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Abstract

In this paper we present a timed extension of the AltaRica language, Timed AltaRica,
and describe the architecture of a compiler from Timed AltaRica to timed automata. We
present the features of the language, namely modularity, hierarchical modeling and reuse
of components during the specification phase, on an avionics example. Then, we use the
compiler from Timed AltaRica to Timed Automata to check some safety properties on the
system.

1 Introduction

Context. Nowadays computer programs are heavily used to automatically control embedded
systems (e.g. network protocols, washing machines). Most of these systems are critical in the
sense that a failure brings about losses of lives or of a huge amount of money. In the meantime
these systems are becoming more and more complex and high level languages [16, 8] have been
designed to specify those systems. Those languages usually provide support for hierarchical
(or modular) specification. Once specified there is a real need to check that the system meets
some requirements. In the last two decades major breakthroughs have been achieved in the area
of formal verification: i) it has become usual to verify (parts of) industrial discrete systems
via model-checking [21] (ii) more recently the verification techniques [19] have been extended to
continuous systems e.g timed and hybrid automata [24, 17]. Nevertheless if is often the case that
specification languages provide no support for real-time (continuous) specification (e.g. SDL [14])
or that no proper formal verification can be carried out on the specification (e.g. UML [11]).
On the other hand, the timed models like timed and hybrid automata [18] are difficult to use as
specification languages as they barely support hierarchical specification.
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A Hierarchical Specification Language: AltaRica. Modern software design exploits hi-
erarchy as a major feature for specifying complex systems. Usually a hierarchical specifica-
tion language provides a construct to define (elementary) components that can be reused and
composed (or synchronized) to create more complex components. The expressiveness of such
languages is determined by the power of the synchronization mechanism. In the 80’s a lot of
languages were developed to handle hierarchy (see [16]). AltaRica [15, 7] emerged at the same
time and is now a hierarchical specification language based on constraints automata [12] and
is equipped with a powerful synchronization mechanism for interacting components, including
priorities for instance. It has been used in various flavors to develop industrial software for
instance by the french plane manufacturer Dassault Avionics, the french power supply company
Electricit de France or the oil company TotalElfFina. A toolkit is currently being developed (see
Figure 1) at the University of Bordeaux I, France, in the AltaRica project, with the following
features:

The AltaRica specification language: The syntax and semantics of the language are for-
mally defined [7]; the basic objects of the language are components (finite state con-
straints automata) and can be hierarchically composed to create nodes. The composition
mechanism is quite powerful and extends the well-known synchronized product ( la Arnold-
Nivat) [1]. From this specification language one can extract different types of information.

The AltaRica compilers: An AltaRica program can be compiled into a finite state automa-
ton [6, 26] on which formal verification can be carried out; another compiler can produce
a fault-tree on which reliability analysis can also be carried out [5, 27]; a third compiler
produces a stochastic Petri Net on which performance analysis can be performed [28].

AltaRica is thus a powerful hierarchical specification language with formal verification support.
The need for real-time specification and verification emerged from the industrial users of AltaR-
ica.

Our Contribution. We have been involved in the AltaRica project for two years and our
work consists in extending AltaRica with real-time. This work is two-fold: i) first we had to
extend the syntax and semantics of AltaRica with real-time features [13, 22]; the extended
language is called Timed AltaRica; ii) second we had to provide a way of verifying real-time
AltaRica specifications. We have implemented a tool TARC that translates a Timed AltaRica
specification into a timed (or hybrid if needed) automaton that extends the AltaRica Toolkit
(Figure 1).

