
Dynamic Observers for the Synthesis
of Opaque Systems

Franck Cassez1,?, J́eŕemy Dubreil2,??, and Herv́e Marchand2,??

1 National ICT Australia & CNRS, Sydney, Australia
2 INRIA Rennes - Bretagne Atlantique, Campus de Beaulieu, Rennes, France

Abstract. In this paper, we address the problem of synthesizingopaquesystems
by selecting the set of observable events. We first investigate the case ofstatic
observability where the set of observable events is fixed a priori. In this context,
we show that checking whether a system is opaque and computing an optimal
static observer ensuring opacity are both PSPACE-complete problems. Next, we
introducedynamicpartial observability where the set of observable events can
change over time. We show how to check that a system is opaque w.r.t. a dynamic
observer and also address the corresponding synthesis problem: given a system
G and secret statesS, compute the set of dynamic observers under whichS is
opaque. Our main result is that the synthesis problem can be solved in EXPTIME.

1 Introduction

Security is one of the most important and challenging aspects in designing services de-
ployed on large open networks like Internet or mobile phones, e-voting systems etc. For
such services, naturally subject to malicious attacks, methods to certify their security
are crucial. In this context there has been a lot of research to develop formal methods
for the design of secure systems and a growing interest in the formal verification of
security properties [1–3] and in their model-based testing [4–8]. Security properties are
generally divided into three categories:integrity, availability andconfidentiality. We
focus here on confidentiality and especially information flow properties. We use the
notion of opacitydefined in [9] formalizing the absence of information flow, or more
precisely, the impossibility for an attacker to infer the truth of a predicate (it could be
the occurrence in the system of some particular sequences of events, or the fact that
the system is in some particular configurations). Consider a predicateϕ over the runs
of a systemG and an attacker observing only a subset of the events ofG. We assume
that the attacker knows the modelG. In this context, the attacker should not be able to
infer that a run ofG satisfiesϕ. The secretϕ is opaque forG with respect to a given
partial observation if for every run ofG that satisfiesϕ, there exists a run, observation-
ally equivalent from the attacker’s point of view, that does not satisfyϕ. In such a case,
the attacker can never be sure that a run ofG satisfyingϕ has occurred. In the sequel,
we shall consider a secretϕ corresponding to a set of secret states. Finally, note that
the definition of opacity is general enough to define other notions of information flow

? Author supported by a Marie Curie International Outgoing Fellowship within the 7th European
Community Framework Programme.

?? Authors partially supported by the Politess RNRT project.

like trace-based non-interference and anonymity (see [9]). Note also thatsecrecy[10]
can be handled as a particular case of opacity (see Section 3) and thus our framework
applies to secrecy as well.

Related Work.Methods for the synthesis of opaque systems have already been inves-
tigated from the supervisory control point of view. In these frameworks, some of the
events are uncontrollable and the set of events an external attacker can observe is fixed.
If the system isG, the approach is then torestrictG (remove some of its behaviors) us-
ing a supervisor (or controller)C, in order to render a secretϕ opaque in the supervised
systemC(G). In [11], the authors consider several secrets and attackers with differ-
ent sets of observable events. They provide sufficient conditions to compute an optimal
controller preserving all secrets assuming that the controller has complete knowledge
of the system and full control on it. In [12, 13], the authors consider a control problem
under partial observation and provide algorithms to compute the optimal controller en-
suring the opacity of one secret against one attacker. Other works on the enforcement
of opacity by means of controllers can be found in [14]. Note that these approaches are
intrusive in the sense that the systemG has to be modified.

Our Contribution. In this paper, instead of restricting the behavior of the system by
means of a controllerC which disables some actions, we considerdynamicobservers
that will dynamically change the set of observable events in order to ensure opacity.
Compared to the previous approaches related to the supervisory control theory, this
approach is not intrusive in the sense that it does not restrictG but only hides some
events at different points in the course of the execution of the system. Indeed, one can
think of a dynamic observer as afilter (See Figure 1) which is added on top ofG.

SystemG Filter D AttackerU
u ∈ Σ∗ D(u)

Fig. 1.Architecture Filtering out Sequences of Events inG

The main contributions of this paper are two-fold. First, we extend the notion of opacity
for static observers (i.e., the natural projection) to dynamic observers.3 We show how
to check opacity when the dynamic observer is given by a finite automaton. Second we
give an algorithm to compute the set of all dynamic observers which can ensure opacity
of a secretϕ for a given systemG. Finally we consider an optimization problem which
is to compute a least expensive dynamic observer.

The notion ofdynamic observerswas already introduced in [15] for the fault di-
agnosis problem. Notice that the fault diagnosis problem and the opacity problems are
not reducible one to the other and thus we have to design new algorithms to solve the
opacity problems under dynamic observations.

3 At this point, it should be mentioned that we assume the attacker has not only a perfect knowl-
edge of the system but also of the observer.

Organization of the Paper.In Section 2 we introduce some notations for words, lan-
guages and finite automata. In Section 3 we define the notion of opacity with static
observers and show that deciding opacity for finite automata is PSPACE-complete. We
also consider the optimization problem of computing a largest set (cardinality-wise) of
observable events to ensure opacity and we show that this problem is PSPACE-complete
as well. Section 4 is the core of the paper and considers dynamic observers for ensuring
opacity. We prove that the set of all observers that ensure opacity can be computed in
EXPTIME. In Section 5 we briefly discuss how to compute optimal dynamic observers.
Omitted proofs and details are given in Appendix or available in the extended version
of this paper [16].

2 Notation & Preliminaries

Let Σ be a finite alphabet.Σ∗ is the set of finite words overΣ and contains theempty
word ε. A languageL is any subset ofΣ∗. Given two wordsu ∈ Σ∗ andv ∈ Σ∗, we
denoteu.v the concatenation ofu andv which is defined in the usual way.|u| stands
for the length of the wordu (the length of the empty word is zero). We letΣn with
n ∈ N denote the set of words of lengthn over Σ. Given Σ1 ⊆ Σ, we define the
projectionoperator on finite words,PΣ1 : Σ∗ → Σ∗

1 , that removes in a sequence ofΣ∗

all the events that do not belong toΣ1. Formally,PΣ1 is recursively defined as follows:
PΣ1(ε) = ε and forλ ∈ Σ, s ∈ Σ∗, PΣ1(s.λ) = PΣ1(s).λ if λ ∈ Σ1 andPΣ1(s)
otherwise. LetK ⊆ Σ∗ be a language. The definition of projection for words extends
to languages:PΣ1(K) = {PΣ1(s) | s ∈ K}. Conversely, letK ⊆ Σ∗

1 . The inverse
projectionof K is P−1

Σ,Σ1
(K) = {s ∈ Σ∗ | PΣ1(s) ∈ K}. We omit the subscriptΣ1 in

the sequel when it is clear from the context.
We assume that the system is given by anautomatonG which is a tuple(Q, q0, Σ, δ,

F) with Q a set of states,q0 ∈ Q is the initial state,δ : Q × Σ → 2Q is the transition
relation andF ⊆ Q is the set ofacceptingstates. IfQ is finite,G is afinite automaton

(FA). We write q
λ−−→ wheneverδ(q, λ) 6= ∅. An automaton iscompleteif for each

λ ∈ Σ and eachq ∈ Q, q
λ−−→. G is deterministic if for allq ∈ Q,λ ∈ Σ, |δ(q, λ)| ≤ 1.

