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Abstract. In this paper, we address the problem of synthesiajmaguesystems

by selecting the set of observable events. We first investigate the casatiof
observability where the set of observable events is fixed a priori. In this context,
we show that checking whether a system is opaque and computing an optimal
static observer ensuring opacity are both PSPACE-complete problems. Next, we
introducedynamicpartial observability where the set of observable events can
change over time. We show how to check that a system is opaque w.r.t. a dynamic
observer and also address the corresponding synthesis problem: given a system
G and secret stateS, compute the set of dynamic observers under wifids
opaque. Our main result is that the synthesis problem can be solved in EXPTIME.

1 Introduction

Security is one of the most important and challenging aspects in designing services de-
ployed on large open networks like Internet or mobile phones, e-voting systems etc. For
such services, naturally subject to malicious attacks, methods to certify their security
are crucial. In this context there has been a lot of research to develop formal methods
for the design of secure systems and a growing interest in the formal verification of
security properties [1-3] and in their model-based testing [4—8]. Security properties are
generally divided into three categorigstegrity, availability and confidentiality We

focus here on confidentiality and especially information flow properties. We use the
notion of opacitydefined in [9] formalizing the absence of information flow, or more
precisely, the impossibility for an attacker to infer the truth of a predicate (it could be
the occurrence in the system of some particular sequences of events, or the fact that
the system is in some particular configurations). Consider a predicater the runs

of a system7 and an attacker observing only a subset of the events &f/e assume

that the attacker knows the modg! In this context, the attacker should not be able to
infer that a run ofG satisfiesp. The secretp is opaque foiGG with respect to a given
partial observation if for every run a@¥ that satisfies, there exists a run, observation-

ally equivalent from the attacker’s point of view, that does not satisfin such a case,

the attacker can never be sure that a rugrcfatisfyingy has occurred. In the sequel,

we shall consider a secretcorresponding to a set of secret states. Finally, note that
the definition of opacity is general enough to define other notions of information flow
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like trace-based non-interference and anonymity (see [9]). Note alsedbicy[10]
can be handled as a particular case of opacity (see Section 3) and thus our framework
applies to secrecy as well.

Related Work. Methods for the synthesis of opaque systems have already been inves-
tigated from the supervisory control point of view. In these frameworks, some of the
events are uncontrollable and the set of events an external attacker can observe is fixed.
If the system is7, the approach is then testrict G (remove some of its behaviors) us-

ing a supervisor (or controllet), in order to render a secrgtopaque in the supervised
systemC(G). In [11], the authors consider several secrets and attackers with differ-
ent sets of observable events. They provide sufficient conditions to compute an optimal
controller preserving all secrets assuming that the controller has complete knowledge
of the system and full control on it. In [12, 13], the authors consider a control problem
under partial observation and provide algorithms to compute the optimal controller en-
suring the opacity of one secret against one attacker. Other works on the enforcement
of opacity by means of controllers can be found in [14]. Note that these approaches are
intrusive in the sense that the systéhihas to be modified.

Our Contribution. In this paper, instead of restricting the behavior of the system by
means of a controlle® which disables some actions, we considgnamicobservers

that will dynamically change the set of observable events in order to ensure opacity.
Compared to the previous approaches related to the supervisory control theory, this
approach is not intrusive in the sense that it does not resiriotit only hides some
events at different points in the course of the execution of the system. Indeed, one can
think of a dynamic observer aditter (See Figure 1) which is added on top@f

ue X* ; D(u)
SystemG ——» Filter D —  Attackerid

Fig. 1. Architecture Filtering out Sequences of Eventsin

The main contributions of this paper are two-fold. First, we extend the notion of opacity
for static observers (i.e., the natural projection) to dynamic obsefwaks show how

to check opacity when the dynamic observer is given by a finite automaton. Second we
give an algorithm to compute the set of all dynamic observers which can ensure opacity
of a secretp for a given systend-. Finally we consider an optimization problem which

is to compute a least expensive dynamic observer.

The notion ofdynamic observersias already introduced in [15] for the fault di-
agnosis problem. Notice that the fault diagnosis problem and the opacity problems are
not reducible one to the other and thus we have to design new algorithms to solve the
opacity problems under dynamic observations.

8 At this point, it should be mentioned that we assume the attacker has not only a perfect knowl-
edge of the system but also of the observer.



Organization of the Paper.In Section 2 we introduce some notations for words, lan-
guages and finite automata. In Section 3 we define the notion of opacity with static
observers and show that deciding opacity for finite automata is PSPACE-complete. We
also consider the optimization problem of computing a largest set (cardinality-wise) of
observable events to ensure opacity and we show that this problem is PSPACE-complete
as well. Section 4 is the core of the paper and considers dynamic observers for ensuring
opacity. We prove that the set of all observers that ensure opacity can be computed in
EXPTIME. In Section 5 we briefly discuss how to compute optimal dynamic observers.
Omitted proofs and details are given in Appendix or available in the extended version
of this paper [16].

2 Notation & Preliminaries

Let X be a finite alphabetL* is the set of finite words oveX’ and contains thempty
word e. A languageL is any subset of*. Given two wordsy € X* andv € X*, we
denoteu.v the concatenation af andv which is defined in the usual walu| stands
for the length of the word: (the length of the empty word is zero). We IBt* with
n € N denote the set of words of lengthover X. Given X; C X, we define the
projectionoperator on finite word¥s,, : X* — X7, that removes in a sequenceXf
all the events that do not belong X . Formally, Ps;, is recursively defined as follows:
Ps,(e) = eandforh € X s € X*, Px,(s.\) = Py, (s).Aif A € Xy and Py, (s)
otherwise. Letk’ C X* be a language. The definition of projection for words extends
to languagesPs, (K) = {Px,(s) | s € K}. Conversely, letk’ C X7. Theinverse
projectionof K is Pg}zl (K) ={s € X*| Py, (s) € K}. We omit the subscripE; in
the sequel when it is clear from the context.