In this paper we describe the use of Timed AltaRica to specify real-time systems: we take an
avionics example from [10, 9]. Then we show how to use our compiler to produce a timed
automaton from a Timed AltaRica program; finally we verify safety properties using the tool
UPPAAL [24] for analyzing timed automata.
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Figure 1: Overview of the AltaRica Toolkit

Related work. UML [11] provides no support nor for real formal verification neither for
real-time specifications. SDL [14] has no support for real-time specification. Argos [20] is an
extension of StateCharts [16] but the timing features of Argos are restricted: one can only
constrains the time the system stays in a state (the invariants of the timed automata model) and
consequently the expressive power of Argos is strictly less than timed automata. On the contrary
Timed AltaRica has is as expressive as timed automata. Mocha [3] is another specification
language but to our knowledge does not provide with real-time specification so far (although it
is planned to add it to the language). Charon [4] is quite similar to AltaRica and provides with
a hierarchical specification language for hybrid systems. The time features (the dynamics the
specification language handle) of Charon are more advanced than in Timed AltaRica but there
is no mechanism for easily specifying timed priorities among components.

Outline of the Paper. In section 2 we describe the steering control system of an airplane. We
give its Timed AltaRica specification and show how the constructs and features of the language
allows for a clear and easy way to specify such a system. In section 3 we describe the architecture
of the Timed AltaRica compiler that translates Timed AltaRica specification into timed (and
hybrid) automata. We particularly focus on two steps: how to cope with hierarchy and how
to translate a simple component into a timed automaton. We finally show how to use the tool
UPPAAL [24] to check some properties of the designed steering control system. In section 5 we
discuss some ongoing and futur work.
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2 Specification of the Steering Control with Timed AltaRica

2.1 Informal Specification

We present an example from the avionics area developed in [9] and partially treated in [10]
to illustrate some Timed AltaRica features. We consider the part of the system in charge of
controlling the right steering of the plane (see Figure 2) and take the informal specification
of [10]:

• Three computers FR, FL and FB are in charge of controlling the steering;

• Two main buses are used: CLR (bold line on Figure 2) connects FR and FL; CLRB (dashed
line on Figure 2) connects FB to FR and FB to FL. There is another bus from FB, FR,
FL to the steering but we do not consider it and assume the communication on this bus is
instantaneous.

The informal specifications are as follows:

1. The steering is controlled by the Cmd event. Cmd can be issued either by FR or FL or FB

and is sent through the instantaneous bus.

2. Initially FR controls the steering and FL and FB are idle (they do not issue any Cmd).

3. If FR fails then FL takes over the control. If FL fails, FB takes over the control. In case
FL has already failed when FR fails the control is handled directly by FB. The assumption
is that FB cannot be down.

4. Each computer does a sampling control of the steering: when in charge of the control, they
issue a Cmd event every 20 ms.

5. Every 20 ms CLR updates the value of a state variable that corresponds to the state of FR

(0 for non failure and 1 for failure).

6. The bus CLRB works similarly and updates every 40 ms the values of a state variable that
corresponds to the number of components FR and FL that have failed (either 0, 1 or 2).

7. The recovery scheme is the following: FL scans the last updated value of CLR every 20
ms; when it is 1 it takes over. There is a delay between 10 and 20 ms before the take over
is active. FB scans the last updated value of CLRB every 20 ms and when the sum is 2 it
takes over1.

The requirements for the control of the steering are given by the following properties:
1As already mentioned FB cannot be down so this scheme is comprehensive.
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Figure 2: Architecture of the Steering Control Network

P1: at most one computer at a time can send the Cmd event;

P2: the maximum delay between two Cmd events must be less than 160 ms.

We now show how to model this control system with Timed AltaRica and how to check the
requirements.

2.2 Timed AltaRica Specification

Specification of the buses. The basic component in Timed AltaRica is the node. A node
consists of 3 main parts: the first one is the declaration of the variables (types, range) (see node
CLRB Figure 3, lines 2–8). Then comes the transitions part (lines 9–10) together with the initial
state (lines 11–12). The last one is the assertion part that constrains the values of the variables
(lines 13–16).

In the example of the node CLRB (Figure 3) we use one discrete state variable (line 5), failure
that gives the value of the last update defined by the transition of line 10. Such variables are
local variables and if one wants to make their values available from the outside of the node,
a flow variable can be used (lines 2–3). For instance Failure_RLB is a flow variable and it is
constrained (line 14) in node CLRB to track the value of the variable failure. Failure_L and
Failure_R are (external) flow variables and are shared together with Failure_RLB with the
other components. We just point out that if an assertion of the form Failure_R=0 is used in
one component and Failure_R=1 is used in another then the system will have no states at all as
it is impossible to meet this specification. So far it is the user’s task to check that flow variables
are not incorrectly used. One way to ensure this is to force that the assignment of a flow variable
occurs only in one component.

