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Abstract. We consider the problem of controller synthesis under imper-
fect information in a setting where there is a set of available observable
predicates equipped with a cost function. The problem that we address
is the computation of a subset of predicates sufficient for control and
whose cost is minimal. Our solution avoids a full exploration of all possi-
ble subsets of predicates and reuses some information between different
iterations. We apply our approach to timed systems. We have developed
a tool prototype and analyze the performance of our optimization algo-
rithm on two case studies.

1 Introduction

Timed automata by Alur and Dill [2] is one of the most popular formalism for
the modeling of real-time systems. One of the applications of Timed Automata
is controller synthesis, i.e. the automatic synthesis of a controller strategy that
forces a system to satisfy a given specification. For timed systems, the controller
synthesis problem has been first solved in [18] and progress on the algorithm
obtained in [9] has made possible the application on examples of a practical
interest. This algorithm has been implemented in the Uppaal-Tiga tool [3],
and applied to several case studies [1, 10, 11, 20].

The algorithm of [9] assumes that the controller has perfect information about
the evolution of the system during its execution. However, in practice, it is com-
mon that the controller acquires information about the state of the system via
a finite set of sensors each of them having only a finite precision. This motivates
to study imperfect information games.
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inVEST-279499, Danish-Chinese Center for Cyber Physical Systems (IDEA4CPS)
and VKR Center of Excellence MT-LAB.



The first theoretical results on imperfect information games have been ob-
tained in [22], followed by algorithmic progresses and additional theoretical re-
sults in [21], as well as application to timed games in [6, 8]. This paper ex-
tends the framework of [8] and so we consider the notion of stuttering-invariant
observation-based strategies where the controller makes choice of actions only
when changes in its observation occur. The observations are defined by the val-
ues of a finite set of observable state predicates. Observable predicates correspond,
for example, to information that can be obtained through sensors by the con-
troller. In [8], a symbolic algorithm for computing observation-based strategies
for a fixed set of observable predicates is proposed, and this algorithm has been
implemented in Uppaal-Tiga.

In the current paper, we further develop the approach of [8] and consider a set
of available observation predicates equipped with a cost function. Our objective
is to synthesize a winning strategy that uses a subset of the available observable
predicates with a minimal cost. Clearly, this can be useful in the design process
when we need to select sensors to build a controller.

Our algorithm works by iteratively picking different subsets of the set of
the available observable predicates, solving the game for these sets of predicates
and finally finding the controllable combination with the minimal cost. Our
algorithm avoids the exploration of all possible combinations by taking into
account the inclusion-set relations between different sets of observable predicates
and monotonic properties of the underlying games. Additionally, for efficiency
reasons, our algorithm reuses, when solving the game for a new set of observation
predicates, information computed on previous sets whenever possible.

Related works Several works in the literature consider the synthesis of con-
trollers along with some notion of optimality [5, 7, 4, 12, 16, 23, 13, 19] but they
consider the minimization of a cost along the execution of the system while
our aim is to minimize a static property of the controller: the cost of observ-
able predicates on which its winning strategy is built. The closest to our work
is [13] where the authors consider the related but different problem of turning on
and off sensors during the execution in order to minimize energy consumption.
In [15], the authors consider games with perfect information but the discovery of
interesting predicates to establish controllability. In [14] this idea is extended to
games with imperfect information. In those two works the set of predicates is not
fixed a priori, there is no cost involved and the problems that they consider are
undecidable. In [19], a related technique is used: a hierarchy on different levels of
abstraction is considered, which allows to use analysis done on coarser abstrac-
tions to reduce the state space to be explored for more precise abstractions.

Structure of the paper In section 2, we define a notion of labeled transition
systems that serves as the underlying formalism for defining the semantics of the
two-player safety games. In the same section we define imperfect information
games and show the reduction of [22] of these games to the games with complete
information. Then in section 3 we define timed game automata, that we use as a
modeling formalism. In section 4, we state the cost-optimal controller synthesis
problem and show that a natural extension of this problem (that considers a



simple infinite set of observation predicates) is undecidable. In section 5, we
propose an algorithm and in section 6, we present two case studies.