A run ρ from stateq0 in G is a finite sequence of transitionsq0
λ1−→ q1

λ2−→
q2 · · · qi−1

λi−→ qi · · · qn−1
λn−−→ qn s.t. λi+1 ∈ Σ and qi+1 ∈ δ(qi, λi+1) for 0 ≤

i ≤ n − 1. The trace of the runρ is tr(ρ) = λ1.λ2 · · ·λn. We let last(ρ) = qn, and
the length ofρ, denoted|ρ|, is n. For i ≤ n we denote byρ[i] the prefix of the run

ρ truncated at stateqi, i.e., ρ(i) = q0
λ1−−→ q1 · · · qi−1

λi−−→ qi. The set of finite runs
from q0 in G is denotedRuns(G). A word u ∈ Σ∗ is generatedby G if u = tr(ρ) for
someρ ∈ Runs(G). Let L(G) be the set of words generated byG. The wordu ∈ Σ∗

is acceptedby G if u = tr(ρ) for someρ ∈ Runs(G) with last(ρ) ∈ F . The language
of (finite) wordsLF (G) of G is the set of words accepted byG. If G is a FA such that
F = Q we simply omitF in the tuple that definesG.

In the sequel we shall use thePostoperator defined by: letX ⊆ Q, Post(X, ε) = X
and foru ∈ Σ∗, λ ∈ Σ, Post(X, u.λ) = ∪q∈Post(X,u)δ(q, λ). We also letPost(X, L) =
∪u∈LPost(X, u) for a non empty languageL.

The product of automata is defined in the usual way: the product automaton rep-
resents the concurrent behavior of the automata with synchronization on the common
events. GivenG1 = (Q1, q

1
0 , Σ1, δ1, F1) andG2 = (Q2, q

2
0 , Σ2, δ2, F2) we denote

G1 ×G2 the product ofG1 andG2.

3 Opacity with Static Projections

In the sequel, we letG = (Q, q0, Σ, δ, F) be a non-deterministic automaton overΣ and
Σo ⊆ Σ. Enforcing opacity aims at preventing an attackerU , from deducing confiden-
tial information on the execution of a system from the observation of the events inΣo.
Given a run ofG with traceu, the observation of the attackerU is given by the static
natural projectionPΣo(u) following the architecture of Figure 1 withD(u) = PΣo(u).
In this paper, we shall consider that the confidential information is directly encoded in
the system by means of a set of statesF 4. If the current trace of a run isu ∈ L(G), the
attacker should not be able to deduce, from the knowledge ofPΣo

(u) and the structure
of G, that the current state of the system is inF . As stressed earlier, the attackerU
has full knowledge of the structure ofG (he can perform computations usingG like
subset constructions) but only has a partial observation upon its behaviors, namely the
observed traces inΣ∗

o . The set ofΣo-tracesof G is TrΣo
(G) = PΣo

(L(G)). We
define the operator[[·]]Σo

by: [[ε]]Σo
= {ε} and forµ ∈ Σ∗

o andλ ∈ Σo, [[µ.λ]]Σo
=

P−1
Σ (µ).λ ∩ L(G). In other words,u ∈ [[µ.λ]]Σo

iff (1) the projection ofu is µ.λ and
(2) the sequenceu ends with an observable “λ” event and (3)u ∈ L(G).

Remark 1.We suppose thatU is reacting faster than the system. Therefore, when an
observable event occurs,U can compute the possible set of states ofG beforeG moves
even ifG can do an unobservable action. �
Next we introduce the notion of opacity defined in [9]. Intuitively, a set of statesF is
said to beopaquewith respect to a pair(G, Σo) if the attackerU can never be sure that
the current state ofG is in the setF .

Definition 1 (State Based Opacity).Let F ⊆ Q. The secretF is opaquewith respect
to (G, Σo) if for all µ ∈ TrΣo

(G), Post({q0}, [[µ]]Σo
) 6⊆ F.

We can extend Definition 1 to a (finite) family of setsF = {F1, F2, · · · , Fk}: the secret
F is opaquewith respect to(G, Σo) if for eachF ∈ F , F is opaque w.r.t.(G, Σo).
This can be used to express other kinds

q0 q1 q2 q3

q4 q5 q6b

a

a

b a
a,b

b

a

b
a,b

Fig. 2.State based opacity illustration

of confidentiality properties. For exam-
ple, [10] introduced the notion ofsecrecy
of a set of statesF . Intuitively, F is not
secretw.r.t. G andΣo whenever after an
observationµ, the attacker either knows
that the system is inF or knows that it
is not in F . Secrecy can thus be han-
dled considering the opacity w.r.t. a fam-
ily {F,Q \F}. In the sequel we consider only one set of statesF and, when necessary,
we point out what has to be done for solving the problems with family of sets.

4 Equivalently, the secret can be given by a regular language overΣ∗, see [16].

Example 1.Consider the automatonG of Figure 2, withΣo = Σ = {a, b}. The secret
is given by the statesF = {q2, q5}. The secretF is certainly not opaque with respect
to (G, Σ), as by observing a traceb∗.a.b, the attackerU knows that the system is in a
secret state. Note that he does not know whether it isq2 or q5 but still he knows that the
state of the system is inF . �

In the sequel we shall focus on variations of the State Based Opacity Problem:

Problem 1 (Static State Based Opacity Problem).
INPUT: A non-deterministic FAG = (Q, q0, Σ, δ, F) andΣo ⊆ Σ.
PROBLEM: Is F opaque w.r.t.(G, Σo) ?