In the Timed AltaRica language we can use clock variables (and clock flows) like h (line 6).
It is exactly the same as the clocks used in timed automata in UPPAAL [24]. One can reset a
clock variable: this happens on the transition of line 10. To fire this transition we have to wait
until h=40 this means 40 time units since the last time h was reset. The notion of invariants
from timed automata is implemented via the tinvariant assertions (lines 15–16): time can
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progress as long as the invariants are true, which means in case of node CLRB that at most
40 time units can elapse between two refresh transitions. The node CLRB implements the
specification item (6) of Section 2.1: it reads every 40 time units the values of Failure_L and
Failure_R (that tells if a node FR or FL has failed) and sets failure accordingly. Notice that the
assertion Failure_RLB=failure makes available the updated value to the other components.
The specification of the bus CLR (item (5) of Section 2.1) is quite similar and is given in
appendix A, Figure 8, page 78.

1 node CLRB

2 flow

3 Failure_L , Failure_R : [0,1]; Failure_RLB : [0,2]

4 state

5 failure : [0,2];

6 h : clock

7 event

8 refresh

9 trans

10 h=40 |- refresh -> h:=0, failure:= Failure_L + Failure_R

11 extern initial_state =

12 failure=0 & h=0

13 assert

14 Failure_RLB=failure

15 tinvariant

16 true => (h<=40);

17 edon

Figure 3: Timed AltaRica Specification of the CLRB

Specification of the Computers. The specification of the computer FR (items (1) and (4)
of Section 2.1) is straightforward and given in appendix A, Figure 9, page 79. A flow variable
FailureR informs the others if the component FR is broken down (in which case FailureR = 1).
As long as FailureR = 0, the component sends a Cmd event each 20 t.u. which is specified by
the timed invariant (loc=0 => x <=20).

The specifications of the computers FL and FB are a little bit more involved and are respectively
given in the Figure 6 page 73 and in the appendix A, Figure 10 page 79. As for the component
FR, FL communicates its state through a flow variable FailureL. Moreover, we assume that
FB cannot break. For FL and FB, an internal variable mode gives the mode of the component:
mode = 0 corresponds to an idle state, that means it does not send any Cmd event; if mode = 1
the component starts the computation for the command and for mode = 2 the component
controls the steering and sends the Cmd event each 20 t.u.

Putting all Together. The Timed AltaRica specification of the steering is given in ap-
pendix A, Figure 11, page 79. Every time the steering receives a Cmd event the local clock
z is reset. With this specification, the property P2 (Section 2.1) reduces to checking that the
clock z of this node is always less than 160.

Now we can define the system in a hierarchical way and build a node main that synchronizes
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the (sub)nodes we have defined previously. The subcomponents are first instantiated (Figure 4,
lines 2–8). This mechanism allows the programmer to reuse previously defined components (e.g.
two steerings could be defined by st1, st2 : STEERING). Next we define the synchronization
of the subcomponents (item (1) of the informal specs, Section 2.1) and here we use a powerful
feature of AltaRica: broadcasting. The synchronization macro-vector of line 10 defines a set of
synchronization vectors and some priorities among them:

1. The constraint ≥ 2 imposes that at least two events among the four must occur simultane-
ously. For instance2 <st.cmd,-,fl.cmd,-> is suitable as well as <st.cmd,-,fl.cmd,fb.cmd>.
The macro-vector <st.cmd,fr.cmd?,fl.cmd?,fb.cmd?> >=2 generates 7 synchronization
vectors.

2. In case two transitions with synchronization vectors v and v′ are simultaneously en-
abled, the priority is given to the one that involves the largest number of nodes (if
v =<st.cmd,-,fl.cmd,-> and v′=<st.cmd ,-,fl.cmd,fb.cmd> are both fireable in a
state of the system, only v′ will be fired).