We assume that the system is given byaatomaton which is a tupl€Q, go, X, 9,
F) with @ a set of statesy, € @ is the initial state§ : Q x X — 2% is the transition
relation andF’ C @ is the set ofacceptingstates. If@ is finite, G is afinite automaton

(FA). We write g 2, wheneverd(q,\) # (. An automaton icompleteif for each

A € ¥ and eachy € Q, ¢ 2. G is deterministic if for all; € @, A € X, |5(q, \)| < 1.

A run p from stateqy in G is a finite sequence of transitiong 2, q1 22,

q2 - qi—1 i’ i 4n-1 /\—n) Gn St Aip1 € Y andgiy1 € (S(Qi,)\i+1) for 0 <
i < n — 1. Thetrace of the runp is tr(p) = A1.\2--- \,,. We letlast(p) = ¢,, and
the length ofp, denoted|p|, is n. Fori < n we denote byp[i] the prefix of the run

p truncated at state;, i.e., p(i) = qo 2, g1 Qi1 2, q;- The set of finite runs
from ¢o in G is denotedRungG). A word u € X* is generatedby G if u = tr(p) for
somep € RungG). Let L(G) be the set of words generated &y The wordu € X*
is accepteddy G if u = tr(p) for somep € RungG) with last(p) € F. Thelanguage
of (finite) wordsL (G) of G is the set of words accepted b¥ If G is a FA such that
F = @ we simply omitF" in the tuple that defines.

In the sequel we shall use tRestoperator defined by: IeX C @, Pos{X,¢) = X
and foru € X*, A € X, Pos{X, u.\) = Ugeposx,u)0(q, A). We also letPost X, L) =
UuerPos( X, u) for a non empty languagg.



The product of automata is defined in the usual way: the product automaton rep-
resents the concurrent behavior of the automata with synchronization on the common
events. GivenG; = (Q1,q4, 21,61, F1) andGe = (Q2, 43, Yo, 2, F2) we denote
(G1 x G4 the product of7; andG,.

3 Opacity with Static Projections

In the sequel, we leF = (Q, g0, X, J, F') be a non-deterministic automaton oveéand

Y, C X. Enforcing opacity aims at preventing an attaddefrom deducing confiden-

tial information on the execution of a system from the observation of the evefts in
Given a run ofG with traceu, the observation of the attackiris given by the static
natural projectiorPy;_ (u) following the architecture of Figure 1 witP(u) = Px_(u).

In this paper, we shall consider that the confidential information is directly encoded in
the system by means of a set of stat&s If the current trace of arun is € L(G), the
attacker should not be able to deduce, from the knowledd&-of«) and the structure

of G, that the current state of the system isfin As stressed earlier, the attacker

has full knowledge of the structure ¢f (he can perform computations usiGglike
subset constructions) but only has a partial observation upon its behaviors, namely the
observed traces it¥}. The set of¥,-tracesof G is Try (G) = Ps, (L(G)). We
define the operatdf] s, by: [e]s, = {¢} and fory € X% and\ € X, [u.\]s, =
Pgl(ﬂ))\ N L(G). In other wordsy € [u.\] s, iff (1) the projection ofu is p. A and

(2) the sequence ends with an observable\* event and (3u € L(G).

Remark 1.We suppose thdf is reacting faster than the system. Therefore, when an
observable event occuild,can compute the possible set of state§'dfeforeG moves
even ifG can do an unobservable action. o

Next we introduce the notion of opacity defined in [9]. Intuitively, a set of statés
said to beopaquewith respect to a paifG, X,) if the attackei/ can never be sure that
the current state aff is in the setF'.

Definition 1 (State Based Opacity)Let F' C . The secref’ is opaquewith respect
to (G, X,) ifforall € Trxs, (G), Post{qo}, [1]=,) € F.

We can extend Definition 1 to a (finite) family of sefis= { Fy, F», - - - , F}, }: the secret
F is opaquewith respect tq G, X, if for eachF' € F, F is opaque W.r.t{(G, X,).
This can be used to express other kinds

of confidentiality properties. For exam- \/9\

ple, [10] introduced the notion secrecy b qs — G5 i) 9% O ab
of a set of stateg". Intuitively, F' is not QV b

secretw.r.t. G and X, whenever after an a a

b
observationy, the attacker either knows (%0 =\ ¢ )= © —{ @ [ D ab

that the system is i’ or knows that it

is not in F'. Secrecy can thus be han- Fig. 2. State based opacity illustration
dled considering the opacity w.r.t. a fam-

ily {F,Q\ F}. Inthe sequel we consider only one set of stdemnd, when necessary,
we point out what has to be done for solving the problems with family of sets.

4 Equivalently, the secret can be given by a regular languageXVesee [16].



Example 1.Consider the automato® of Figure 2, withY, = ¥ = {a, b}. The secret
is given by the stateB' = {¢2, ¢5}. The secreF’ is certainly not opaque with respect
to (G, X)), as by observing a track*.a.b, the attackei/ knows that the system is in a
secret state. Note that he does not know whethegit & ¢; but still he knows that the
state of the system is ifi. O

In the sequel we shall focus on variations of the State Based Opacity Problem:

Problem 1 (Static State Based Opacity Problem).
INPUT: A non-deterministic FAG = (Q, qo, X, 6, F') and X, C X.
PROBLEM: Is F' opaque w.r.t(G, X,) ?