3.1 Checking State Based Opacity

In order to check for the opacity ofF w.r.t. (G, Σo), we first introduce the classical
notion of determinization via subset construction adapted to our definition of opacity:
Deto(G) = (X , X0, Σo,∆, Fo) denotes the deterministic automaton given by:

– X ⊆ 2Q \ ∅, X0 = {q0} andFo = 2F ,
– givenλ ∈ Σo, if X ′ = Post(X, (Σ \Σo)∗.λ) 6= ∅ then∆(X, λ) = X ′.

Checking whetherF is opaque w.r.t.(G, Σo) amounts to checking whether a state in
Fo is reachable. To check opacity for a family{F1, F2, · · · , Fk}, we defineFo to be the
set2F1 ∪ 2F2 ∪ · · · ∪ 2Fk (as pointed out before, this enables us to handle secrecy).
The previous construction shows that opacity on non-deterministic FA can be checked
in exponential time. Actually, checking state based opacity for (non-deterministic) FA
is PSPACE-complete. Given a FAG over Σ and F the set of accepting states, the
(language) universality problem is to decide whetherLF (G) = Σ∗. If not, thenG
is not universal. Checking language universality for non-deterministic FA is PSPACE-
complete [17] and Problem 1 is equivalent to universality.

Theorem 1. Problem 1 is PSPACE-complete for non-deterministic FA.

Proof. We assume thatG is complete i.e.,L(G) = Σ∗. Note that[[u]]Σ = u. Now, G
is not universal iff there existsu ∈ Σ∗ such thatPost({q0}, [[u]]Σ) ⊆ Q \ F . With the
definition of state based opacity, takingΣo = Σ, we have:

Q \ F is not opaque w.r.t.(G, Σ) ⇐⇒ ∃µ ∈ Σ∗s.t. Post({q0}, [[µ]]Σ) ⊆ Q \ F. �

PSPACE-easiness was already known and follows from a result in [18]: the model-
checking problem for a temporal logics which can specify security properties is proved
to be PSPACE-complete.

3.2 Maximum Cardinality for Static Projections

If a secret is opaque w.r.t. a set of observable eventsΣo, it is worthwhile noticing that
it will still be opaque w.r.t. any subset ofΣo. It might be of interest to hide as few
events as possible from the attacker still preserving opacity of a secret. Indeed, hiding
an event can be seen as energy consuming or as limiting the interactions or visibility

for users of the system (and some of them are not malicious attackers) and thus should
be avoided. Given the set of eventsΣ of G, we can check whether the secret is opaque
w.r.t. Σo ⊆ Σ. In that case, we may increase the number of visible letters and check
again if the secret remains opaque. This suggests the following optimization problem:

Problem 2 (Maximum Cardinality of Observable Events).
INPUT: A non-deterministic FAG = (Q, q0, Σ, δ, F) andn ∈ N s.t.n ≤ |Σ|.
PROBLEMS:

(A) Is there anyΣo ⊆ Σ with |Σo| = n, such thatF is opaque w.r.t.(G, Σo) ?
(B) If the answer to (A) is “yes”, find the maximumn0 such that there existsΣo ⊆ Σ

with |Σo| = n0 andF is opaque w.r.t.(G, Σo).

Theorem 2. Problem 2.(A) and Problem 2.(B) are PSPACE-complete.

Proof. PSPACE-easiness follows directly as we can guess a setΣo with |Σo| = n
and check in PSPACE whetherF is opaque w.r.t.(G, Σo). Thus Problem 2.(A) is in
NPSPACE and thus in PSPACE. PSPACE-hardness is also easy because takingn = |Σ|
amounts to checking thatF is opaque w.r.t.(G, Σ) which has been shown equivalent
to the universality problem (proof of Theorem 1).
To solve Problem 2.(B) it suffices to iterate a binary search and thus Problem 2.(B)
is also in PSPACE. To see it is PSPACE-complete, to check whetherF is opaque
w.r.t. (G, Σ), it suffices to solve Problem 2.(B) and then check whethern0 = |Σ|. �

4 Opacity with Dynamic Projection

So far, we have assumed that the observability of events is given a priori and this is why
we used the term static projections. We generalize this approach by considering the
notion ofdynamic projectionsencoded by means ofdynamic observersas introduced
in [15]. Dynamic projection allows us to render unobservable some events after a given
observed trace (for example, some outputs of the system). To illustrate the benefits of
such projections, we consider the following example:

Example 2.Consider again the automatonG of Example 1, Figure 2, whereF =
{q2, q5}. With Σo = Σ = {a, b}, F is not opaque. If eitherΣo = {a} or Σo = {b},
then the secret becomes opaque. Thus if we have to define static sets of observable
events, at least one event will have to be permanently unobservable. However, the less
you hide, the more important is the observable behavior of the system. Thus, we should
try to reduce as much as possible the hiding of events. We can be more efficient by us-
ing a dynamicprojection that will render unobservable an event only when necessary.
Indeed, after observingb∗, the attacker knows that the system is in the initial state.
However, if a subsequent “a” follows, then the attacker should not be able to observe
“ b” as in this case it could know the system is in a secret state. We can then design a
dynamic events’s hider as follows: at the beginning, everything is observable; when an
“ a” occurs, the observer hides any subsequent “b” occurrences and permits only the
observation of “a”. Once an “a” has been observed, the observer releases its hiding
by letting both “a” and “ b” be observable again. �

4.1 Opacity Generalized to Dynamic Projection

We now define the notion of dynamic projection and its associated dynamic observer.

Dynamic Projections and Observers.A dynamic projection is a function that will de-
cide to let an event be observable or to hide it, thus playing the role of a filter between
the system and the attacker to prevent information flow (see Figure 1).

Definition 2. A dynamic observability choiceis a mappingT : Σ∗ → 2Σ . The (obser-
vation-based)dynamic projectioninduced byT is the mappingD : Σ∗ → Σ∗ defined
byD(ε) = ε, and for allu ∈ Σ∗ and allλ ∈ Σ,

D(u.λ) = D(u).λ if λ ∈ T (D(u)) and D(u.λ) = D(u) otherwise. (1)

Assuming thatu ∈ Σ∗ occurred in the system andµ ∈ Σ∗ has been observed by the
attacker i.e.,µ = D(u), then the events ofT (µ) are the ones currently observable.
Note that this choice does not change until an observable event occurs. Givenµ ∈ Σ∗,
D−1(µ) = {u ∈ Σ∗ | D(u) = µ} is the set of sequences that project ontoµ.