2 Games with Incomplete Information

2.1 Labeled Transition Systems

Definition 1 (Labeled Transition System). A Labeled Transition System
(LTS) A is a tuple (S, sinit,Σ,→) where:

– S is a (possibly infinite) set of states,
– sinit ∈ S is the initial state,
– Σ is the set of actions,
– →⊆ S ×Σ × S is a transition relation, we write s1

a
−→ s2 if (s1, a, s2) ∈→.

W.l.o.g. we assume that a transition relation is total, i.e. for all states s ∈ S
and actions a ∈ Σ, there exists s′ ∈ S such that s

a
−→ s′.

A run of a LTS is a finite or infinite sequence of states r = (s0, s1, . . . , sn, . . . )
such that si

ai−→ si+1 for some action ai ∈ Σ. ri denotes the prefix run of r
ending at si. We denote by Runs(A) the set of all finite runs of the LTS A and
by Runsω(A) the set of all infinite runs of the LTS A.

A state predicate is a characteristic function ϕ : S → {0, 1}. We write s |= ϕ
iff ϕ(s) = 1.

We use LTS as arenas for games: at each round of the game Player I (Con-
troller) chooses an action a ∈ Σ, and Player II (Environment) resolves the
nondeterminism by choosing a transition labeled with a. Starting from the state
sinit, the two players play for an infinite number of rounds, and this interaction
produces an infinite run that we call the outcome of the game. The objective
of Player I is to keep the game in states that satisfy a state predicate ϕ, this
predicate typically models the safe states of the system.

More formally, Player I plays according to a strategy λ (of Player I) which is
a mapping from the set of finite runs to the set of actions, i.e. λ : Runs(A) → Σ.
We say that an infinite run r = (s0, s1, s2, . . . , sn, . . . ) ∈ Runsω(A) is consistent

with the strategy λ, if for all 0 ≤ i, there exists a transition si
λ(ri)
−−−→ si+1. We

denote by Outcome(A,λ) all the infinite runs in A that are consistent with λ
and start in sinit. An infinite run (s0, s1, . . . , sn, . . . ) satisfies a state predicate
ϕ if for all i ≥ 0, si |= ϕ. A (perfect information) safety game between Player
I and Player II is defined by a pair (A,ϕ), where A is an LTS and ϕ is a state
predicate that we call a safety state predicate. The safety game problem asks to
determine, given a game (A,ϕ), if there exists a strategy λ for Player I such that
all the infinite runs in Outcome(A,λ) satisfy ϕ.

2.2 Observation-Based Stuttering-Invariant Strategies

In the imperfect information setting, Player I observes the state of the game
using a set of observable predicates obs = {ϕ1,ϕ2, . . . ,ϕm}. An observation is a



valuation for the predicates in obs, i.e. in a state s, Player I is given the subset
of observable predicates that are satisfied in that state. This is defined by the
function γobs:

γobs(s) ≡ {ϕ ∈ obs | s |= ϕ}

We extend the function γobs to sets of states that satisfy the same set of
observation predicates. So, if all the elements of some set of states v ⊆ S satisfy
the same set of observable predicates o (i.e. ∀s ∈ v · γobs(s) = o), then we let
γobs(v) = o.

In a game with imperfect information, Player I has to play according to obser-
vation based stuttering invariant strategies (OBSI strategies for short). Initially,
and whenever the current observation of the system state changes, Player I pro-
poses some action a ∈ Σ and this intuitively means that he wants to play the
action a whenever this action is enabled in the system. Player I is not allowed
to change his choice as long as the current observation remains the same.

