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Abstract. The paper considers the complexity of verifying that a finite
state system satisfies a number of definitions of information flow secu-
rity. The systems model considered is one in which agents operate syn-
chronously with awareness of the global clock. This enables timing based
attacks to be captured, whereas previous work on this topic has dealt
primarily with asynchronous systems. Versions of the notions of nond-
educibility on inputs, nondeducibility on strategies, and an unwinding
based notion are formulated for this model. All three notions are shown
to be decidable, and their computational complexity is characterised.

1 Introduction

Information flow security is concerned with the ability for agents in a system
to deduce information about the activity and secrets of other agents. An in-
formation flow security policy prohibits some agents from knowing information
about other agents. In an insecure system, an agent may nevertheless be able
to make inferences from its observations, that enable it to deduce facts that it
is not permitted to know. In particular, a class of system design flaws, referred
to as covert channels, provide unintended ways for information to flow between
agents, rendering a system insecure.

Defining what it is for a system to satisfy an information flow security policy
has proved to be a subtle matter. A substantial literature has developed that
provides a range of formal systems models and a range of definitions of security.
In particular, in nondeterministic systems it has been found necessary to clarify
the attack model, and distinguish between a passive attacker, which merely aims
to deduce secret information from observations it is able to make from its position
outside the security domain to be protected, and a more active attacker, that
may have planted a Trojan Horse in the domain to be protected, and which
seeks to use covert channels to pass information out of this domain. While this
distinction turns out not to matter in asynchronous systems, in synchronous
settings, it leads to two different definitions of security, known as Nondeducibility
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on Inputs (NDI), and Nondeducibility on Strategies (NDS). (The term strategies
in the latter refers to the strategies that a Trojan Horse may employ to pass
information out of the security domain.) Considerations of proof methods for
security, and compositionality of these methods, has lead to the introduction of
further definitions of security, such as unwinding relations and the associated
definition of restrictiveness (RES).

One of the dimensions along which it makes sense to evaluate a definition
of security is the practicality of verification techniques it enables. The early
literature on the topic dealt primarily with theorem proving verification methods,
but in recent years the feasibility of automated verification techniques has begun
to be investigated. This recent work on automated verification of security has
dealt primarily with asynchronous systems models. In this paper we investigate
the complexity of automated verification for a range of definitions of information
flow in a synchronous systems model, in which agents are aware of a global clock
and may use timing information in their deductions. This model is significant
in that a number of timing-based attacks have been demonstrated that, e.g.,
enable cryptographic keys to be deduced just from the amount of time taken to
perform cryptographic operations [Koc96]. It is therefore desirable that systems
designs are free of timing-based covert channels; the asynchronous definitions of
security that have been the focus of much of the literature fail to ensure this.

We study three definitions of security in this paper: synchronous versions of
Nondeducibility on Inputs (NDI), Nondeducibility on Strategies (NDS) and an un-
winding based definition (RES). We consider just a two-agent setting, with agents
L for a low security domain and H for a high security domain, and the (clas-
sical) security policy that permits H to know about L’s activity, but prohibits
L from knowing about the activity of H. We show that all three definitions are
decidable in finite state systems, and with complexities of PSPACE-complete for
NDI, EXPSPACE-complete for NDS, and polynomial time for RES.

The structure of the paper is as follows. Section 2 introduces our systems
model, the definitions of security that we study, and states the main results of
the paper. The following sections discuss the proofs of these results. Section 3
deals with Nondeducibility on Inputs, Section 4 deals with Nondeducibility on
Strategies, and Section 5 deals with the unwinding-based definition. Related lit-
erature is discussed in Section 6, and Section 7 makes some concluding remarks.4

2 Semantic Model and Definitions

We work with a synchronous, nondeterministic state machine model for two
agents, H and L. At each step of the computation, the agents (simultaneously)
perform an action, which is resolved nondeterministically into a state transition.
Both agents make (possibly incomplete) observations of the state of the system,
and do so with awareness of the time.

A synchronous machine M is a tuple of the form 〈S, A, s0,→, O, obs〉 where

4 Proof details excluded due to space limitations will appear in the full version.



– S is the set of states,
– A = AH ×AL is a set of joint actions (or joint inputs), each composed of an

action of H from the set AH and an action of L from the set AL,
– s0 is the initial state,
– →⊆ S ×A× S defines state transitions resulting from the joint actions,
– O is a set of observations,
– obs : S × {H,L} → O represents the observations made by each agent in

each state.

We write obsu for the mapping obs(·, u) : S → O, and s
a−−→ s′ for 〈s, a, s′〉 ∈→.

We assume that machines are input-enabled, by requiring that for all s ∈ S
and a ∈ A, there exists s′ ∈ S such that s

a−−→ s′. We write Ms for the set of
synchronous machines.

A run r of M is a finite sequence r = s0a1s1 . . . ansn with: ai ∈ A and
si

ai+1−−−→ si+1 for all i = 0 . . . n− 1. We write R(M) for the set of all runs of M .
We denote the sequence of joint actions a1 . . . an in the run r by Act(r). For each
agent u ∈ {H,L} we define pu : A → Au to be the projection of joint actions
onto agent u’s actions. We write Actu(r) for the sequence of agent u’s actions in
Act(r), e.g., if Act(r) = a1 . . . an then Actu(r) = pu(a1) . . . pu(an).