Example 3.A dynamic projectionD : Σ∗ → Σ∗ corresponding to the one of Exam-
ple 2 can be induced by the dynamic observability choiceT defined byT (u) = {a} for
all u ∈ b∗.a andT (u) = {a, b} for all the other sequencesu ∈ Σ∗. �

Given a FAG and a dynamic projectionD, we denote byTrD(G) = D(L(G)), the set
of observed traces. Conversely, givenµ ∈ TrD(G), the set of words[[µ]]D of G that are
compatible withµ is defined by:

[[ε]]D = {ε} and forµ ∈ Σ∗, λ ∈ Σ : [[µ.λ]]D = D−1(µ).λ ∩ L(G).

Given two different dynamic projectionsD1 andD2 and a systemG overΣ, we say
that D1 andD2 areG-equivalent, denotedD1 ∼G D2, whenever for allu ∈ L(G),
D1(u) = D2(u). The relation∼G identifies two dynamic projections when they agree
on L(G); they can disagree on other words inΣ∗ but since they will not be generated
by G, it will not make any difference from the attacker point of view. In the sequel we
will be interested in computing the interesting part of dynamic projections givenG, and
thus will compute one dynamic projection in each class.

Opacity with Dynamic Projection.We generalize Definition 1 by taking into account
the new observation interface given byD.

Definition 3. Given a FAG = (Q, q0, Σ, δ, F), F is opaque with respect to(G, D) if

∀µ ∈ TrD(G), Post({q0}, [[µ]]D) 6⊆ F. (2)

Again, this definition extends to family of sets. We say thatD is a valid dynamic
projection if (2) is satisfied (i.e., wheneverF is opaque w.r.t.(G, D)) and we denote by
D the set of valid dynamic projections. Obviously ifD1 ∼G D2, thenD1 is valid if and
only if D2 is valid. We denote byD∼G

the quotient set ofD by∼G.

Remark 2.LetΣo ⊆ Σ, then ifD is a dynamic projection that defines a constant map-
ping making actions inΣo always observable (and the others always unobservable),
we haveD(u) = PΣo

(u) and we retrieve Definition 1. The property of secrecy can be
extended as well using dynamic projection. �

In the sequel, we shall be interested in checking the opacity ofF w.r.t. (G, D) or
to synthesize such a dynamic projectionD ensuring this property. In Section 3, the
dynamic projection was merely the natural projection and computing the observational
behavior ofG was easy. Here, we need to find a characterization of these dynamic
projections that can be used to check opacity or to enforce it. To do so, we introduce
the notion of dynamic observer [15] that will encode a dynamic projection in terms of
automata.

Definition 4 (Dynamic observer).A dynamic observeris a complete deterministic la-
beled automatonO = (X, x0, Σ, δo, Γ) whereX is a (possibly infinite) set of states,
x0 ∈ X is the initial state,Σ is the set of input events,δo : X×Σ → X is the transition
function (a total function), andΓ : X → 2Σ is a labeling function that specifies the set
of events that the observer keeps observable at statex. We require that for allx ∈ X
and for all λ ∈ Σ, if λ /∈ Γ (x), thenδo(x, λ) = x, i.e., if the observer does not want
an event to be observed, it does not change its state when such an event occurs.

We extendδo to words ofΣ∗ by: δo(q, ε) =

1

Γ (1) = {a, b}

2

Γ (2) = {a}

3

Γ (3) = {a, b}

b b a, b

a a

Fig. 3.Example of a Dynamic Observer

q and for u ∈ Σ∗, λ ∈ Σ, δo(q, u.λ) =
δo(δo(q, u), λ). Assuming that the observer
is at statex and an eventλ occurs, it out-
putsλ wheneverλ ∈ Γ (x) or nothing (ε) if
λ /∈ Γ (x) and moves to stateδo(x, λ). An
observer can be interpreted as a functional

transducer taking a stringu ∈ Σ∗ as input, and producing the output which corresponds
to the successive events it has chosen to keep observable. An example of dynamic ob-
server is given in Figure 3. We now relate the notion of dynamic observer to the one of
dynamic projection.

Proposition 1. LetO = (X, x0, Σ, δo, Γ) be an observer and defineDO by: DO(ε) =
ε, and for all u ∈ Σ∗, DO(u.λ) = DO(u).λ if λ ∈ Γ (δo(x0, u)) andDO(u) other-
wise. ThenDO is a dynamic projection. In the sequel, we write[[µ]]O for [[µ]]DO .

Proof. To prove thatDO defined above is a dynamic projection, it is sufficient to exhibit
a dynamic observability choiceT : Σ∗ → 2Σ and to show that (1) holds. LetT (u) =
Γ (δo(xo, DO(u))). It is easy to show by induction thatδo(xo, u) = δo(xo, DO(u))
becauseδo(x, λ) = x whenλ /∈ Γ (x). We can then defineT (u) = Γ (δo(xo, u)) and
the result follows from this remark. �

Proposition 2. Given a dynamic projectionD induced byT , letOD = (Σ∗, ε, Σ, δD,
T) whereδD(w, λ) = D(w.λ). ThenOD is a dynamic observer.

Proof. OD is complete and deterministic by construction. Moreover after a sequenceu
if D(u.λ) = D(u) thenδD(u, λ) = u. �

Note that there might exist several equivalent observers that encode the same dynamic
projection. For example, the observer depicted in Figure 3 is one observer that encodes
the dynamic projection described in Example 3. But, one can consider other observers
obtained by unfolding an arbitrary number of times the self-loops in states 1 or 3. Fi-
nally, to mimic the language theory terminology, we will say that a dynamic projection
D is regularwhenever there exists a finite state dynamic observerO such thatDO = D.
To summarize this part, we can state that with each dynamic projectionD, we can as-
sociate a dynamic observerOD such thatD = DOD

. In other words, we can consider
a dynamic projection or one of its associated dynamic observers whenever one repre-
sentation is more convenient than the other. If the dynamic projectionD derived from
O is valid, we say thatO is avalid dynamic observer. In that case, we will say thatF is
opaque w.r.t.(G,O) and we denote byOBS(G) the set of all valid dynamic observers.

4.2 Checking Opacity with Dynamic Observers

The first problem we are going to address consists in checking whether a given dynamic
projection ensures opacity. To do so, we assume given a dynamic observer which defines
this projection map. The problem, we are interested in, is then the following:

Problem 3 (Dynamic State Based Opacity Problem).
INPUT: A non-deterministic FAG = (Q, q0, Σ, δ, F) and a dynamic observer

O = (X, x0, Σ, δo, Γ).
PROBLEM: Is F opaque w.r.t.(G,O) ?