An Imperfect Information Safety Game (IISG) is defined by a triple (A,ϕ, obs).
Consider a run r = (s0, s1, . . . , sn), and its prefix r′ that contains all the

elements but the last one (i.e. r = r′ · sn). A stuttering-free projection r ↓ obs
of a run r over a set of predicates obs is a sequence, defined by the following
inductive rules:

– if r is a singleton (i.e. n = 0), then r ↓ obs = γobs(s0)
– else if n > 0 and γobs(sn−1) = γobs(sn), then r ↓ obs = r′ ↓ obs
– else if n > 0 and γobs(sn−1) ̸= γobs(sn), then r ↓ obs = r′ ↓ obs · γobs(sn)

Definition 2. [8] A strategy λ is called obs-Observation Based Stuttering In-
variant (obs-OBSI) if for any two runs r′ and r′′ such that r′ ↓ obs = r′′ ↓ obs,
the values of λ on r′ and r′′ coincide, i.e. λ(r′) = λ(r′′).

We say that Player I wins in IISG (A,ϕ, obs), if there exists a obs-OBSI
strategy λ for Player I such that all the infinite runs in Outcome(A,λ) satisfy ϕ.

2.3 Knowledge Games

The solution of a IISG (A,ϕ, obs) can be reduced to the solution of a perfect
information safety game (G,ψ), whose states are sets of states in A and represent
the knowledge (beliefs) of Player I about the current possible states of A.

We assume that ϕ ∈ obs, i.e. the safety state predicate is observable for
Player I. This is a reasonable assumption since Player I should be able to know
whether he loses the game or not.

Consider an LTS A = (S, sinit,Σ,→). We say that a transition s1
a
−→ s2 in A

is obs-visible, if the states s1 and s2 have different observations (i.e. γobs(s1) ̸=
γobs(s2)), otherwise we call this transition to be obs-invisible. Let v ⊆ S be a
knowledge (belief) of Player I in A, i.e. it is some set of states that satisfy the same
observation. The set Postobs(v, a) contains all the states that are accessible from
the states of v by a finite sequence of a-labeled obs-invisible transitions followed
by an a-labeled obs-visible transition. More formally, Postobs(v, a) contains all



the states s′, such that there exists a run s1
a
−→ s2

a
−→ . . .

a
−→ sn and s1 ∈ v,

sn = s′, γobs(si) = γobs(s) for all 1 ≤ i < n, and γobs(sn) ̸= γobs(s).
The set Postobs(v, a) contains all the states that are visible for Player I

after he continuously offers to play action a from some state in v. Player I
can distinguish the states s1 and s2 from Postobs(v, a) iff they have different
observations, i.e. γobs(s1) ̸= γobs(s2). In other words, the set {Postobs(v, a) ∩
γ−1
obs(o) | o ∈ P(obs)} \ {∅} consists of all the beliefs that Player I might have

after he plays the a action from the knowledge set v5.
A game can diverge in the current observation after playing some action. To

capture this we define the boolean function Sinkobs(v, a) whose value is true iff
there exists an infinite run (s0, s1, . . . , sn, . . . ) ∈ Runs(A) such that s0 ∈ v and
for each i ≥ 0 we have si

a
−→ si+1 and γobs(si) = γobs(s0).

Definition 3. We say, that a game (G,ψ) is the knowledge game for (A,ϕ, obs),
if G = (V, vinit,Σ,→g) is an LTS and

– V = {v ∈ P(S) | ∀s1, s2 ∈ v · γobs(s1) = γobs(s2)} \ {∅} is the set of all the
beliefs of Player I in A,

– vinit = {sinit} is the initial game state,
– →g represents the game transition relation; a transition v1

a
−→g v2 exists iff:

• v2 = Postobs(v1, a) ∩ γ
−1
obs(o) and v2 ̸= ∅ for some o ⊆ obs, or

• Sinkobs(v1, a) is true and v2 = v1.
– v |= ψ iff ϕ ∈ γobs(v).

Theorem 1 ([8]). Player I wins in a IISG (A,ϕ, obs) iff he has a winning
strategy in the safety game (G,ψ) which is the knowledge game for (A,ϕ, obs).

This theorem gives us the algorithm of solution of a IISG for the case when
the knowledge games for it is finite and can be automatically constructed.

