1

0(1)
λ2
0−→ · · ·

λ
n0
0−−→ q1

1

λ1
1−→ · · ·

λ
n1
1−−→ q1

2 · · · q
1
n

λ1
n−−→ · · ·

λα

n−−→ q1
n(α) (6)

ν′ = q2
0

λ1
0−→ q2

0(1)
λ2
0−→ · · ·

λ
n0
0−−→ q2

1

λ1
1−→ · · ·

λ
n1
1−−→ q2

2 · · · q
2
n

λ1
n−−→ · · ·

λα

n−−→ q2
n(α) (7)

moves by Player 1 (λj
i actions). The last state encoun-

tered inρ, (q1
n(α), kn(α)), q2

n(α), Xn is a losing state for
Player 1, which means thatkn(α) ≥ k, by definition of los-
ing states inGA. From the runρ, we can build two runs
ν andν′ defined by equations (6) and (7). By definition of
GA, eachλ

j
i is either a common visible action ofAk

1 and
A2 and it is inΣ, or a silent action (ε) i.e. it comes from
an action ofAk

1 or A2 that is not in the current set of visible
actionsXi. We can remove fromν (resp. ν′) the actions
ε that are obtained from an action ofA2 (resp. Ak

1) leav-
ing the state ofAk

1 (resp.A2) unchanged. Let̃ν andν̃′ be
the runs obtained this way. By definition ofGA, tr(ν̃) ∈
Faulty≥k(A) and tr(ν̃′) ∈ NonFaulty(A). We claim that
O(tr(ν̃)) = O(tr(ν̃′)). Indeed, each part of the runs from
q1
i · · · q

1
i+1 andq2

i · · · q
2
i+1 yields the same observation by

O: it is the sequence of eventsλj1 · · ·λjni
s.t. eachλjl

is a
letter of bothAk

1 andA2 and isXi. As there are two words
tr(ν̃) ∈ Faulty≥k(A) andtr(ν̃′) ∈ NonFaulty(A) with the
same observation,A is not (O, k)-diagnosable which con-
tradicts the assumption. Hencef(O) must be winning.
Conversely, with each trace-based strategyf of the
gameGA we can associate a transition systemO(f) =
(S, s0, Σ, δ, L) defined by:

• S = {π/Σ(tr(ρ)) | ρ ∈ Out(GA, f) and tgt(ρ) ∈
S1};

• s0 = ε;

• δ(v, ℓ) = v′ if v ∈ S, v′ = v.ℓ and there is a run

ρ ∈ Out(GA, f) with ρ = q0

X0−−→ q1
0

ε∗

−→ qn0

0

λ1−→

q1

X1−−→ q1
1

ε∗

−→ qn1

1

λ2−→ q2 · · · qk1

ε∗

−→ q
nk−1

k−1

λk−→ qk

with eachqi ∈ S1, q
j
i ∈ S2, v = π/Σ(tr(ρ)), and

ρ′ = ρ
Xk−−→ q1

k
ε∗

−→ qnk

k
ℓ
−→ qk+1 with qk+1 ∈ S1,

ℓ ∈ Xk.
δ(v, l) = v if v ∈ S andℓ 6∈ f(ρ);

• L(v) = f(ρ) if v = π/Σ(tr(ρ)).

Lemma 3 O(f) is an observer.

Proof: We first have to prove thatO(f) (more precisely
L) is well defined. Assumev = π/Σ(tr(ρ)) and v =
π/Σ(tr(ρ′)). As f is trace-based,f(ρ) = f(ρ′) and there is
unique value forL(v).

We also have to prove that the last requirement of Defi-
nition 4 is satisfied i.e. ifa 6∈ L(s) thenδ(s, a) = s. If ℓ 6∈
L(v), thenℓ 6∈ f(π/Σ(tr(ρ))) for anyρ s.t.v = π/Σ(tr(ρ))
becausef is trace-based. Thusδ(v, ℓ) = v.

Theorem 5 Letf be a trace-based winning strategy inGA.
ThenA is (O(f), k)-diagnosable.

Proof: AssumeA is not(O(f), k)-diagnosable. There are
two wordsν ∈ Faulty≥k(A) andν′ ∈ NonFaulty(A) s.t.
O(ν) = O(ν′). Assumeν = w−1λ0w0λ1w1 · · ·λnwn

and ν = w′
−1λ0w

′
0λ1w

′
1 · · ·λnw′

n with wi, w
′
i 6∈

O(f)(λ0λ1 · · ·λi) for i ≥ 0 andw−1, w
′
−1 6∈ O(f)(ε), and

λi+1 ∈ O(f)(λ0λ1 · · ·λi). We build a run inOut(GA, f)
as follows:

1. Player 1 chooses the setX0 = O(f)(ε) which is by
definition equal tof((q1

0 , 0), q2
0) where(q1

0 , 0), q2
0 is

the initial state of the game.