3.1 Checking State Based Opacity

In order to check for the opacity df w.r.t. (G, X,), we first introduce the classical
notion of determinization via subset construction adapted to our definition of opacity:
Det,(G) = (X, Xo, 2o, A, F,) denotes the deterministic automaton given by:

- X C29\ 0, Xo ={q} andF, = 27,
— given\ € X, if X’ = Pos{ X, (X' \ X,)*.\) # 0 thenA(X,\) = X"'.

Checking whethe¥' is opaque w.r.t(G, X,) amounts to checking whether a state in

F, is reachable. To check opacity for a fam{ly, F, - - - , Fi. }, we defineF, to be the
set2fr U 2f2 U ... U 2% (as pointed out before, this enables us to handle secrecy).
The previous construction shows that opacity on non-deterministic FA can be checked
in exponential time. Actually, checking state based opacity for (non-deterministic) FA
is PSPACE-complete. Given a F& over X' and F' the set of accepting states, the
(language) universality problem is to decide whethgr(G) = X™*. If not, thenG

is not universal. Checking language universality for non-deterministic FA is PSPACE-
complete [17] and Problem 1 is equivalent to universality.

Theorem 1. Problem 1 is PSPACE-complete for non-deterministic FA.

Proof. We assume tha¥ is complete i.e.L(G) = X*. Note that[u]x = u. Now, G
is not universal iff there exists € X* such thatos({¢}, [u] =) C Q \ F. With the
definition of state based opacity, takiag = X', we have:

Q \ Fis notopaque W.rt(G, YY) < 3Ju € X*s.t. Pos({qo}, [1]s) CQ\ F. O

PSPACE-easiness was already known and follows from a result in [18]: the model-
checking problem for a temporal logics which can specify security properties is proved
to be PSPACE-complete.

3.2 Maximum Cardinality for Static Projections

If a secret is opaque w.r.t. a set of observable ev&htst is worthwhile noticing that

it will still be opaque w.r.t. any subset df,. It might be of interest to hide as few
events as possible from the attacker still preserving opacity of a secret. Indeed, hiding
an event can be seen as energy consuming or as limiting the interactions or visibility



for users of the system (and some of them are not malicious attackers) and thus should
be avoided. Given the set of everifsof G, we can check whether the secret is opaque
w.rt. X, C Y. In that case, we may increase the number of visible letters and check
again if the secret remains opaque. This suggests the following optimization problem:

Problem 2 (Maximum Cardinality of Observable Events).
INPUT: A non-deterministic FAG = (Q, qo, >, 6, F') andn € Ns.t.n < |X].
PROBLEMS:

(A) Isthere any”, C X' with | X,| = n, such that" is opaque w.r.t(G, X,) ?
(B) If the answer to (A) is “yes”, find the maximumy such that there exists, C X
with | X,| = ng and F is opaque w.r.t(G, ).

Theorem 2. Problem 2.(A) and Problem 2.(B) are PSPACE-complete.

Proof. PSPACE-easiness follows directly as we can guess &seatith |X,| = n

and check in PSPACE whethét is opaque w.r.t(G, X,). Thus Problem 2.(A) is in
NPSPACE and thus in PSPACE. PSPACE-hardness is also easy because takihy
amounts to checking thdt is opaque w.r.t(G, X) which has been shown equivalent

to the universality problem (proof of Theorem 1).

To solve Problem 2.(B) it suffices to iterate a binary search and thus Problem 2.(B)
is also in PSPACE. To see it is PSPACE-complete, to check whedthisr opaque
w.r.t. (G, X)), it suffices to solve Problem 2.(B) and then check whethes |X|. O

4 Opacity with Dynamic Projection

So far, we have assumed that the observability of events is given a priori and this is why
we used the term static projections. We generalize this approach by considering the
notion of dynamic projectiongncoded by means afynamic observeras introduced

in [15]. Dynamic projection allows us to render unobservable some events after a given
observed trace (for example, some outputs of the system). To illustrate the benefits of
such projections, we consider the following example:

Example 2.Consider again the automato@@ of Example 1, Figure 2, wheré' =
{q2,q5}. With X, = X = {a,b}, F is not opaque. If eithe®’, = {a} or X, = {b},

then the secret becomes opaque. Thus if we have to define static sets of observable
events, at least one event will have to be permanently unobservable. However, the less
you hide, the more important is the observable behavior of the system. Thus, we should
try to reduce as much as possible the hiding of events. We can be more efficient by us-
ing adynamicprojection that will render unobservable an event only when necessary.
Indeed, after observing®, the attacker knows that the system is in the initial state.
However, if a subsequent” follows, then the attacker should not be able to observe

“b" as in this case it could know the system is in a secret state. We can then design a
dynamic events’s hider as follows: at the beginning, everything is observable; when an

a” occurs, the observer hides any subsequebitdccurrences and permits only the

observation of 4”. Once an “a” has been observed, the observer releases its hiding
by letting both ‘a” and “ b” be observable again. o



4.1 Opacity Generalized to Dynamic Projection

We now define the notion of dynamic projection and its associated dynamic observer.

Dynamic Projections and Observer#. dynamic projection is a function that will de-
cide to let an event be observable or to hide it, thus playing the role of a filter between
the system and the attacker to prevent information flow (see Figure 1).