3 Timed Game Automata

The knowledge game (G,ψ) for (A,ϕ, obs) is finite when the source game A is
finite [22]. The converse is not true and there are higher level formalisms that can
induce infinite games for which knowledge games are still finite and can be au-
tomatically constructed. One of such formalisms is Timed Game Automata [17],
that we use as a modeling formalism and that has been proved in [8] to have
finite state knowledge games.

Let X be a finite set of real-valued variables called clocks. We denote by C(X)
the set of constraints ψ generated by the grammar: ψ ::= x ∼ k | x−y ∼ k | ψ∧ψ
where k ∈ IN, x, y ∈ X and ∼∈ {<,≤,=, >,≥}. B(X) is the set of constraints
generated by the following grammar: ψ ::= ⊤ | k1 ≤ x < k2 | ψ ∧ ψ where
k, k1, k2 ∈ IN, k1 < k2, x ∈ X , and ⊤ is the boolean constant true.

A valuation of the clocks in X is a mapping X 0→ R≥0. For Y ⊆ X , we denote
by v[Y ] the valuation assigning 0 (respectively, v(x)) for any x ∈ Y (respectively,

5 the powerset P(S) is equal to the set of all subsets of S



x ∈ X \ Y ). We also use the notation 0 for the valuation that assigns 0 to each
clock from X .

Definition 4 (Timed Game Automata). A Timed Game Automaton (TGA)
is a tuple (L, linit, X,E,Σc,Σu, I) where:

– L is a finite set of locations,
– linit ∈ L is the initial location,
– X is a finite set of real-valued clocks,
– Σc and Σu are finite the sets of controllable and uncontrollable actions (of

Player I and Player II, correspondingly),
– E ⊆ (L× B(X)×Σc × 2X × L) ∪ (L × C(X)×Σu × 2X × L) is partitioned

into controllable and uncontrollable transitions6,
– I : L → B(X) associates to each location its invariant.

We first briefly recall the non-game semantics of TGA, that is the semantics
of Timed Automata (TA) [2]. A state of TA (and TGA) is a pair (l, v) of a
location l ∈ L and a valuation v over the clocks in X . An automaton can do two
types of transitions, that are defined by the relation ↪→:

– a delay (l, v)
t
↪−→ (l, v′) for some t ∈ R>0, v′ = v + t and v′ |= I(l), i.e. to

stay in the same location while the invariant of this location is satisfied, and
during this delay all the clocks grow with the same rate, and

– a discrete transition (l, v)
a
↪−→ (l′, v′) if there is an element (l, g, a, Y, l′) ∈ E,

v |= g and v′ = v[Y ], i.e. to go to another location l′ with resetting the clocks
from Y , if the guard g and the invariant of the target location l′ are satisfied.

In the remainder of this section, we define the game semantics of TGA. As
in [8], for TGA, we let observable predicates be of the form (K,ψ), where K ⊆ L
and ψ ∈ B(X). We say that a state (l, v) satisfies (K,ψ) iff l ∈ K and v |= ψ.

Intuitively, whenever the current observation of the system state changes,
Player I proposes a controllable action a ∈ Σc and as long as the observation
does not change Player II has to play this action when it is enabled, and otherwise
he can play any uncontrollable actions or do time delay. Player I can also propose
a special action skip, that means that he lets Player II play any uncontrollable
actions and do time delay. Any time delay should be stopped as soon as the
current observation is changed, thus giving a possibility for Player I to choose
another action to play.

Formally, the semantics of TGA is defined by the following definition:

Definition 5. The semantics of TGA (L, linit, X,E,Σc,Σu, I) with the set of
observable predicates obs is defined as the LTS (S, sinit,Σc ∪ {skip},→), where
S = L × RX

≥0, sinit = (linit,0) and the transition relation is: (↪→ denotes the
non-game semantics of M)

6 We follow the definition of [8] that also assumes that the guards of the controllable
transitions should be of the form k1 ≤ x < k2. This allows us to use the results from
that paper. In particular, we use urgent semantics for the controllable transitions,
i.e. for any controllable transition there is an exact moment in time when it becomes
enabled.