The last part of node main contains some flow coordination assertions (lines 12-16): it constrains
the values of the flow variables of the sub-nodes.

1 node main

2 sub

3 fr : FR;

4 fl : FL;

5 cr : CLR;

6 cs : CLRB;

7 fb : FB;

8 st : STEERING

9 sync

10 <st.cmd,fr.cmd?,fl.cmd?,fb.cmd?> >=2;

11 assert

12 fr.Failure_R=cr.Failure_R;

13 fl.Failure_LR=cr.Failure_LR;

14 fr.Failure_R=cs.Failure_R;

15 fl.Failure_L=cs.Failure_L;

16 fb.Failure_RLB=cs.Failure_RLB

17 edon

Figure 4: Timed AltaRica Specification of the Whole System

In this example we have not used any timed priority. Nevertheless the Timed AltaRica language
allows the user to define easily many types of time priorities like urgency. The reader is referred
to [13, 22] for a detailed description.

2In the sequel, the notation node.var refers to the variable var in the node node.
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3 The Timed AltaRica Compiler

An AltaRica program is hierarchical and built from nested sub-nodes. A useful theorem ([7])
shows how to rewrite a hierarchy of nodes into a single (flat) node while preserving the semantics
of the hierarchical specification. This process is called flattening and is the key operation of the
AltaRica compilers. MEC V [29] is one of those compilers and translates efficiently a hierarchical
(untimed) AltaRica program into a transition relation encoded with Binary Decision Diagrams
(BDD).

We have extended the previous flattening theorem for Timed AltaRica programs [13]. The
flattening operation is quite involved and our compiler TARC (Timed AltaRica Compiler) for
Timed AltaRica is built upon MEC V [29] in order to reuse the efficient flattening procedure.

3.1 Architecture of the TARC Compiler

We now describe how TARC works:

1. Abstraction of the timed constraints: in a first step TARC substitutes a boolean variable
for every elementary timed formula. In the example of Figure 3, we replace h = 40 by
γ1, h ≤ 40 by γ2 and we need another variable γ3 for the assignment h:=0 (just think
h:=0 is encoded as h’=0 where h′ gives the value of h after the transition has been fired.)
The initial condition does not generate any new variable as this is also γ3. This gives an
untimed node FL_u. In the case of a hierarchical description we do this abstraction for
each node.

2. Flattening: here we use the compiler MEC V to do the flattening on the untimed nodes
obtained by abstraction (step 1). The result of the compilation is a set of triples (B1, e, B2)
where Bi, i ∈ [1, 2] are BDDs encoding sets of values of discrete variables of the nodes, and
e is an event of the node main. For each v ∈ B1 there exists v′ ∈ B2 such that v

e−→ v′ is a
transition of the node main.

3. Concretization: from the previous untimed transition relation, we want to compute a
timed automaton. This is not straightforward and the idea is to partition the discrete state
space into classes that satisfy the same time invariants. This process is formally described
in [13]. It leads to the smallest (in terms of numbers of locations) timed automaton that is
timed bisimilar to the initial Timed AltaRica node. The timed automaton obtained from
the node FL (appendix A, Figure 6, page 73) is given in Figure 7.

The TARC compiler produces UPPAAL [24] or HyTech [17] input files from a Timed AltaRica
program. The abstraction step is quite clear and in the sequel, we detail the flattening and
concretization phases.
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3.2 Flattening

AltaRica and Timed AltaRica are two hierarchical and modular languages so that any AltaR-
ica and Timed AltaRica specification can be reduced into simpler specification without any
modeling features such as priority or broadcast. This result has been proved in a rewritting the-
orem [25, 13]: any AltaRica (resp. Timed AltaRica) node with subnodes and synchronisation
(even broadcast) constraints can be rewritten syntactically into a bisimilar AltaRica component
(resp. timed bisimilar Timed AltaRica component) without subcomponent and priority (resp.
timed priority). Then any Timed AltaRica program can be flattened down into a Timed AltaR-
ica component which is semantically equivalent and behaves in the same way. This allows to
apply formal methods on the system, such as model checking, and to verify exhaustively some
properties.