Definition 2. A dynamic observability choics a mappingl” : £* — 2*. The (obser-
vation-basedpynamic projectiorinduced byT" is the mappingD : X* — X* defined
by D(e) =¢,and forallu € ¥* and allX € X,

D(u.\) = D(u).A if XeT(D(u)) and D(u.\) = D(u) otherwise. (1)

Assuming that: € X* occurred in the system ande X* has been observed by the
attacker i.e... = D(u), then the events of'(u) are the ones currently observable.
Note that this choice does not change until an observable event occurs. Givert,
D~Y(p) = {u € X* | D(u) = pu} is the set of sequences that project omto

Example 3.A dynamic projectiorD : X* — X* corresponding to the one of Exam-
ple 2 can be induced by the dynamic observability ch@icefined byl'(u) = {a} for
all u € b*.a andT (u) = {a, b} for all the other sequencesc X*. o

Given a FAG and a dynamic projectioP, we denote b¥'rp (G) = D(L(G)), the set
of observed traces. Conversely, giver 17'rp(G), the set of word§u] p of G that are
compatible withy is defined by:

[elp = {e} andforuc £, A€ X : [u\]p = D™ (). AN L(G).

Given two different dynamic projection®; and Dy and a systend: over Y, we say
that D, and D- are G-equivalent, denote®; ~¢ Ds, whenever for allu € L(G),

D1 (u) = Do (u). The relation~¢ identifies two dynamic projections when they agree
on L(G); they can disagree on other wordsaii but since they will not be generated
by G, it will not make any difference from the attacker point of view. In the sequel we
will be interested in computing the interesting part of dynamic projections givemd
thus will compute one dynamic projection in each class.

Opacity with Dynamic ProjectionWe generalize Definition 1 by taking into account
the new observation interface given by

Definition 3. Given a FAG = (Q, qv, X, 9, F'), F' is opaque with respect {@~, D) if

Vi € Trp(G), Post{qo}, [ulp) £ F. )

Again, this definition extends to family of sets. We say thais avalid dynamic
projection if (2) is satisfied (i.e., whenevEris opaque w.r.t{G, D)) and we denote by
D the set of valid dynamic projections. Obvioushii, ~+ Ds, thenD; is valid if and
only if D4 is valid. We denote bf.., the quotient set gD by ~¢.



Remark 2.Let Y, C X, then if D is a dynamic projection that defines a constant map-
ping making actions i, always observable (and the others always unobservable),
we haveD(u) = Py, (u) and we retrieve Definition 1. The property of secrecy can be
extended as well using dynamic projection. o

In the sequel, we shall be interested in checking the opacify wfr.t. (G, D) or
to synthesize such a dynamic projectibhensuring this property. In Section 3, the
dynamic projection was merely the natural projection and computing the observational
behavior of G was easy. Here, we need to find a characterization of these dynamic
projections that can be used to check opacity or to enforce it. To do so, we introduce
the notion of dynamic observer [15] that will encode a dynamic projection in terms of
automata.

Definition 4 (Dynamic observer).A dynamic observes a complete deterministic la-
beled automatol¥ = (X, zg, X, d,, ") whereX is a (possibly infinite) set of states,
xo € X isthe initial state. Y is the set of input events, : X x X — X is the transition
function (a total function), and” : X — 2% is a labeling function that specifies the set
of events that the observer keeps observable at stafée require that for all € X
andforallx € X, if A ¢ I'(x), thend,(z, ) = z, i.e., if the observer does not want
an event to be observed, it does not change its state when such an event occurs.

We extend), to words of X* by: d,(q, e) =

b
(bl (bl a(l g and foru € X* A € X, d,(q,u.\) =
—(1 a 9 a 3 3,(80(q,u), A). Assuming that the observer

is at stater and an evenf occurs, it out-

putsA whenever\ € I'(z) or nothing €) if

A ¢ I'(xz) and moves to stat&,(x, ). An

Fig. 3. Example of a Dynamic Observerobserver can be interpreted as a functional
transducer taking a stringe X* as input, and producing the output which corresponds

to the successive events it has chosen to keep observable. An example of dynamic ob-
server is given in Figure 3. We now relate the notion of dynamic observer to the one of
dynamic projection.

r@) ={a,b} I'2)={a} I'3)={a,b}

Proposition 1. LetO = (X, zg, X, d,, I") be an observer and defii@y by: Do (e) =
g,and for allu € X*, Do(u.\) = Do(u).Nif A € I'(0,(x0,u)) and D (u) other-
wise. TherD is a dynamic projection. In the sequel, we wifitel o for [u] p, -

Proof. To prove thatD» defined above is a dynamic projection, it is sufficient to exhibit
a dynamic observability choicE : X* — 2* and to show that (1) holds. L&t(u) =
I'(0p(z0, Do(w))). It is easy to show by induction that(z,,u) = d,(z,, Do(u))
becausé,(xz,A\) = z when\ ¢ I'(x). We can then defin®(u) = I'(6,(x,,u)) and
the result follows from this remark. O

Proposition 2. Given a dynamic projectio® induced byT’, letOp = (X*,¢, X, 0p,
T) wheredp (w, \) = D(w.\). ThenOp is a dynamic observer.

Proof. Op is complete and deterministic by construction. Moreover after a sequence
if D(u.\) = D(u) thendp(u, \) = u. O



Note that there might exist several equivalent observers that encode the same dynamic
projection. For example, the observer depicted in Figure 3 is one observer that encodes
the dynamic projection described in Example 3. But, one can consider other observers
obtained by unfolding an arbitrary number of times the self-loops in states 1 or 3. Fi-
nally, to mimic the language theory terminology, we will say that a dynamic projection

D isregularwhenever there exists a finite state dynamic obsévsuch thatDo = D.