– s
skip
−−−→ s′ exists, iff s

au

↪−→ s′ for some au ∈ Σu, or there exists a delay

s
t
↪−→ s′ for some t ∈ R>0 and any smaller delay doesn’t change the current

observation (i.e. if s
t′

↪−→ s′′ and 0 ≤ t′ < t then γobs(s) = γobs(s′′)).

– for a ∈ Σc, s
a
−→ s′ exists, iff:

• a is enabled in s and there exists a discrete transition s
a
↪−→ s′, or

• a is not enabled in s, but there exists a discrete transition s
au

↪−→ s′ for
some au ∈ Σu, or

• there exists a delay s
t
↪−→ s′ for some t ∈ R>0, and for any smaller

delay s
t′

↪−→ s′′ (where 0 ≤ t′ < t) the observation is not changed, i.e.
γobs(s) = γobs(s′′), and action a is not enabled in s′′.

For a given TGA M , set of observable predicates obs and a safety state-
predicate ϕ (that can be again of the form (K,ψ)), we say that Player I wins in
the Imperfect Information Safety Timed Game (IISTG) (M,ϕ, obs) iff he wins
in the IISG (A,ϕ, obs), where A defines the semantics for M and obs.

The problem of solution of IISTG is decidable since the knowledge games
are finite for TGA [8]. The paper [8] proposes a symbolic Difference Bounded
Matrices (DBM)-based procedure to construct them.

4 Problem Statement

Consider that several observable predicates are available, with assigned costs,
and we look for a set of observable predicates allowing controllability and whose
cost is minimal. This is formalized in the next definition:

Definition 6. Consider a TGA M , a finite set of available observable pred-
icates Obs over M , a safety observable predicate ϕ ∈ Obs and a monotonic
with respect to set inclusion function ω : P(Obs) → R≥0. The optimization
problem for (M,ϕ, Obs,ω) consists in computing a set of observable predicates
obs ⊆ Obs such that Player I wins in the Imperfect Information Safety Timed
Game (M,ϕ, obs) and ω(obs) is minimal.

We present in the next section our algorithm to compute a solution to the
optimization problem. In this paper, we restrict our attention to finite sets of
available predicates. We justify this restriction by the following undecidability
result: considering a reasonable infinite set of observation predicates, the easier
problem of the existence of a set of predicates allowing controllability is unde-
cidable:

Theorem 2. Consider a TGA M with clocks X, and an (infinite) set of avail-
able predicates Obs = {x < 1

q
| x ∈ X, q ∈ N, q ≥ 1} and the safety objective ϕ.

Determining whether there exists a finite set of predicates obs ⊂ Obs such that
Player I wins in IISTG (M,ϕ, obs) is undecidable.



Algorithm 1 Lattice-based algorithm
//input: TGA M , a set of observable predicates Obs, a safety predicate ϕ
//output: a solution with a minimal cost
function Optimize(M,ϕ, Obs,ω):
1. candidates := P(Obs) // initially, candidates contains all subsets of Obs
2. best candidate := None
3. while candidates ̸= ∅:
4. pick obs ∈ candidates
5. if Solve(M,ϕ, obs):
6. best candidate := obs
7. candidates = candidates \ {c : c ∈ P(Obs) ∧ ω(c) ≥ ω(obs)}
8. else:
9. candidates = candidates \ {c : c ∈ P(Obs) ∧ c ⊆ obs}
10. return best candidate

5 The Algorithm

The naive algorithm is to iterate through all the possible solutions P(Obs), for
each obs ∈ P(Obs) solve IISTG (M,ϕ, obs) via the reduction to the finite-state
knowledge games, and finally pick a solution with the minimal cost.

In section 5.1 we propose the more efficient algorithm that avoids exploring
all the possible solutions from P(Obs). Additionally, in sections 5.2 we describe
the optimization that reuses the information between different iterations.

5.1 Basic Exploration Algorithm

Consider, that we already solved the game for the observable predicates sets
obs1, obs2, . . . , obsn and obtained the results r1, r2, . . . , rn, where ri is either true
or false, depending on whether Player I wins in IISTG (M,ϕ, obsi) or not.