2. Player 2 chooses actions inw1 ∪w′
1. The game moves

throughS2 states because each action is an invisible
move. Finally Player 2 choosesλ0. The game reaches
a newS1-state(q1

1 , k1), q
2
1 .

3. from(q1
1 , k1), q

2
1 , the strategyf is to playX1 which by

definition isO(λ0). Thus Player 2 can play moves in
w2 ∪ w′

2 and finallyλ1

We can iteratively build a run inOut(GA, f) that reaches
a state(q1

n, kn), q2
n with kn ≥ k and thusOut(GA, f) con-

tains a losing run. Hencef is not winning which contradicts
the assumption. This way we conclude thatA is (O(f), k)-
diagnosable.

9

The result onGA (Appendix A) is that, if there is a win-
ning trace-based strategy for Player 1, then there is a most
permissive strategyFA which has finite memory. It can be
represented by a finite automatonSFA

= (W1⊎W2, s0, Σ∪
2Σ, ∆A) s.t. ∆A ⊆ (W1 × 2Σ × W2) ∪ (W2 × Σ × W1)
which has size exponential in the size ofGA. For a given
runρ ∈ (Σ∪ 2Σ)∗ ending in aW1-state, we haveFA(w) =
en(∆A(s0, w)).

5.3 Most Permissive Observer

We now define the notion of a mostpermissiveobserver
and show the existence of a most permissive observer for a
system in caseA is diagnosable.FA is the mapping defined
at the end of the previous section.

For an observerO = (S, s0, Σ, δ, L) we let L(ρ) be
the setL(δ(s0, ρ)). Given a runρ ∈ Runs(A), we recall
that O(ρ) is the observation ofρ by O. AssumeO(ρ) =
a0 · · ·ak. Let ρ = L(ε).ε.L(a0).a0. · · ·L(O(ρ)(k)).ak i.e.
ρ contains the history of whatO has chosen to observe at
each step and the events that occurred.

Let O : (Σε × 2Σ)∗ → 22
Σ

. O is the most permissive
observer for(A, k) if the following holds:

O = (S, s0, Σ, δ, L)
is an observer and

A is (O, k)-diagnosable
⇐⇒

∀w ∈ Σ∗

L(δ(s0, w)) ∈ O(w)

AssumeA is (Σ, k)-diagnosable. Then there is an observer
O s.t. A is (O, k)-diagnosable because the constant ob-
server that observesΣ is a solution. By Theorem 4, there is
a trace-based winning strategy for Player 1 inGA. As said
at the end of the previous section, in this case there is a most
permissive trace-based winning strategy which isFA.

Theorem 6 FA is the most permissive observer.

Proof: Let O = (S, s0, Σ, δ, L) be an observer such thatA

is (O, k)-diagnosable. We have to prove thatL(δ(s0, w)) ∈
FA(w) for any w ∈ Σ∗. By Theorem 4, the strat-
egy f(O) is a winning state-based strategy and this im-
plies thatf(O)(ν) ∈ FA(ν) for any runν of GA. By
definition of w, π/Σ(w) = w. By definition of f(O),
f(O)(w) = L(δ(s0, π/Σ(w))) = L(δ(s0, w)) and thus
L(δ(s0, w)) ∈ FA(w).

Conversely, assumeO is such that∀w ∈ Σ∗, L(s0, w) ∈
FA(w). We have to prove thatA is (O, k)-diagnosable.
Again, we build f(O). As before,f(O) is a winning
trace-based strategy inGA and thusO(f(O)) is such
that A is (O(f(O)), k)-diagnosable by Theorem 5. As-
sumeO(f(O)) = (S′, s′0, Σ, δ′, L′)). By construction of
O(f(O)), L′(δ′(s′0, w)) = f(O)(ρ) if w = π/Σ(tr(ρ)).
HenceO(f(O)) = O andA is (O, k)-diagnosable.

This enables us to solve Problem 5 and compute a finite
representation of the setO of all observers such thatA is
(O, k)-diagnosable iffO ∈ O.

ComputingFA can be done inO(2|GA|) (Appendix A).
The size ofGA is linear in|A| and exponential in the size
of Σ andk i.e. |GA| = O(|A|.2|Σ|.2k). This means that
computingFA can be done in exponential time in the size
of A and doubly exponential time in the size ofΣ andk.