To summarize this part, we can state that with each dynamic projettiove can as-
sociate a dynamic observélp such thatD = Dy ,,. In other words, we can consider

a dynamic projection or one of its associated dynamic observers whenever one repre-
sentation is more convenient than the other. If the dynamic proje®iderived from

O is valid, we say tha®) is avalid dynamic observer. In that case, we will say tha
opaque w.r.t(G, ©) and we denote b¥) 5S(G) the set of all valid dynamic observers.

4.2 Checking Opacity with Dynamic Observers

The first problem we are going to address consists in checking whether a given dynamic
projection ensures opacity. To do so, we assume given a dynamic observer which defines
this projection map. The problem, we are interested in, is then the following:

Problem 3 (Dynamic State Based Opacity Problem).

INPUT: A non-deterministic FAG = (Q, g0, X, 9, F') and a dynamic observer
O = (X,l‘o,E,éo,F).

PROBLEM: Is F' opaque w.r.t(G, O) ?

We first construct an automaton which represents what an attacker will see under the
dynamic choices of observable events mad&hylo do so, we define the automaton
G®0=(QxX,(q,x0), Y U{7},0,F x X)wherer is a fresh letter not irt” and

¢ is defined for each € X' U {7}, and(q,z) € Q x X by:

= 0((q,x),A) =0 (g, \) x {0o(z, \) }if X\ € I'(x);
- 6((g:2),7) = (Unex\r@da (g, N) x {z}.

Proposition 3. F'is opaque w.r.t(G, O) iff F' x X is opaque w.rt(G ® O, X).

Proof. Letu € Tro(G) be atrace observed by the attacker. We prove the following by
induction on the length qi:

q € Post ({0}, [1lo) <= (¢,2) € Postgo({(q,20)}, [1] =) for somer € X.

If © = ¢, the result is immediate. Assume thét= p.\. Letq € Post:({q}, [1']o).

By definition of [1']o we havegy-5¢'-%¢" >q with u € lelo, vod € [uNo.
By induction hypothesis, it follows thadt’, d,(xo,u)) € Postigo({(q0,z0)}, [1t] =)
whered, (zg, u) is the (unique) state ab after readingu. Then, there exists a word
w € (¥ U {r})* such thatPs(w) = u and (qo,z0)—(q’, do(z0,u)) is a run of
G ® O. Assumev = v1.02.--- .,k > 0. As O(u.v) = O(u) , we must have
v; € I'(dp(xo,u.v1.---.v;)) Wwhenl < ¢ < k. Hence, by construction aff ® O,
there is a sequence of transitiongiGne O of the form

(ql?éo(l‘O)u)> L) 50(1‘071'6'1]1) L) e L ( /1760(1‘0)”"0))



with A € I'(64(20,u.v)). Thus,(qo, z0) — (¢, 0(z0,u)) T, (g, 00(uv.N)) is
arun of G ® O with Ps(w.7*.)\) = p.\ = p'. This implies(q, d,(xg,u.v.\)) €
Post:eo ({(90,%0)}, ['] =). For the converse if we have a sequence thnsitions in
G ® O, they must originate from actions @ which are not observable. O

The previous result is general, andJfis a FA we obtain the following theorem:

Theorem 3. For finite state observers, Problem 3 is PSPACE-complete.

Proof. As the size of the product ® O is the product of the size @F and the size of

O and opacity can be checked in PSPACE, PSPACE-easiness follows. Now, checking
state based opacity with respect(@, X') can be done using a simple observer with
one state which always lef observable and PSPACE-hardness follows. O

As Proposition 3 reduces the problem of checking opacity with dynamic observers to
the problem of checking opacity with static observers, Theorem 3 extends to family of
sets (and thus to secrecy).

4.3 Enforcing Opacity with Dynamic Projections

So far, we have assumed that the dynamic projection/observer was given. Next we will
be interested isynthesizing@ne in such a way that the secret becomes opaque w.r.t. the
system and this observer.

Problem 4 (Dynamic Observer Synthesis Problem).
INPUT: A non-deterministic FAG = (Q, qo, X, 6, F).
PROBLEM: Compute the set of valid dynamic observér8S(G)°.

Deciding the existence of a valid observer is trivial: it is sufficient to check whether
always hidingX is a solution. Moreover, note th&5S(G) can be infinite. To solve
Problem 4, we reduce it to a safety 2-player game. Player 1 will play the role of an
observer and Player 2 what the attacker observes. Assume the autdrhasonbe in

any of the states = {q1, 2, - - , ¢» }, after a sequence of actions occurred. A round of
the game is: given, Player 1 chooses which letters should be observable nexti.e., a set
t C X then it hands it over to Player 2 who picks up an observable lattert; this
determines a new set of stat@xcan be in aftep, and the turn is back to Player 1. The
goal of the Players are defined by:

— The goal of Player 2 is to pick up a sequence of letters such that the set of states
that can be reached after this sequence is includéd ihPlayer 2 can do this, then
it can infer the secref'. Player 2 thus plays @achability gamerying to enforce a
particular set of states, sd3ud (the states in which the secret is disclosed).

— The goal of Player 1 is opposite: it must keep the game in a safe set of states where
the secret is not disclosed. Thus Player 1 playpsif@ty gamerying to keep the
game in the complement set Blud.