From now on we don’t have to consider any set of observable predicates
with a cost larger or equal to the cost of the optimal solution found so far.
Additionally, if we know, that Player I loses for the set of observable predicates
obsi (i.e. ri = false), then we can conclude that he also loses for any coarser
set of observable predicates obs ⊂ obsi (since in this case Player I has less
observation power). Therefore we don’t have to consider such obs as a solution
to our optimization problem. This can be formalized by the following definition:

Definition 7. A sequence (obs1, r1), (obs2, r2) . . . (obsn, rn) is called a non-redundant
sequence of solutions for a set of available observable predicates Obs and cost
function ω, if for any 1 ≤ i ≤ n we have obsi ⊆ Obs, ri ∈ {true, false}, and for
any j < i we have:

– ω(obsj) > ω(obsi) if rj = true,
– obsi ̸⊆ obsj, otherwise.

Algorithm 1 solves the optimization problem by iteratively solving the game
for different sets of observable predicates so that the resulting sequence of so-
lutions is non-redundant. The procedure Solve(M,ϕ, obs) uses the knowledge
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Fig. 1: a) The original LTS A and two observable predicates ϕ1 and ϕ2,
b) the knowledge game Gf for A with observable predicates {ϕ1,ϕ2},
c) the knowledge game G1

c for A with observable predicates {ϕ1},
d) the knowledge game G2

c for Gf with observable predicates {ϕ1}

game-reduction technique described in section 2. The algorithm updates the set
candidates after each iteration and when the algorithm finishes, the best candidate
variable contains a reference to the solution with the minimal cost.

Algorithm 1 doesn’t state, in which order we should navigate through the set
of candidates. We propose the following heuristics:

– cheap first (and expensive first) — pick any element from the candidates
with the maximal (or minimal) cost,

– random — pick a random element from the candidates,
– midpoint — pick any element, that will allow us to eliminate as many ele-

ments from the candidates set as it is possible. In other words, we pick an
element that maximizes the value of
min(|{c : c ∈ candidates∧w(c) ≥ w(obs)}|, |{c : c ∈ candidates∧ c ⊆ obs}|).

Algorithm 1 doesn’t specify how we store the set of possible solutions candidates.
An explicit way (i.e. store all elements) is expensive, because the candidates set
initially contains 2|Obs| elements. However, an efficient procedure for obtaining
a next candidate may not exist as a consequence of the following theorem:

Theorem 3. Let seqn = (obs1, r1), (obs2, r2), . . . , (obsn, rn) be a non-redundant
sequence of solutions for some set Obs and cost function ω : P(Obs) → R≥0.
Consider that the value of ω can be computed in polynomial time. Then the
problem of determining whether there exists a one-element extension
seqn+1 = (obs1, r1), (obs2, r2), . . . , (obsn, rn), (obsn+1, rn+1) of seq that is still
non-redundant for Obs and ω is NP-complete.

5.2 State space reusage from finer observations

Intuitively, if we have already solved a knowledge game (Gf ,ψf ) for a set obsf of
observable predicates, then we can view a knowledge game (Gc,ψc) associated
with a coarser set of observable predicates obsc ⊂ obsf as an imperfect infor-
mation game with respect to (Gf ,ψf ). Thus we can solve the knowledge game



for obs without exploring the state space of the TGA M and therefore without
using the expensive DBM operations. Moreover, we can build another game on
top of Gc (for an observable predicates set that is coarser than obs) and thus
construct a “Russian nesting doll” of games. This is an important contribution
of our paper, since this construction can be applied not only to Timed Games,
but also to any modeling formalism that have finite knowledge games.