Practically, a Timed AltaRica program is abstracted (phase 1) and the MEC V Compiler [29]
flattens the abstracted node. Any component is encoded into a BDD, more precisely the BDD
encodes the transition relation of the component. Any node is translated inductively: the BDD
associated to a node with subcomponents is the union of the components’ BDDs and the node
BDD (representing its local behavior) restricted by all the constraints such as the synchronised
vectors and assertions.

In our example, the flattened automaton has exactly 4 locations. We use the TARC compiler
on the specification of the steering control and we obtain the flattened timed automaton (it has
25 transitions) given in the Figure 5.

3.3 Concretization

Once the flattening is achieved, we need to put back some abstracted information related to
quantitative timing constraints. We illustrate the translation from Timed AltaRica to Timed
Automata with the component FL given in the Figure 6. The formal algorithm is given and
proved in [13]. For the node FL we obtain the UPPAAL timed automaton given in the Figure 7.

Timed Automata. First, let us recall some notions on timed automata [2]. A timed automa-
ton is a tuple (Q,E, q0, X, I,→), where Q is set of locations, E is the set of actions, q0 is the
initial location, X is the set of real-time clocks, I is a mapping I : Q → C(X) where C(X) is a set
of constraints on the clocks, that associates to each location a formula on clocks called a timed
invariant and →⊆ Q× C(X)× (E ∪ R≥0)× 2X ×Q is the transition relation. Figure 7 depicts
a timed automaton with two locations Q = {s0, s1} and one clock X = {h}. The behavior of
a timed automaton consists of (i) continuous time step: time progresses and the clocks as well
and (ii) discrete transitions from one location to another taking no time.

For the timed automaton of Figure 7 the initial location is s1. There is no invariant on s0, so
that I(s0) = true. It means that the automaton can stay in the location s0 forever. On the other
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s3

FB0_h <= 20,CLRB0_h <= 40,CLR0_h <= 20

s1

FB0_h <= 20,CLRB0_h <= 40,CLR0_h <= 20,FR0_h<= 20

s2

FB0_h <= 20,CLRB0_h <= 40,CLR0_h <= 20,FL0_h <= 20

s0

FB0_h <= 20,CLRB0_h <= 40,CLR0_h <= 20,FL0_h <= 20,FR0_h<= 20

FR0_h==20
FR_Cmd!

FR0_h:=0,STEERING0_z:=0

breakdown_R!

breakdown_L!

FL_Cmd!
STEERING0_z:=0,FL0_h:=0

FL0_h==20,FL0_mode==2

breakdown_L!

FR0_h==20
FR_Cmd!

FR0_h:=0,STEERING0_z:=0

breakdown_R!

FB0_mode==2,FB0_h==20
FB_Cmd!

FB0_h:=0,STEERING0_z:=0

FB0_h==20

FB_reset!
FB0_h:=0

FB0_h==20
FB_reset!

FB0_h:=0

FL0_h==20
FL_reset!

FL0_h:=0

FB0_h==20

FB_reset!
FB0_h:=0

FB0_mode==1,FB0_h<=20,FB0_h>=10
FB_start_compute!

FB0_mode:=2,FB0_h:=0

FB0_mode==0,FB0_h==20

FB_reset!
FB0_mode:=1

FL0_mode==0,FL0_h==20
FL_reset!

FL0_mode:=1

FL0_mode==1,FL0_h<=20,FL0_h>=10
FL_start_compute!

FL0_mode:=2,FL0_h:=0

CLR0_h==20
CLR_reset!

CLR0_h:=0

CLRB0_h==40
CLRB_reset!

CLRB0_h:=0

CLR0_h==20
CLR_reset!

CLR0_h:=0
CLRB0_h==40

CLRB_reset!
CLRB0_h:=0

CLRB0_h==40
CLRB_reset!

CLRB0_h:=0

CLR0_h==20
CLR_reset!