5 Our aim is actually to be able to generate at least one observer for each representatiyg of
thus capturing all the interesting dynamical projections.



As we are playing a (finite) turn-based game, Player 2 has a strategy to eBfadce

iff Player 1 has no strategy to keep the game in the complement #gtdbfturn-based
finite games ardetermined19]).

We now formally define the 2-player game and show it allows us to obtain a finite
representation of all the valid dynamic observers.Het (S U S, so, M1 U Ma, d)

be the deterministic game automaton derived fi@rand given by:

— S; = 2@ is the set of Player 1 states afgl = 29 x 2* the set of Player 2 states;
— the initial state of the game is the Player 1 state= {qo};
— Player 1 will choose a set of events to hidelihthen Player 1 actions are in the
alphabet)/; = 2* and Player 2 actions are M, = X,

— the transition relatioty C (S7 x My x Sa) U (S2 x My x Sy) is given by:

e Player 1 moves (observable eventsy & Sq,¢t C X, thendg (s, t) = (s, t);

e Player 2 moves (observed events)dft) € S, A € t and

s’ = Post(s, (X \ t)*.\) # 0, thendy ((s,t),\) = 5.

Remark 3.If we want to exclude the possibility of hiding everything for Player 1, it
suffices to build the gam# with this constraint on Player 1 moves i.€s € S;, and

t#£0,6m(s,t) = (s,t). o

We define the set oBad states to be the set of Player 1 states.t. s C F. For

a family of setsFy, Fs, - - - , Fi,, Bad is the set of state®®™ U 2f2 U ... U 2Fk, Let
Runs(H),i = 1,2 be the set of runs off that end in a Player state. Astrategyfor
Playeri is a mappingf; : Runs(H) — M, that associates with each run that ends
in a Playeri state, the new choice of PlaygrGiven two strategieg, f», the game

H generates the set of ru@utcoméf,, fo, H) combining the choices of Players 1
and 2 w.r.t.f; and f>. f1 is awinning strategyfor Playing 1 in H for avoiding Bad

if for all Player 2 strategiegs, no run of Outcoméfy, f», H) contains aBad state.

A winning strategy for Player 2 is a strategly s.t. for all strategyf; of Player 1,
Outcoméfi, f», H) reaches &ad state. As turn-based games are determined, either
Player 1 has a winning strategy or Player 2 has a winning strategy.

We now relate the set of winning strategies for Player Hito the set of valid dynamic
projections. LetP,, (0) = Px(tr(o)) for a runp of H. The proof of the following
Proposition 4 is given in Appendix.

Definition 5. Given a dynamic projectio®, we define the strategfy such that for
everyp € Runs(H), fp(o) = Tp (P, (0))-

Proposition 4. Let D be a dynamic projectiorD is valid if and only iffp is a winning
strategy for Player 1 ind.

Given a strategyf for Player 1 inH, for all x € X*, there exists at most one run
o0, € Outcome( f, H) such thatPyy, (tr(e,)) = p.

Definition 6. Let f be a strategy for Player 1 ii/. We define the dynamic projection
Dy induced by the dynamic observability choifg : X* — 2% given by:Ty(u) =
f(ou) if g, isin Outcomef, H) andTs(u) = X otherwise.



Notice that wherp,, is not inOutcoméf, H), it does not really matter how we define
Ty because there is nowotd e L(G) s.t.;p = Dy(w).

Proposition 5. If f is a winning strategy for Player 1 iff, thenD; is a valid dynamic
projection.

Proof. Applying the construction of Definition 5 yield§,, = f. Sincef is a winning
strategy, by Proposition 4, we get thay is a valid dynamic projection. O

Notice that we only generate a representative for each of the equivalence classes induced
by ~4. However, an immediate consequence of the two previous propositions is that
there is a bijection between the set of winning strategies of Player Dand

4.4 Most Permissive Dynamic Observer

We now define the notion ahost permissivealid dynamic observers. For an observer

O =(X,x,,X,0,,I') andw € X*, recall thatl"(d,(z,, w)) is the set of events th&?
chooses to render observable after obseruingssume thatv = A; Ao - - - \,. Letw =

I'(xo). M1.T(06(xo, w[1])). Ao T (00 (20, w[2])) - - - M- T (0o (20, wk])) i.€., W cONtains

the history of whatD has chosen to observe at each step and the next observable event
that occurred after each choice.

Definition 7. LetO* : (2¥.5)* — 22" The mapping)* is themost permissive valid
dynamic observérensuring the opacity of if the following holds:

0= (X,z,,X%,0,,1)is avalid observerk—= Yw € L(G), I'(§,(x0, w)) € O*(w).

The definition of the most permissive valid observer states that any valid obg2rver
must choose a set of observable eveni®@ifw) on inputw; if an observer chooses its
set of observable events @*(w) on inputw, then it is a valid observer.

Theorem 4. The most permissive valid obserné@®t can be computed in EXPTIME.

Proof. The detailed proof is given in Appendix. For a sketch, the most permissive valid
dynamic observer is obtained using the most permissive winning strategy in the game
H. Itis well-known result [20] that for a finite game, if there is a winning strategy, there

is a memoryless most permissive one. Moreover whether there is a winning strategy can
be decided in linear time in the size of the game. As the siZé of exponential in the

size of G and X the result follows. O

We let 7 be the automaton representing the most permissive observer. Theorem 4
states thatFy can be used to generate any valid observer. In particular, given a finite-

memory winning strategy, the corresponding valid observer is finite and thus its as-
sociated dynamic projection is regular. An immediate corollary of Theorem 4 is the

following:

8 Strictly speaking®* is not an observer because it maps to sets of sets of events whereas
observers map to sets of events. Still we use this term because it is the usual terminology in
the literature.