The state space reusage method is demonstrated on a simple LTS A at Fig. 1.
Suppose, that we already built the knowledge game Gf for the observable pred-
icates {ϕ1,ϕ2}. Now, if we want to build a knowledge game for {ϕ1}, we can do
that in two ways. First, we can build it from scratch based on the state space of
A, and the resulting knowledge game G1

c is given at subfigure c. Alternatively,
we can build the knowledge game G2

c on the top of Gf (see subfigure d). The
states of G1

c are sets of states of A and the states of G2
c are sets of sets of states

of A. The games G2
c and G1

c are bisimilar, thus Player I wins in G1
c iff he wins

in G2
c (for any safety predicate). The latter is true for any LTS A, that is stated

by the following theorem and corollary:

Theorem 4. Suppose that obsc ⊂ obsf , (Gf ,ψf ) is the knowledge game for
(A,ϕ, obsf ), (G1

c ,ψ
1
c ) is the knowledge game for (A,ϕ, obsc) and (G2

c ,ψ
2
c ) is the

knowledge game for (Gf ,ψf , obsc). Then the relation R = {(v, v′)|v =
⋃

s′∈v′ s′}
between the states of G1

c and G2
c is a bisimulation.

Corollary 1. Player I wins in (G1
c ,ψ

1
c ) iff Player I wins in (G2

c ,ψ
2
c ).

This reusage method is also correct for the case when an input model is
defined as a TGA (since we can apply the theorem to the underlying LTS).

Implementation Our Python prototype implementation of this algorithm (see
https://launchpad.net/pytigaminobs) explicitly stores the set of candidates and
uses the on-the-fly DBM-based algorithm of [8] for the construction and solution
of knowledge games for IISTG (the algorithm stops early when it detects that
the initial state is losing).

6 Case studies
We applied our implementation to two case studies.

The first is a “Train-Gate Control”, where two trains tracks merge together
on a bridge and the goal of the controller is to prevent their collision. The trains
can arrive in any order (or don’t arrive at all), thus the challenge for the controller
is to handle all possible cases.

The second is “Light and Heavy boxes”, where a box is being processed on
the conveyor in several steps, and the goal of the controller is to move the box to
the next step within some time bound after it has been processed at the current
step.

6.1 Train-Gate control

The model of a single (first) train is depicted at Fig. 2. There are two semaphore
lights before the bridge on each track. A train passes the distance between
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Fig. 2: A model of a single train

semaphores within 1 to 2 time units. A controller can switch the semaphores
to red (actions stop1 and stop2 depending on the track number), and to green
(actions go1 and go2). These semaphores are intended to prevent the trains from
colliding on the bridge. When the red signal is illuminated, a train will stop at
the next semaphore and wait for the green signal.

It is possible to mount sensors on the semaphores, and these sensors will
detect if a train approaches the semaphore. This is modeled with observable
predicates (pos1 ≥ 1), (pos2 ≥ 1), (pos1 ≥ 2) and (pos2 ≥ 2).

exploration order expensive first cheap first midpoint random
state space reusage with without with without with without with without
minimum 10m 1h03m 50m 49m 24m 41m 10m 48m
maximum 11m 1h36m 1h30m 1h34m 55m 1h36m 1h26m 1h44m
average 10m 1h18m 1h0m 1h12m 33m 1h03m 37m 1h05m

(a) Running time (the average is computer on 10 runs)

exploration order expensive first cheap first midpoint random
without state space reusage 1 21.69 5.27 6.17
with state space reusage 7.1 0 2.7 3.46

(b) The average number of iterations

Fig. 3: Results for the Train-Gate model

The controller has a discrete timer that is modeled using the clock y. At any
time this clock can be reset by the controller (action reset). There is an available
observable predicate (y < 2) that becomes false when the value of y reaches 2.
This allows the controller to measure time with a precision 2 by resetting y each
time this predicate becomes false and counting the number of such resets.

The integer variable critical contains the number of trains that are currently
on the bridge. The safety property is that no more than one train can be at the
critical section (bridge) at the same time and the trains should not be stopped
for more than 2 time units:

(critical < 2)∧((Train1.STOPPED) → (x1 ≤ 2))∧((Train2.STOPPED) → (x2 ≤ 2))



The optimal controller uses the following set of observable predicates: (pos1 ≥
2), (pos2 ≥ 2) and (y < 2). Such a controller waits until the second (in time)
train comes to the second semaphore, then pauses this train and lets it go after
2 time units.