We first construct an automaton which represents what an attacker will see under the
dynamic choices of observable events made byO. To do so, we define the automaton
G⊗O = (Q×X, (q0, x0), Σ ∪ {τ}, δ, F ×X) whereτ is a fresh letter not inΣ and
δ is defined for eachλ ∈ Σ ∪ {τ}, and(q, x) ∈ Q×X by:

– δ((q, x), λ) = δG(q, λ)× {δo(x, λ)} if λ ∈ Γ (x);
– δ((q, x), τ) =

(
∪λ∈Σ\Γ (x)δG(q, λ)

)
× {x}.

Proposition 3. F is opaque w.r.t.(G,O) iff F ×X is opaque w.r.t.(G⊗O, Σ).

Proof. Let µ ∈ TrO(G) be a trace observed by the attacker. We prove the following by
induction on the length ofµ:

q ∈ PostG({q0}, [[µ]]O) ⇐⇒ (q, x) ∈ PostG⊗O({(q0, x0)}, [[µ]]Σ) for somex ∈ X.

If µ = ε, the result is immediate. Assume thatµ′ = µ.λ. Let q ∈ PostG({q0}, [[µ′]]O).
By definition of [[µ′]]O we haveq0

u→q′
v→q′′

λ→q with u ∈ [[µ]]O, u.v.λ ∈ [[µ.λ]]O.
By induction hypothesis, it follows that(q′, δo(x0, u)) ∈ PostG⊗O({(q0, x0)}, [[µ]]Σ)
whereδo(x0, u) is the (unique) state ofO after readingu. Then, there exists a word
w ∈ (Σ ∪ {τ})∗ such thatPΣ(w) = µ and (q0, x0)

w→(q′, δo(x0, u)) is a run of
G ⊗ O. Assumev = v1.v2. · · · .vk, k ≥ 0. As O(u.v) = O(u) , we must have
vi 6∈ Γ (δo(x0, u.v1. · · · .vi)) when1 ≤ i ≤ k. Hence, by construction ofG ⊗ O,
there is a sequence of transitions inG⊗O of the form

(q′, δo(x0, u)) τ−−→ δo(x0, u.v1)
τ−−→ · · · τ−−→ (q′′, δo(x0, u.v))

with λ ∈ Γ (δo(x0, u.v)). Thus,(q0, x0)
w−−→ (q′, δo(x0, u)) τk.λ−−−−→ (q, δo(u.v.λ)) is

a run of G ⊗ O with PΣ(w.τk.λ) = µ.λ = µ′. This implies(q, δo(x0, u.v.λ)) ∈
PostG⊗O({(q0, x0)}, [[µ′]]Σ). For the converse if we have a sequence ofτ transitions in
G⊗O, they must originate from actions inG which are not observable. �

The previous result is general, and ifO is a FA we obtain the following theorem:

Theorem 3. For finite state observers, Problem 3 is PSPACE-complete.

Proof. As the size of the productG⊗O is the product of the size ofG and the size of
O and opacity can be checked in PSPACE, PSPACE-easiness follows. Now, checking
state based opacity with respect to(G, Σ) can be done using a simple observer with
one state which always letΣ observable and PSPACE-hardness follows. �

As Proposition 3 reduces the problem of checking opacity with dynamic observers to
the problem of checking opacity with static observers, Theorem 3 extends to family of
sets (and thus to secrecy).

4.3 Enforcing Opacity with Dynamic Projections

So far, we have assumed that the dynamic projection/observer was given. Next we will
be interested insynthesizingone in such a way that the secret becomes opaque w.r.t. the
system and this observer.

Problem 4 (Dynamic Observer Synthesis Problem).
INPUT: A non-deterministic FAG = (Q, q0, Σ, δ, F).
PROBLEM: Compute the set of valid dynamic observersOBS(G)5.

Deciding the existence of a valid observer is trivial: it is sufficient to check whether
always hidingΣ is a solution. Moreover, note thatOBS(G) can be infinite. To solve
Problem 4, we reduce it to a safety 2-player game. Player 1 will play the role of an
observer and Player 2 what the attacker observes. Assume the automatonG can be in
any of the statess = {q1, q2, · · · , qn}, after a sequence of actions occurred. A round of
the game is: givens, Player 1 chooses which letters should be observable next i.e., a set
t ⊆ Σ; then it hands it over to Player 2 who picks up an observable letterλ ∈ t; this
determines a new set of statesG can be in afterλ, and the turn is back to Player 1. The
goal of the Players are defined by:

– The goal of Player 2 is to pick up a sequence of letters such that the set of states
that can be reached after this sequence is included inF . If Player 2 can do this, then
it can infer the secretF . Player 2 thus plays areachability gametrying to enforce a
particular set of states, sayBad (the states in which the secret is disclosed).

– The goal of Player 1 is opposite: it must keep the game in a safe set of states where
the secret is not disclosed. Thus Player 1 plays asafety gametrying to keep the
game in the complement set ofBad.

5 Our aim is actually to be able to generate at least one observer for each representative ofD∼G ,
thus capturing all the interesting dynamical projections.

As we are playing a (finite) turn-based game, Player 2 has a strategy to enforceBad
iff Player 1 has no strategy to keep the game in the complement set ofBad (turn-based
finite games aredetermined[19]).
We now formally define the 2-player game and show it allows us to obtain a finite
representation of all the valid dynamic observers. LetH = (S1∪S2, s0,M1∪M2, δH)
be the deterministic game automaton derived fromG and given by:

– S1 = 2Q is the set of Player 1 states andS2 = 2Q × 2Σ the set of Player 2 states;
– the initial state of the game is the Player 1 states0 = {q0};
– Player 1 will choose a set of events to hide inΣ, then Player 1 actions are in the

alphabetM1 = 2Σ and Player 2 actions are inM2 = Σ;
– the transition relationδH ⊆ (S1 ×M1 × S2) ∪ (S2 ×M2 × S1) is given by:

• Player 1 moves (observable events): ifs ∈ S1, t ⊆ Σ, thenδH(s, t) = (s, t);
• Player 2 moves (observed events): if(s, t) ∈ S2, λ ∈ t and

s′ = Post(s, (Σ \ t)∗.λ) 6= ∅, thenδH((s, t), λ) = s′.