Example 5 For the automatonA of Fig. 1, we obtain the
most permissive observerFA of Fig. 7. In the square states,
the observer chooses what to observe and in the round
states it moves according to what it observers. When the
system starts, it can choose either{a, b} or {a}. Once an
a has been observed it can choose any subset containing
b. When ab has been observed the observer can choose to
observe the empty set.

6 Conclusion and Future Work

In this paper we have addressed sensor minimization
problems in the context of fault diagnosis, using both static
and dynamic observers. We showed that computing the
smallest number of observable events necessary to achieve
diagnosis with a static observer is NP-complete: this re-
sult also holds in the mask-based setting which allows to
consider events that are observable but not distinguishable.
We then focused on dynamic observers and proved that,
for a given such observer, diagnosability can be checked
in polynomial time (as in the case of static observers). We
also solved the synthesis problem of dynamic observers and
showed that a most-permissive dynamic observer can be
computed in doubly-exponential time.

We are currently investigating the following directions:

• Problem 4 has not been solved so far. The major im-
pediment to solve it is that the reduction we propose in
section 5 yields a Büchi game. The algorithm we give
in appendix A does not work for Büchi games and can-
not be extended trivially.

• Problem 5 is solved in doubly exponential time. To
reduce the number of states of the most permissive ob-
server, we point out that onlyminimalsets of events we
need to observe are need. Indeed, if we can diagnose
a system by observing onlyA from some point on, we
surely can diagnose it using any supersetA′ ⊇ A. So
far we keep all the sets that can be used to diagnose
the system. We could possibly take advantage of the
previous property using techniques described in [4].

• Another line of work is to define a notion ofcost for
dynamic observers. This can be done and an optimal
observer can be computed as it is reported in [1].

10

0

1

1′

2 3

3′

4

5

6

7

8

{a, b}

{a}
a

b a

{b}

{a, b}

a

b

b

∅

{a}

a

{b}

b

{a, b}
ab

Figure 7. Most Permissive Observer for the Automaton A of Fig. 1

References

[1] Franck Cassez, Stavros Tripakis, and Karine Altisen.
Sensor minimization problems with static or dynamic
observers for fault diagnosis. Technical Report RI-
2007-1, IRCCyN/CNRS, 1 rue de la Noë, BP 92101,
44321 Nantes Cedes, France, January 2007.

[2] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya.
Supervisory control of discrete-event processes with
partial observations.IEEE Transactions on Automatic
Control, 33:249–260, 1988.

[3] R. Debouk, S. Lafortune, and D. Teneketzis. On an op-
timization problem in sensor selection.Discrete Event
Dynamic Systems, 4(12), November 2004.

[4] L. Doyen, K. Chatterjee, T.A. Henzinger, and J.-F.
Raskin. Algorithms for omega-regular games with im-
perfect information. InCSL: Computer Science Logic,
Lecture Notes in Computer Science 4207, pages 287–
302. Springer, 2006.

[5] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A
polynomial algorithm for testing diagnosability of dis-
crete event systems.IEEE Transactions on Automatic
Control, 46(8), August 2001.

[6] S. Jiang, R. Kumar, and H. E. Garcia. Optimal sensor
selection for discrete event systems with partial ob-
servation. IEEE Transactions on Automatic Control,
48(3):369–381, March 2003.

[7] P. Ramadge and W. Wonham. Supervisory control of
a class of discrete event processes.SIAM J. Control
Optim., 25(1), January 1987.

[8] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamo-
hideen, and D. Teneketzis. Diagnosability of discrete
event systems.IEEE Transactions on Automatic Con-
trol, 40(9), September 1995.

[9] Wolfgang Thomas. On the synthesis of strategies in
infinite games. InProc. 12th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’95),
volume 900, pages 1–13. Springer, 1995. Invited talk.

[10] J.N. Tsitsiklis. On the control of discrete event dy-
namical systems.Mathematics of Control, Signals and
Systems, 2(2), 1989.

[11] T. Yoo and S. Lafortune. On the computational com-
plexity of some problems arising in partially-observed
discrete event systems. InAmerican Control Confer-
ence (ACC’01), 2001. Arlington, VA.