Corollary 1. Problem 4 is in EXPTIME.

Example 4.To illustrate this section, we consider the following small example. The sys-
tem is depicted by the automaton in Figure 4(a). The set of secret states is reduced to the
state (2). Figure 4(b) represents the associated game automaton. The states of Player 1

(a): The Automator 1.b l.a 12 e — 12.b
Tos b
1 N
{a} a' A
I(z1) = {a} {b} RN
! Ay
— T1 b 1 \
D —{ 1 2.a 2.b
4 \\ LR w~
1 1
a ! * {a, b} AN )
a,b, . {0}
1 \\ {a} \\ 1
1 S N 1
Z2 a,b ! 4 a,b
© 2.ab lab------- Y 2
I'(z2) = {a, b} N .-
(c): A Finite Observer {a,b}

(b): The Game{

Fig. 4. Most Permissive Dynamic Observer

are represented by circles whereas the ones of Player 2 are represented by squares. The
only bad states is the state (2). The most permissive valid dynamic observer is obtained
when Player 1 does not allow transitidm, b} to be triggered in state (1) (otherwise,
Player 2 could choose to observe either event a or b and in this case the game will
evolve into state (2) and the secret will be revealed). The dashed lines represents the
transitions that are removed from the game automaton to obtain the most permissive
observer. Finally, Figure 4(c) represents a valid obser¢egenerated from the most
permissive observer with the memoryless strafgdy = {a} and f(12) = {a,b}. ©

5 Optimal Dynamic Observer

Among all the possible observers that ensure the opacity of the secret, it is worth-
while noticing that some are better (in some sense) than other: they hide less events
on average We here define a notion of cost for observers which captures this intu-
itive notion. We first introduce a general cost function and we show how to compute



the cost of a given paifG, O) whereG is a system and a finite state observer.
Second, we show that among all the valid observers (that ensure opacity), there is
an optimal cost, and we can compute an observer which ensures this cost. The prob-
lems in this section and the solutions are closely related to the results in [15] and use
the same tools: Karp’s mean-weight algorithm [21] and a result of Zwick and Pater-
son [22]. We want to define a notion of cost which takes into account the set of events
the observer chooses to hide and also how long it hides them. We assume that the ob-
server is a finite automata® = (X, zq, X, 0, I'). With each set of observable events

X' € 2* we associate aost of hiding® \ X’ which is a positive integer. We denote
Cost: 2% — N this function. Now, ifO is in statex, the current cost per time unit is
Cos{(I'(x)). Let Runs™(G) be the set of runs of length in Runs(G). Given a run

P =qo 2, Q1 Gn—1 e, gn € RUNS (Q), letxz; = 0,(xq, w;) with w; = tr(p[i]).
Thecostassociated withh € Rung' (G) is defined by:

Costp, G, 0) = n%l S CostI'(z:)).

1=0..n

Notice that the time basis we take is the number of steps which occurréd in
Thus if the observer is in state and chooses to observgx) at steps andi + 1,
Cos{(I'(x)) will be counted twice: at stepsandi + 1. The definition of the cost of
a run corresponds to the average cost per time unit, the time unit being the number of
steps of the run irG. Define the cost of the set of runs of lengththat belongs to
Runs™(G) by: Cos{n, G, 0) = max{Cos{p, G, O) | p € Runs"(G)}. Thecost of
an observewith respect to a systed is

Cos(G, O) = limsup Cos{(n, G, O) (3)
(notice that the limit may not exist whereas the limit sup is always defined.) To compute
the cost of a given observer, we can use a similar algorithm as the one given in [15],
and using Karps's maximum mean-weight cycle algorithm [21]:

Theorem 5. Computing CostG, O) is in PTIME.

Proof. We can prove that the cost of an observer is equal to the maximum mean-weight
cycle inG @ O. The size ofG ® O is polynomial in the size off and©®. Computing
the maximum mean-weight cycle can be done in linear time w.r.t. the sizZesnd. O

Finally we can solve the following optimization problem:

Problem 5 (Bounded Cost Observer).
INPUTS: an automatordz = (Q, qo, X, 9, F') and an integek € N.
PROBLEMS:

(A) Isthere any0 € OBS(G) s.t. F'is opaque w.r.t{G, ©) andCos(G,O) < k ?
(B) Ifthe answer to (A) is “yes”, compute a witness obsei®es.t. Cos{G, O) < k.

To solve this problem we use a result from Zwick and Paterson [22], which is an exten-
sion of Karp’s algorithm for finite state games.



Theorem 6. Problem 5 can be solved in EXPTIME.

given in [15], and the proof for the opacity problem is detailed in [16]. The key result
is Theorem 4, which enables us to represent all the winning strategiésama finite
automaton. Synchronizing and the most permissive valid dynamic obset¥gr pro-
duces aveighted gamethe optimal value of which can be computed in PTIME (in the
size of the product) using the algorithm in [22]. The optimal strategies can be computed
in PTIME as well. AsG x Fg has size exponential i@ and Y, the result follows.

6 Conclusion

In this paper, we have investigated the synthesis of opaque systems. In the context of
static observers, where the observability of events is fixed a priori, we provided an
algorithm (PSPACE-complete) to compute a maximal subalphabet of observable ac-
tions ensuring opacity. We have also defined a model of dynamic observers determining
whether an event is observable after a given observed trace. We proved that the synthe-
sis of dynamic observers can be solved in EXPTIME, and EXPTIME-hardness is left
open.