Remark 3.If we want to exclude the possibility of hiding everything for Player 1, it
suffices to build the gameH with this constraint on Player 1 moves i.e.,∀s ∈ S1, and
t 6= ∅, δH(s, t) = (s, t). �

We define the set ofBad states to be the set of Player 1 statess s.t. s ⊆ F . For
a family of setsF1, F2, · · · , Fk, Bad is the set of states2F1 ∪ 2F2 ∪ · · · ∪ 2Fk . Let
Runsi(H), i = 1, 2 be the set of runs ofH that end in a Playeri state. Astrategyfor
Playeri is a mappingfi : Runsi(H) → Mi that associates with each run that ends
in a Playeri state, the new choice of Playeri. Given two strategiesf1, f2, the game
H generates the set of runsOutcome(f1, f2,H) combining the choices of Players 1
and 2 w.r.t.f1 andf2. f1 is a winning strategyfor Playing 1 inH for avoidingBad
if for all Player 2 strategiesf2, no run ofOutcome(f1, f2,H) contains aBad state.
A winning strategy for Player 2 is a strategyf2 s.t. for all strategyf1 of Player 1,
Outcome(f1, f2,H) reaches aBad state. As turn-based games are determined, either
Player 1 has a winning strategy or Player 2 has a winning strategy.
We now relate the set of winning strategies for Player 1 inH to the set of valid dynamic
projections. LetPM2(%) = PΣ(tr(%)) for a run% of H. The proof of the following
Proposition 4 is given in Appendix.

Definition 5. Given a dynamic projectionD, we define the strategyfD such that for
every% ∈ Runs1(H), fD(%) = TD(PM2(%)).

Proposition 4. LetD be a dynamic projection.D is valid if and only iffD is a winning
strategy for Player 1 inH.

Given a strategyf for Player 1 inH, for all µ ∈ Σ∗, there exists at most one run
%µ ∈ Outcome1(f,H) such thatPM2(tr(%µ)) = µ.

Definition 6. Let f be a strategy for Player 1 inH. We define the dynamic projection
Df induced by the dynamic observability choiceTf : Σ∗ → 2Σ given by:Tf (µ) =
f(%µ) if %µ is in Outcome(f,H) andTf (µ) = Σ otherwise.

Notice that when%µ is not inOutcome(f,H), it does not really matter how we define
Tf because there is no wordw ∈ L(G) s.t.µ = Df (w).

Proposition 5. If f is a winning strategy for Player 1 inH, thenDf is a valid dynamic
projection.

Proof. Applying the construction of Definition 5 yieldsfDf
= f . Sincef is a winning

strategy, by Proposition 4, we get thatDf is a valid dynamic projection. �

Notice that we only generate a representative for each of the equivalence classes induced
by ∼G. However, an immediate consequence of the two previous propositions is that
there is a bijection between the set of winning strategies of Player 1 andD∼G

.

4.4 Most Permissive Dynamic Observer

We now define the notion ofmost permissivevalid dynamic observers. For an observer
O = (X, xo, Σ, δo, Γ) andw ∈ Σ∗, recall thatΓ (δo(xo, w)) is the set of events thatO
chooses to render observable after observingw. Assume thatw = λ1λ2 · · ·λk. Letw =
Γ (xo).λ1.Γ (δo(xo, w[1])).λ2.Γ (δo(xo, w[2])) · · ·λk.Γ (δo(xo, w[k])) i.e., w contains
the history of whatO has chosen to observe at each step and the next observable event
that occurred after each choice.

Definition 7. LetO∗ : (2Σ .Σ)∗ → 22Σ

. The mappingO∗ is themost permissive valid
dynamic observer6 ensuring the opacity ofF if the following holds:

O = (X, xo, Σ, δo, Γ) is a valid observer⇐⇒ ∀w ∈ L(G), Γ (δo(xo, w)) ∈ O∗(w).

The definition of the most permissive valid observer states that any valid observerO
must choose a set of observable events inO∗(w) on inputw; if an observer chooses its
set of observable events inO∗(w) on inputw, then it is a valid observer.

Theorem 4. The most permissive valid observerO∗ can be computed in EXPTIME.

Proof. The detailed proof is given in Appendix. For a sketch, the most permissive valid
dynamic observer is obtained using the most permissive winning strategy in the game
H. It is well-known result [20] that for a finite game, if there is a winning strategy, there
is a memoryless most permissive one. Moreover whether there is a winning strategy can
be decided in linear time in the size of the game. As the size ofH is exponential in the
size ofG andΣ the result follows. �

We letFH be the automaton representing the most permissive observer. Theorem 4
states thatFH can be used to generate any valid observer. In particular, given a finite-
memory winning strategy, the corresponding valid observer is finite and thus its as-
sociated dynamic projection is regular. An immediate corollary of Theorem 4 is the
following:

6 Strictly speakingO∗ is not an observer because it maps to sets of sets of events whereas
observers map to sets of events. Still we use this term because it is the usual terminology in
the literature.

Corollary 1. Problem 4 is in EXPTIME.

Example 4.To illustrate this section, we consider the following small example. The sys-
tem is depicted by the automaton in Figure 4(a). The set of secret states is reduced to the
state (2). Figure 4(b) represents the associated game automaton. The states of Player 1

1

1.a1.b 12

12.a

12.b

12.ab

2.a 2.b

1.ab 22.ab

(b): The GameH

21

(a): The AutomatonG

x1

Γ (x1) = {a}

x2

Γ (x2) = {a, b}

(c): A Finite Observer

{a}
{b}

{a, b}

{a}
{b}

{a, b}

{a}
{b}
{a, b}

a

b

a, b

a
b

a, b

a

b

a, b

a

b

a

b

b

a

a, b

Fig. 4.Most Permissive Dynamic Observer

are represented by circles whereas the ones of Player 2 are represented by squares. The
only bad states is the state (2). The most permissive valid dynamic observer is obtained
when Player 1 does not allow transition{a, b} to be triggered in state (1) (otherwise,
Player 2 could choose to observe either event a or b and in this case the game will
evolve into state (2) and the secret will be revealed). The dashed lines represents the
transitions that are removed from the game automaton to obtain the most permissive
observer. Finally, Figure 4(c) represents a valid observerO generated from the most
permissive observer with the memoryless strategyf(1) = {a} andf(12) = {a, b}. �

5 Optimal Dynamic Observer

Among all the possible observers that ensure the opacity of the secret, it is worth-
while noticing that some are better (in some sense) than other: they hide less events
on average. We here define a notion of cost for observers which captures this intu-
itive notion. We first introduce a general cost function and we show how to compute

the cost of a given pair(G,O) whereG is a system andO a finite state observer.
Second, we show that among all the valid observers (that ensure opacity), there is
an optimal cost, and we can compute an observer which ensures this cost. The prob-
lems in this section and the solutions are closely related to the results in [15] and use
the same tools: Karp’s mean-weight algorithm [21] and a result of Zwick and Pater-
son [22]. We want to define a notion of cost which takes into account the set of events
the observer chooses to hide and also how long it hides them. We assume that the ob-
server is a finite automatonO = (X, x0, Σ, δo, Γ). With each set of observable events
Σ′ ∈ 2Σ we associate acost of hidingΣ \ Σ′ which is a positive integer. We denote
Cost : 2Σ → N this function. Now, ifO is in statex, the current cost per time unit is
Cost(Γ (x)). Let Runsn(G) be the set of runs of lengthn in Runs(G). Given a run

ρ = q0
λ1−−→ q1 · · · qn−1

λn−−→ qn ∈ Runsn(G), let xi = δo(x0, wi) with wi = tr(ρ[i]).
Thecostassociated withρ ∈ Runsn(G) is defined by:

Cost(ρ,G,O) =
1

n + 1
·

∑
i=0..n

Cost(Γ (xi)).