11

A Results For Safety 2-Player Games

In this section we give results on games with partial ob-
servation where two players are playing, but Player 1 cannot
observe all Player 2 moves. The proofs of lemmas and the-
orems in this section are given in Appendix B of [1]. The
aim of Player 1 is to win but with atrace-basedstrategy
i.e. a strategy that is based on the set of moves that have
been observed. In each state of the game, it is either up
to Player 1 to play or to Player 2. The game starts in a
Player 1 state. Player 1 only plays one move (inΣ1) and
hands it over to player 2. Player 2 can play two types of
moves: invisible moves (ε is the invisible action) and visi-
ble moves (Σ2-actions). If Player 2 plays an invisible move
ε, it is again his turn to play. Otherwise if he plays a visible
move, the turn switches to Player 1. This setting is formally
defined by:

Definition 6 (Two-Player ε-Games) A two-playerε-game
G is a tuple(Q1 ⊎ Q2, q0, Σ1 ⊎ Σε

2, δ) with:

• Qi is a finite set of states for playeri, i = 1, 2;

• q0 ∈ Q1 is theinitial state of the game;

• Σi is a finite set of actions for playeri, i = 1, 2;

• δ ⊆ (Q1×Σ1×Q2)∪(Q2×{ε}×Q2)∪(Q2×Σ2×Q1)
is the transition relation.

We assume that the game is deterministic w.r.t Player1
moves, i.e. for allq1 ∈ Q1, σ1 ∈ Σ1 there is at most one
stateq2 ∈ Q2 such that(q1, σ1, q2) ∈ δ. For (q, a, q′) ∈ δ

we use the notationq
a
−→ q′ or q a q′. We let en(q) =

{σ | ∃q′ | δ(q, σ) = q′} i.e. the set of moves enabled in a
stateq. If G contains noε transitions,G is an alternat-
ing fully-observable two-player game (we use the term two-
player game in this case).

Definition 7 (Play, Trace) A play in G is a finite or infinite
sequence

ρ = q0ℓ1q1 · · · qnℓn+1qn+1 · · ·

such that for eachi, qi
ℓi+1

−−−→ qi+1. We writeq0

ℓ1ℓ2···ℓn−−−−−→
qn if q0ℓ1q1 · · · ℓnqn is a finite play inG. We let Runs(G)
be the set of plays inG and Runs∗(G) be the set of finite
plays. Runs∗i (G), i = 1, 2 are the sets of finite runs ending
in a Qi-state. Thetraceof ρ, denoted tr(ρ) is the sequence5

ℓ0ℓ1 · · · ℓn · · · .

We letρ(i) be the prefix ofρ up to stateqi, soρ(0) = q0,
ρ(n) = q0ℓ1q1 · · · qn, and so on.

5As ε also stands for the empty word, a trace does not containsε.

Definition 8 (Player 1 Strategy) A strategy for player1 is
a mappingf : Runs∗1(G) → Σ1. A strategyf is trace-based
if for all ρ, ρ′ ∈ Runs∗1(G), tr(ρ) = tr(ρ′) impliesf(ρ) =
f(ρ′). A strategyf is memorylessif tgt(ρ) = tgt(ρ′) implies
f(ρ) = f(ρ′).

Definition 9 (outcome) Given a strategyf for player1, the
outcomeOut(G, f) of the gameG under f is the set of
plays

ρ = q0ℓ1q1 · · · qnℓn+1qn+1 · · ·

such that for eachqi ∈ Q1, ℓi+1 = f(ρ(i)).

Definition 10 (Objective) An objectiveφ for Player 1 is a
subset of(Q1 ∪ Q2)

ω ∪ (Q1 ∪ Q2)
∗.

Given a pair (G, φ), a strategy f is winning if
Out(G, f) ⊆ φ. A stateq of G is winning if there is a
winning strategy fromq.

The usual control problem on two-playerε-games asks
the following:

Problem 6 (Control Problem)
INPUT: A two-playerε-gameG, an objectiveφ.
PROBLEM: Is there a winning strategy for(G, φ) ?

φ is a safety objective if there is a setF ⊆ Q1 ∪Q2 such
thatφ = Fω∪F ∗. If G is aε-game andφ a safety objective
we say that the pair(G, φ) is a safety game.F is the set of
safestates. To solve safety two-playerε-games we define
the theCpreoperator [9]:

Cpre(S) = {s ∈ Q1 | ∃σ1 ∈ Σ1 | δ(s, σ1) ∈ S} (8)

∪ {s ∈ Q2 | ∀σ2 ∈ Σε
2 | δ(s, σ2) ⊆ S} (9)