CLR0_h:=0

CLR0_h==20

CLR_reset!
CLR0_h:=0

CLRB0_h==40
CLRB_reset!
CLRB0_h:=0

Figure 5: UPPAAL Flattened Timed Automaton of the System
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node FL

flow

Failure_L , Failure_LR : [0,1];

state

failure : [0,1];

mode : [0,2] ;

h : clock

event

reset, cmd, start_compute, breakdown_L

trans

mode=0 & Failure_LR=0 & h=20 & failure=0 |- reset -> h:=0 ;

mode=0 & Failure_LR=1 & h=20 & failure=0 |- start_compute -> h:=0, mode:= 1;

mode=1 & h<=20 & h>=10 & failure=0 |- cmd -> h := 0, mode:=2 ;

mode=2 & h=20 & failure=0 |- cmd -> h := 0;

true |- breakdown_L -> failure := 1;

extern initial_state =

mode=0 & failure=0 & h=0

assert

Failure_L=failure

tinvariant

(failure=0) => (h<=20);

edon

Figure 6: Timed AltaRica Specification of the computer FL

hand, the formula h ≤ 20 is the invariant of s1, i.e. I(s1) = h ≤ 20, and then the system can stay
in s1 only as long as h ≤ 20 (e.g. starting with h = 10, time can elapse at most for 10 t.u. in s1).
There are 4 events, one on each transition. For instance the transition (s1, h = 20, reset, h, s1)
is a loop on s1 that can be fired if the guard h = 20 is true; when the transition is fired h is
reset. Furthermore, we consider timed automata with discrete variables so that we can extend
the guards and the assignment on the variables (e.g. k := k + 1). These timed automata with
variables have the same expressiveness as timed automata as long as their domain is bounded
and can be analysed by the model-checking tools like UPPAAL and HYTECH.

From Timed AltaRica to Timed Automata A state of a Timed AltaRica component is a
valuation of its variables and obviously, a rough manner to transform a Timed AltaRica program
into a timed automaton consists in associating a location to each valuation of the set of discrete
variables, and then to add the timed invariant accordingly. This procedure may produce very
large timed automata.

Our strategy is to group together some states and produce the least possible number of locations.
We briefly describe the algorithm that implements this (the formal algorithm is detailed in [13]).
First the timed invariant of the component FL Figure 6 (failure=0 => h<=20) partitions the
set of valuations into two parts: either failure = 0 or not. In the first case, all the valuations
such that failure = 0 must verify the timed invariant h ≤ 20 whereas the valuations such that
failure 6= 0 has no timed constraint.

From this we create two locations s0 and s1 with invariants I(s0) = true and I(s1) = h ≤ 20. No-
tice that we need some discrete variables in our timed automata: {mode, failure,Failure R,Failure LR}.
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Now we try to compute the transition relation from the set of transitions of the Timed AltaRica
specification. Consider the transition:

mode=0 & Failure_LR=0 & h=20 & failure=0 |- reset -> h:=0

This transition does not modify any discrete variables: if we start in location si we end up again
in si. Note that failure = 0 implies this transition is only fireable from s1. It is depicted at the
bottom of s1 on Figure 7. (notice that this is UPPAAL automaton and that the events that are
not broadcasted are abstracted away, which is the case for event reset).

Now consider the transition

mode=0 & Failure_{LR}=1 & h=20 & failure=0 |- start_compute ->
h:=0, mode:= 1

Again this transition is not fireable from s0 because of the constraint failure = 0. The only
outgoing transition is from s1 and is depicted at the top of state s1.

The same method leads to the transition labeled cmd! (send event Cmd) from s1 to s1.

Note that we may have to iterate and refine the partition we have started with (s0 and s1): the
detailed procedure is given in [13]. We finally obtain the automaton of Figure 7.

s0 s1

h<=20

mode ==0, Failure_LR ==0,h==20, Failure_L ==0

h:=0
reset!

mode :=1,h:=0

start_compute!

mode ==0, Failure_LR ==1,h<=20,h>=10, Failure_L ==0

mode ==1,h==20, Failure_L ==0

mode :=2,h:=0

cmd!

Failure_L :=1
breakdown_L!