Notice that the time basis we take is the number of steps which occurred inG.
Thus if the observer is in statex, and chooses to observeΓ (x) at stepsi and i + 1,
Cost(Γ (x)) will be counted twice: at stepsi and i + 1. The definition of the cost of
a run corresponds to the average cost per time unit, the time unit being the number of
steps of the run inG. Define the cost of the set of runs of lengthn that belongs to
Runsn(G) by: Cost(n, G,O) = max{Cost(ρ,G,O) | ρ ∈ Runsn(G)}. Thecost of
an observerwith respect to a systemG is

Cost(G,O) = lim sup
n→∞

Cost(n, G,O) (3)

(notice that the limit may not exist whereas the limit sup is always defined.) To compute
the cost of a given observer, we can use a similar algorithm as the one given in [15],
and using Karps’s maximum mean-weight cycle algorithm [21]:

Theorem 5. Computing Cost(G,O) is in PTIME.

Proof. We can prove that the cost of an observer is equal to the maximum mean-weight
cycle inG ⊗ O. The size ofG ⊗ O is polynomial in the size ofG andO. Computing
the maximum mean-weight cycle can be done in linear time w.r.t. the size ofG⊗O. �

Finally we can solve the following optimization problem:

Problem 5 (Bounded Cost Observer).
INPUTS: an automatonG = (Q, q0, Σ, δ, F) and an integerk ∈ N.
PROBLEMS:

(A) Is there anyO ∈ OBS(G) s.t.F is opaque w.r.t.(G,O) andCost(G,O) ≤ k ?
(B) If the answer to (A) is “yes”, compute a witness observerO s.t.Cost(G,O) ≤ k.

To solve this problem we use a result from Zwick and Paterson [22], which is an exten-
sion of Karp’s algorithm for finite state games.

Theorem 6. Problem 5 can be solved in EXPTIME.

given in [15], and the proof for the opacity problem is detailed in [16]. The key result
is Theorem 4, which enables us to represent all the winning strategies inH as a finite
automaton. SynchronizingG and the most permissive valid dynamic observerFH pro-
duces aweighted game, the optimal value of which can be computed in PTIME (in the
size of the product) using the algorithm in [22]. The optimal strategies can be computed
in PTIME as well. AsG×FH has size exponential inG andΣ, the result follows.

6 Conclusion

In this paper, we have investigated the synthesis of opaque systems. In the context of
static observers, where the observability of events is fixed a priori, we provided an
algorithm (PSPACE-complete) to compute a maximal subalphabet of observable ac-
tions ensuring opacity. We have also defined a model of dynamic observers determining
whether an event is observable after a given observed trace. We proved that the synthe-
sis of dynamic observers can be solved in EXPTIME, and EXPTIME-hardness is left
open.

We assumed that the dynamic observers can change the set observable events only
after an observable event has occurred. This assumption should fit most applications
since the knowledge of the attacker also depends on observed traces. It would be inter-
esting to investigate also the case where this decision depends on the word executed by
the system. The case where the observability depends on the state of the system should
also be considered as it would be easy to implement in practice. Finally, the notion of
semantics of an observed trace used throughout this article is based on the assumption
that the attacker can react, i.e., acquire knowledge, faster than the system’s evolution. It
would be interesting to adapt this work to other types of semantics.

References

1. Lowe, G.: Towards a completeness result for model checking of security protocols. Journal
of Computer Security7(2-3) (1999) 89–146.

2. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for
Security Protocols. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
Chicago, IL, IEEE Computer Society (June 2005) 331–340.

3. Hadj-Alouane, N., Lafrance, S., Lin, F., Mullins, J., Yeddes, M.: On the verification of
intransitive noninterference in mulitlevel security. IEEE Transaction On Systems, Man, And
Cybernetics—Part B: Cybernetics35(5) (Oct 2005) 948–957.

4. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur.3(1) (2000)
30–50.

5. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-time
security policies. Int. J. Inf. Sec.4(1-2) (2005) 2–16.

6. Darmaillacq, V., Fernandez, J.C., Groz, R., Mounier, L., Richier, J.L.: Test generation for
network security rules. In: TestCom 2006. Volume 3964 of LNCS. (2006).

7. Le Guernic, G.: Information flow testing - the third path towards confidentiality guarantee.
In: Advances in Computer Science, ASIAN 2007. Computer and Network Security, Volume
4846 of LNCS. (2007) 33–47.

8. Dubreil, J., J́eron, T., Marchand, H.: Monitoring information flow by diagnosis techniques.
Technical Report 1901, IRISA (August 2008).

9. Bryans, J., Koutny, M., Mazaré, L., Ryan, P.: Opacity generalised to transition systems.
International Journal of Information Security7(6) (May 2008) 421–435.

10. Alur, R., Čerńy, P., Zdancewic, S.: Preserving secrecy under refinement. In: ICALP ’06:
Proceedings (Part II) of the 33rd International Colloquium on Automata, Languages and
Programming, Volume 4051 of LNCS. Springer (2006) 107–118.

11. Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud, B., Darondeau, P.: Concurrent
secrets. Discrete Event Dynamic Systems17 (December 2007) 425–446

12. Dubreil, J., Darondeau, P., Marchand, H.: Opacity enforcing control synthesis. In: Proceed-
ings of the 9th International Workshop on Discrete Event Systems (WODES’08), Göteborg,
Sweden (May 2008) 28–35.

13. Dubreil, J., Darondeau, P., Marchand, H.: Opacity enforcing control synthesis. Technical
Report 1921, IRISA (February 2009)

14. Takai, S., Oka, Y.: A formula for the supremal controllable and opaque sublanguage arising
in supervisory control. SICE Journal of Control, Measurement, and System Integration1(4)
(March 2008) 307–312.

15. Cassez, F., Tripakis, S.: Fault diagnosis with static or dynamic diagnosers. Fundamenta
Informatica88(4) (November 2008) 497–540.