We assumed that the dynamic observers can change the set observable events only
after an observable event has occurred. This assumption should fit most applications
since the knowledge of the attacker also depends on observed traces. It would be inter-
esting to investigate also the case where this decision depends on the word executed by
the system. The case where the observability depends on the state of the system should
also be considered as it would be easy to implement in practice. Finally, the notion of
semantics of an observed trace used throughout this article is based on the assumption
that the attacker can react, i.e., acquire knowledge, faster than the system’s evolution. It
would be interesting to adapt this work to other types of semantics.
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A Proof of Proposition 4

Let Outcome(f1, H) = (U, Outcoméfy, fo, H)) N Runs(H) be the set of runs end-

ing in a Player 1 state which can be generated in the game when Player 1fplays
against all the possible strategies of Player 2. The proof of proposition 4 is based on
two lemmas:

Lemma 1. LetD be a dynamic projectiory € Outcome(fp, H) andu= Py, (tr(o)),
theny € Trp(G) and lastp) = Posta(so, [e]p)-

Proof. The proof is by induction on the length pf

1. base case: for the run itis trivial sincesy = {qo}, [e]p = {e} ande € Trp(G).
2. induction step: assume it is true for the ran

S0 LN (s0,t0) 2o, $1°++8p tn, (Sn,tn) 2n, Snt1 € Outcome(fp, H)

n An .
Leto = o "1, (Sni1stni1) — 5,2 be a run inOutcome(fp, H) and

= Py, (tr(0)) = Xo.A1. - -+ .\, By definition of fp, t,+1 = fp(o) = Tp(p).
Hence\,+1 € Tp(n) and

Sp4+2 = POStG(Sn+17 (Z \ tn+1)*~)\n+1)
= Postg(Postc(so, [t]p), (X \ tn+1)" Ant1)
= Posta(s0, [U]p-(X \ tnt1)" Ant1) = Posta(so, [1t-An+1]D)

By construction offf, s,, 12 # 0 thusPosta({qo}, [1-An+1]p) # 0, implying that
,U-ATL+1 S TTD(G)

Lemma 2. Let D be a dynamic projection. For all € T'rp(G), there exists a unique
run o € Outcome(fp, H) such thaty = Py, (tr(o)).

Proof. We prove this by induction on the length pf Note that as the gam# is
deterministic, and strategies prescribes one move, it suffices to prove the existence of
arun. If u = ¢, thens is a good candidate. Suppose that every word'im, (G) N

»n satisfies the property of the Lemma and jeA € Trp(G) N X"+ Sinceu €

X, there exists a rup € Outcome(fp, H) such thaty = Py, (tr(g)). Lets =

last(o) andt = fp(0) = Tp(u) the (unique) action Player 1 can perform after the
run o. Thendy(s,t) = (s,t) and 05(s,t) € Runs(H). According to Lemma 1,

s = Postg(so, [#]p)- Sinceu.A € Trp(G), A € t ands’ = Postg(so, [u-A]p) # 0.

Sos’ = Postg(s, (X \t)*\) = du((s,t),\) ando’ = QL(S,ﬁ)i)S/ is a run of H.
Hencep’' € Outcome(fp, H) and such thaPy, (tr(¢)) = p.\.

Using the two previous Lemmas we can complete the proof of the proposition.
Assume thatD is a valid dynamic projection and let € Outcome(fp, H) with
s = last(p) andu = Py, (tr(e)). According to Lemma 1s = Posta(so, [u]p)-
Since D is a valid dynamic projections € F, sos ¢ Bad. This implies thatfp is
a winning strategy. For the other implication, assume fhas not a valid observer.
This means that there is a tragec Trp(G) such thatPost(so, [#]p) € F. Since
€ Trp(G), then according to Lemma 2, there exists a uniquegun Runs (H)
such thatPyy, (tr(e)) = p. Then,last(p) = Posta(so, [u]p) € Bad, so fp is not a
winning strategy.



B Proof of Theorem 4

Let us first compute the set of winning states of the game for player 1 It is defined as
follows: Let Good = (S1 U S2) \ Bad be the set of safe states &f. To solve this
2-player game, we define thepre operator:

CPre(S)={s€ 8|3t C X |6u(s,t) € S} U
{(s,t) € 8o | YA €t 0x((s,1),\) € S}

Then by iterating”pre and computing the fix-poir@pre* (Good) = N;Cpret(Good),

we obtain the set of winning states of the game for Player 1 [20], and as the set of
states is finite, this computation terminates. If the initial state of the game belongs
to Cpre*(Good), then there is a strategy for Player 1 to win. Consider now the fol-
lowing finite automaton derived fromil: Fy = (Cpre*(Good), sq, X U 2% 67,),
whered g, is the restriction oy to the states"pre*(Good). Now, f is a winning
strategy for Player 1 w.r.td and Bad if and only if for any runp € Runsi(H),

f(p) € Enableds,, (last(p)), namely, every move defined lfyis a move of the most
permissive strategy. In other words, any winning stratedgy is aninstanceof the most
permissive strategy. Now from Proposition 5, given a winning strategy, we can define a
valid dynamic projection from which we can derive a valid dynamic observer (Proposi-
tion 2). Conversely, with each valid dynamic obserieis associated a valid dynamic
projectionDo (Proposition 1) and from Proposition fi, is a winning strategy which

thus can be generated [3y;.