Figure 7: UPPAAL Timed Automaton of FL
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4 Verification

We can know verify the requirements given in the section 2.1 page 66. We check the following
properties with UPPAAL:

• the safety property A[](not deadlock) is true which means our timed automaton has no
deadlock;

• we can encode P1 in UPPAAL input temporal logic, as A[](FR.s1 imply (FL.mode==0
and FB.mode==0) and ((FL.mode==2 and FL.s 1) imply FB.mode==0)). It is also sat-
isfied by the system;

• the UPPAAL temporal logic encoding of P2 (Section 2.1) is A[](steer- ing.z <= 160)
and again is true.

Moreover we can check with UPPAAL that the upper bound 160 ms is actually reached and
UPPAAL produces a witness of this behavior.

5 Conclusion

We have implemented a translation from Timed AltaRica to timed automata and hybrid au-
tomata. The compiler TARC is based on the formal semantics of Timed AltaRica given in [13].
A prototype version of the compiler [23] is available and currently being improved.

With this prototype compiler we have demonstrated the usefulness and power of the Timed
AltaRica language. The Timed AltaRica compiler produces either UPPAAL [24] or HyTech [17]
files which enables us to use these efficient tools to check timing requirements. This work is a
significant contribution to the AltaRica Workbench and will enable the users to specify more
accurately their models and to check for real-time properties.

Acknowledgements The authors wish to thank Aymeric Vincent, LaBRI Bordeaux, France,
for his help in designing the TARC Compiler, the source code of which is based on [29].
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A Timed AltaRica Specifications

node CLR

flow

Failure_R , Failure_LR : [0,1];

state

failure : [0,2];

h : clock

event

refresh

trans

h=20 |- refresh -> h:=0, failure:= Failure_R ;

extern initial_state =

failure=0 & h=0

assert

Failure_LR=failure

tinvariant

true => (h<=20);

edon

Figure 8: Timed AltaRica Specification of the CLR

Remark. The flow variable Failure_L indicates whether FL has failed or not. The node
reads the value of the flow variable Failure_LR updated by the bus CLR (node Failure_CLR,
Figure 8.) The node FL can breakdown anytime as specified by the transition of line 15. In
the initial state mode=0 and FL is idle (does not send any cmd event). It reads the value of
Failure_LR every 20 time units as imposed by lines 11–12 and 21. If it has not failed and reads
that FR has failed (line 12) it switches to mode 1. In this mode it takes some time (between
10 and 20 time units) before it is actually ready to take over and send the event cmd. It then
sends it every 20 time units (unless if fails). Notice that the time invariant h<=20 only applies
when failure=0: once the computer has failed no time invariant applies; otherwise time would
be prevented from elapsing when failure=1 and the whole system would deadlock (fortunately
such deadlocks can be checked for with UPPAAL [24]).

The specification of the node FB is quite similar and is given in Figure 10.
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node FR

flow

Failure_R : [0,1]

state

loc : [0,1];

x : clock

event

breakdown_R, cmd

trans

x=20 & loc=0 |- cmd -> x:=0;

x<=20 & loc=0 |- breakdown_R -> loc := 1

assert

Failure_R=loc

tinvariant

(loc=0) => (x <=20)

extern initial_state =

loc=0 & x=0

edon

Figure 9: Timed AltaRica Specification of the computer FR

node FB

flow

Failure_RLB : [0,2];

state

mode : [0,2] ;

h : clock

event

reset, cmd, start_compute

trans

mode=0 & Failure_RLB<2 & h=20 |- reset -> h:=0 ;

mode=0 & Failure_RLB=2 & h=20 |- start_compute -> h:=0, mode:= 1;

mode=1 & h<=20 & h>=10 |- cmd -> h := 0, mode:=2 ;

mode=2 & h=20 |- cmd -> h := 0;

extern initial_state =

mode=0 & h=0

tinvariant

(mode = 2 | mode =1 | mode= 0) => (h<=20)

edon

Figure 10: Timed AltaRica Specification of the computer FB

node STEERING

state loc : [0,1]; z : clock

event cmd

trans loc=0 |- cmd -> z:=0

extern initial_state =

loc=0,z=0

edon

Figure 11: Timed AltaRica Specification of the Steering
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