It is well-known [9] that iteratingCpre and computing the
fixpoint Cpre∗(F) gives the set of winning states6 of the
game. In caseG is finite this computation terminates and
can be done in linear time for safety games [9]. If the ini-
tial state of the gameq0 ∈ Cpre∗(F), there is a strategy for
Player 1 to win. Moreover for this type of gamesmemo-
rylessstrategy are sufficient to win. Indeed, as we can see
the state of the game,ε transitions are not really unobserv-
able (or invisible) and thus knowing the current state gives
some useful information. Moreover we can define amost
permissive strategy7 F : Q1 ∩ Cpre∗(F) → 2Σ1 \ ∅ by:
F(q) = {σ | δ(q, σ) ∈ Cpre∗(F)}. This is the most permis-
sive strategy in the following sense:f is a winning strategy
for (G, φ) iff for any ρ ∈ Runs∗1(G), f(ρ) ∈ F(tgt(ρ)), i.e.
every move defined byf is a move of the most permissive
strategy.
The problem we want to solve is the following:

6Notice that by definition ofCpre, Player 1 cannot win by refusing to
play.

7According to Definition 8, it is not a strategy as it prescribes a set of
moves for a given state instead of one move.

12

Problem 7 (Trace-Based Control)
INPUT: a gameG, an objectiveφ.
PROBLEM: Is there a trace-based winning strategy for
(G, φ) ?

This problem is more demanding than the usual Control
Problem 6 that asks only for a winning strategy for Player 1,
i.e. a strategy in which full observation of the state is as-
sumed. To solve Problem 7, we reduce it to a problem of a
fully-observable two player game.

We define the following operator forσ ∈ Σε
2, s ∈ Q2,

Next2(s, σ) = {s′ | s
ε∗

−→ s1

σ
−→ s′} (10)

It follows that if σ ∈ Σ2, Next2(s, σ) ⊆ Q1 and if σ = ε,
Next2(s, σ) ⊆ Q2. Let σ ∈ Σ1 andQ ⊆ Q1. We define

Next1(Q, σ) = {s′ | s′ = δ(s, σ) with s ∈ Q} (11)

We address Problem 7 whereφ is safety objective i.e.
φ = Fω ∪F ∗. To solve(G, φ), we build a fully-observable
two player game(GH , FH) (noε transitions) such that:

Theorem 7 There is a (standard) winning strategy in
(GH , FH) iff there is a trace-based winning strategy in
(G, F).

Definition 11 AssumeG = (Q1 ⊎ Q2, q0, Σ1 ⊎ (Σ2 ∪
{ε}), δ). The gameGH = (S, s0, Σ

′, ∆) is defined by:

• W = W1⊎W2 with W1 = (2Q1∪⊥1) are the Player 1
states,W2 = (2Q2 ∪ ⊥2) are Player 2 states;

• s0 = {q0},

• Σ′ = Σ1 ∪ Σu
2 whereu is a fresh name, andΣ1 is the

set Player 1 moves andΣu
2 the set of Player 2 moves;

• ∆ ⊆ (W1×Σ1×W2)∪(W2×Σu
2 ×W1) is defined by:

(S, σ, S′) ∈ ∆ iff one of the three conditions holds:

C1: S ⊆ Q1, σ ∈ Σ1 andS′ = Next1(S, σ) if for all
s ∈ S, σ ∈ en(s) and otherwiseS′ = ⊥2;

C2: S ⊆ Q2, σ ∈ Σ2, S′ = Next2(S, σ) andS′ 6= ∅;

C3: S ⊆ Q2, σ = u, Next2(S, ε) ∩ F 6= ∅ andS′ =
⊥1.

We letFH = {Q ∈ S |Q ⊆ F} i.e. FH be the set of safe
states forGH . ⊥1 and⊥2 are not safe states.(GH , FH) is a
safety game as well. Notice also thatGH is a turn-based two
player game in which the moves of the two players alternate.
The following fact holds as well:

Fact 1 By definitionGH is deterministic. Hence for any
word w ∈ (σ1 ∪ σu

2)∗, there is a unique runβ(w) =

s0

w
−→ s′ in GH with tr(β(w)) = w and a unique last state

∆(s0, w) = s′.

From the proof of Theorem 7 (see Appendix B of [1])
we obtain an algorithm for Problem 7 and as the size ofGH

is exponential in the sizeG:

Theorem 8 Problem 7 is in EXPTIME.

Given GH and FH we can compute the most permis-
sive strategyFH . GivenFH we define the mappingF on
Runs∗1(G): F(ρ) = FH(tgt(β(tr(ρ)))).

Theorem 9 F is the most permissive trace-based strategy
for G.

Corollary 1 The most permissive trace-based strategyF
for (G, φ) can be represented by an automaton which has
at most an exponential number of states.

This follows from the fact thatGH is exponential in the size
of G. The most permissive trace-based strategy is obtained
from GH by removing from each stateq the transitions that
are not inFH(q).

13