16. Cassez, F., Dubreil, J., Marchand, H.: Dynamic Observers for the Synthesis of Opaque
Systems. Technical Report 1930, IRISA (May 2009).

17. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary re-
port. In: STOC, ACM (1973) 1–9.

18. Alur, R., Cerńy, P., Chaudhuri, S.: Model checking on trees with path equivalences. In
Grumberg, O., Huth, M., eds.: TACAS. Volume 4424 of LNCS, Springer (2007) 664–678.

19. Martin, D.A.: Borel determinacy. Annals of Mathematics102(2) (1975) 363–371.
20. Thomas, W.: On the synthesis of strategies in infinite games. In: Proc. 12th Annual Sym-

posium on Theoretical Aspects of Computer Science (STACS’95). Volume 900 of LNCS.
Springer (1995) 1–13 Invited talk.

21. Karp, R.: A characterization of the minimum mean cycle in a digraph. Discrete Mathematics
23 (1978) 309–311.

22. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical
Computer Science158(1–2) (1996) 343–359.

A Proof of Proposition 4

Let Outcome1(f1,H) = (∪f2Outcome(f1, f2,H)) ∩Runs1(H) be the set of runs end-
ing in a Player 1 state which can be generated in the game when Player 1 playsf1

against all the possible strategies of Player 2. The proof of proposition 4 is based on
two lemmas:

Lemma 1. LetD be a dynamic projection,% ∈ Outcome1(fD,H) andµ=PM2(tr(%)),
thenµ ∈ TrD(G) and last(%) = PostG(s0, [[µ]]D).

Proof. The proof is by induction on the length ofµ:

1. base case: for the runs0 it is trivial sinces0 = {q0}, [[ε]]D = {ε} andε ∈ TrD(G).
2. induction step: assume it is true for the run%

s0
t0−−→ (s0, t0)

λ0−−→ s1 · · · sn
tn−−→ (sn, tn) λn−−→ sn+1 ∈ Outcome1(fD,H)

Let %′ = %
tn+1−−−−→ (sn+1, tn+1)

λn+1−−−−→ sn+2 be a run inOutcome1(fD,H) and
µ = PM2(tr(%)) = λ0.λ1. · · · .λn. By definition offD, tn+1 = fD(%) = TD(µ).
Henceλn+1 ∈ TD(µ) and

sn+2 = PostG(sn+1, (Σ \ tn+1)∗.λn+1)
= PostG(PostG(s0, [[µ]]D), (Σ \ tn+1)∗.λn+1)
= PostG(s0, [[µ]]D.(Σ \ tn+1)∗.λn+1) = PostG(s0, [[µ.λn+1]]D)

By construction ofH, sn+2 6= ∅ thusPostG({q0}, [[µ.λn+1]]D) 6= ∅, implying that
µ.λn+1 ∈ TrD(G).

Lemma 2. LetD be a dynamic projection. For allµ ∈ TrD(G), there exists a unique
run % ∈ Outcome1(fD,H) such thatµ = PM2(tr(%)).

Proof. We prove this by induction on the length ofµ. Note that as the gameH is
deterministic, and strategies prescribes one move, it suffices to prove the existence of
a run. If µ = ε, thens0 is a good candidate. Suppose that every word inTrD(G) ∩
Σn satisfies the property of the Lemma and letµ.λ ∈ TrD(G) ∩ Σn+1. Sinceµ ∈
Σn, there exists a run% ∈ Outcome1(fD,H) such thatµ = PM2(tr(%)). Let s =
last(%) and t = fD(%) = TD(µ) the (unique) action Player 1 can perform after the

run %. Then δH(s, t) = (s, t) and %
t→(s, t) ∈ Runs2(H). According to Lemma 1,

s = PostG(s0, [[µ]]D). Sinceµ.λ ∈ TrD(G), λ ∈ t ands′ = PostG(s0, [[µ.λ]]D) 6= ∅.
Sos′ = PostG(s, (Σ \ t)∗.λ) = δH((s, t), λ) and%′ = %

t→(s, t) λ→s′ is a run ofH.
Hence%′ ∈ Outcome1(fD,H) and such thatPM2(tr(%

′)) = µ.λ.

Using the two previous Lemmas we can complete the proof of the proposition.
Assume thatD is a valid dynamic projection and let% ∈ Outcome1(fD,H) with
s = last(%) and µ = PM2(tr(%)). According to Lemma 1,s = PostG(s0, [[µ]]D).
SinceD is a valid dynamic projection,s 6⊆ F , sos 6∈ Bad. This implies thatfD is
a winning strategy. For the other implication, assume thatD is not a valid observer.
This means that there is a traceµ ∈ TrD(G) such thatPostG(s0, [[µ]]D) ⊆ F . Since
µ ∈ TrD(G), then according to Lemma 2, there exists a unique run% ∈ Runs1(H)
such thatPM2(tr(%)) = µ. Then,last(%) = PostG(s0, [[µ]]D) ∈ Bad, sofD is not a
winning strategy.

B Proof of Theorem 4

Let us first compute the set of winning states of the game for player 1 It is defined as
follows: Let Good = (S1 ∪ S2) \ Bad be the set of safe states ofH. To solve this
2-player game, we define theCpre operator:

CPre(S) = {s ∈ S1 | ∃t ⊆ Σ | δH(s, t) ∈ S} ∪
{(s, t) ∈ S2 | ∀λ ∈ t | δH((s, t), λ) ∈ S}

Then by iteratingCpre and computing the fix-pointCpre∗(Good) = ∩iCprei(Good),
we obtain the set of winning states of the game for Player 1 [20], and as the set of
states is finite, this computation terminates. If the initial state of the game belongs
to Cpre∗(Good), then there is a strategy for Player 1 to win. Consider now the fol-
lowing finite automaton derived fromH: FH = (Cpre∗(Good), s0, Σ ∪ 2Σ , δFH

),
whereδFH

is the restriction ofδH to the statesCpre∗(Good). Now, f is a winning
strategy for Player 1 w.r.t.H and Bad if and only if for any runρ ∈ Runs1(H),
f(ρ) ∈ EnabledFH(last(ρ)), namely, every move defined byf is a move of the most
permissive strategy. In other words, any winning strategy inH is aninstanceof the most
permissive strategy. Now from Proposition 5, given a winning strategy, we can define a
valid dynamic projection from which we can derive a valid dynamic observer (Proposi-
tion 2). Conversely, with each valid dynamic observerD is associated a valid dynamic
projectionDO (Proposition 1) and from Proposition 4,fDO is a winning strategy which
thus can be generated byFH .