Figure 3a reports the time needed to find this solution for different param-
eters of the algorithm. Figure 3b contains the average number of iterations of
Algorithm 1 (i.e. game checks for different sets of observable predicates). You
can see that it requires only a fraction of the total number of all possible solu-
tions 25 = 32. Additionally, the state space reusage heuristic allows to improve
the performance, especially for the “expensive first” exploration order. For this
model the most efficient way to solve the optimization problem is to first solve
the game with all the available predicates being observed, and then always reuse
the state space of this knowledge game. The numbers of 0 and 1 at Figure 3b
reflect that we don’t reuse the state space exactly once for the “expensive first”
order, and we never reuse the state space for the “cheap first” exploration order.

The game size ranges from 5 states for the game when only the safety state
predicate is observable to 9202 for the case when all the available predicates are
observable. The number of the symbolic states of TGA (i.e. different pairs of
reachable locations and DBMs that form the states of a knowledge game) ranges
from 1297 to 31171, correspondingly.

6.2 Light and Heavy Boxes
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Fig. 4: Light and heavy boxes model

Consider a conveyor belt on which Light and Heavy boxes can be put. A
box is processed in n steps (n is a parameter of the model), and the processing
at each step takes from 1 to 2 time units for the Light boxes, and from 4 to
5 time units for the Heavy boxes. The goal of the controller is to move a box
to the next step (by rotating the conveyor, with an action move) within 3 time
units after the box has been processed at the current step. At the last step the
controller should remove (action remove) the box from the conveyor within 3
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Fig. 5: Average running time (SSR states for State Space Reusage)

time units. If the controller rotates the conveyor too early (before the box has
been processed), too late (after more than 3 time units), or does not move it
at all, then the Controller loses (similar is true for the removing of the box at
the last step). Additionally, the controller should not rotate the conveyor when
there is no box on it, and should not try to remove the box when the box is not
at the last step. Our model is depicted at Fig. 4, and the goal of the controller
is to avoid the BAD location.

A box can arrive on the conveyor at any time, and there is an observable
predicate (pos = 0) with cost 1 which becomes true when the box is put on
the conveyor. Additionally, there is predicate (heavy = true) with cost 1 that
becomes true if a heavy box arrives. The model is cyclic, i.e. another box can be
put on the conveyor after the previous box has been removed from it.

As in the Traingate model, the controller can measure time using a special
clock y. We assume that a controller can measure time with different granularity,
and more precise clocks cost more. We model this by having three available
observable predicates: (y < 1) with cost 3, (y < 2) with cost 2, and (y < 3) with
cost 1.

A naive controller works with the observable predicates {(heavy = true), (pos =
0), (y < 1)}, resets the clock y each time a new box is arrived, and then move
it to the next step (remove after the last iteration) each 2 time units if the
box is light and 5 time units if the box is heavy. However, it is not neces-
sary to use the expensive (y < 1) observable predicate, since a controller can
move a box after each 3 (6 for heavy box) time units, thus the time granular-
ity of 3 is enough and there is a controller that uses the observable predicates
{(heavy = true), (pos = 0), (y < 3)}. Our implementation detects such an opti-
mal solution, and Fig. 5 demonstrates an average time needed to compute this
solution for different numbers of box processing steps n. You can see that the
state space reusage heuristics improves the performance of the algorithm.



The game size for this model ranges from 4 knowledge game states and 51
symbolic NTA states when there are 2 processing steps and only safety predicate
is observable to 6417 knowledge game states and 15554 symbolic NTA states for
9 processing steps and when all the available predicate are observable.

7 Conclusions

In this paper we have developed, implemented and evaluated an algorithm for the
cost-optimal controller synthesis for timed systems, where the cost of a controller
is defined by its observation power.

Our important contributions are two optimizations: the one that helps to
avoid exploration of all possible solutions and the one that allows to reuse the
state space and solve the imperfect information games on top of each other. Our
experiments showed that these optimizations allow to improve the performance
of the algorithm.

In the future, we plan to apply our method to other modeling formalisms
that have finite state knowledge games.
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