For a sequence w, and 1 ≤ i ≤ |w|, we write wi for the i-th element of w,
and w[i] for the prefix of w up to the i-th element. We assume agents have a
synchronous view of the machine, making an observation at each moment of time
and being aware of each of their own actions (but not the actions of the other
agent, which are given simultaneously and independently). Given a synchronous
machine M , and u ∈ {H,L}, we define the mappings viewu : R(M) → O(AuO)∗

by:

viewu(s0a1s1a2 · · · ansn) = obsu(s0) pu(a1) obsu(s2) pu(a2) · · · pu(an) obsu(sn).

Intuitively, this says that an agent’s view of a run is the history of all its state
observations as well as its own actions in the run. We say that a sequence v of
observations and actions is a possible u view in a system M if there exists a run
r of M such that v = viewu(r). The mapping viewu extends straightforwardly
to sets of runs R ⊆ R(M), by viewu(R) = {viewu(r) | r ∈ R}. We define the
length |v| of a view v to be the number of actions it contains.

We remark that the model is sufficiently expressive to represent an alternate
model in which agents act in turn under the control of a scheduler. We say that
a machine is scheduled if for each state s ∈ S either

– for all actions a ∈ AH and b, b′ ∈ AL, and states t ∈ S, s
(a,b)−−−→ t iff s

(a,b′)−−−→ t,
or

– for all actions a, a′ ∈ AH and b ∈ AL, and states t ∈ S, s
(a,b)−−−→ t iff s

(a′,b)−−−→ t.

This definition says that state transitions in a scheduled machine are determined
by the actions of at most one of the agents (the agent scheduled at that state);
the other agent has no control over the transition. The model involving machines
under the control of a scheduler of [vdMZ08], in which at most one agent acts



at each step of the computation, can be shown to be interpretable as scheduled
synchronous machines.

We consider a number of different notions of information flow security. Each
definition provides an interpretation for the security policy L → H, which states
that information is permitted to flow from L to H, but not from H to L. Our
definitions are intended for synchronous systems, in which the agents share a
clock and are able to make deductions based on the time. (Much of the prior
literature has concentrated on asynchronous systems, in which an agent may not
know how many actions another agent has performed.) The first definition we
consider states that L should not be able to infer H actions from its view.

Definition 1. A synchronous machine M satisfies Non-Deducibility on Inputs
(M ∈ NDI) if for every possible L view v in M and every sequence of H actions
α ∈ A∗

H with |α| = |v|, there exists a run r ∈ R(M) such that ActH(r) = α and
viewL(r) = v.

Intuitively, in a synchronous system, L always knows how many actions H
has performed, since this is always identical to the number of actions that L
has itself performed. In particular, if L has made view v, then L knows that
H has performed |v| actions. The definition says that the system is secure if
this is all that L can learn about what sequence of actions H has performed.
Whatever L observes is consistent with any sequence of actions by H of this
length. More precisely, define KL(v) for an L view v to be the set of H action
sequences ActH(r) for r a run with v = viewL(r); this represents what L knows
about H’s actions in the run. Then M ∈ NDI iff for all possible L views v we
have KL(v) = A

|v|
H .

The definition of NDI takes the viewpoint that a system is secure if it is not
possible for L to make any nontrivial deductions about H behaviour, provided
that H does not actively seek to communicate information to L. This is an
appropriate definition when H is trusted not to deliberately act so as to com-
municate information to L, and the context is one where H is equally likely to
engage in any of its possible behaviours. In some circumstances, however, NDI
proves to be too weak a notion of security. In particular, this is the case if the
attack model against which the system must be secure includes the possibility of
Trojan Horses at the H end of the system, which must be prevented from com-
municating H secrets to L. The following example, due in essence to Wittbold
and Johnson [WJ90] shows that it is possible for a system to satisfy NDI, but
still allow for L to deduce H information.

Example 1. We present a synchronous machine that satisfies NDI in Fig. 1. We
use the convention in such figures that the observations are shown on a state
s in the form of obsH(s)/obsL(s). Edges are labelled with joint actions (a, b)
where a ∈ AH and b ∈ AL. When a is x this means that there is such an edge
for all a ∈ AH . In this example the action sets are AH = {0, 1}, AL = {0}.
Note that in state s1 and s2, L’s observation in the next state is determined
as the exclusive-or of H’s current observation and H’s action. The system is in
NDI since every H action sequence is compatible with every L view of the same
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Fig. 1. A synchronous machine in NDI, but not in NDS, where x ∈ {0, 1}.

length. For example, the L view 00000 is consistent with H action sequence x0
(path s0s1s3) and with H action sequence x1 (path s0s2s3). Nevertheless, H
can communicate a bit b of information to L, as follows. Note that H is able
to distinguish between state s1 and s2 by means of the observation it makes
on these states (at time 1). Suppose b = 1, then H chooses action 1 at s1 and
action 0 at s2; in either case the next state is s4, and L observes 1. Alternately,
if b = 0, then H chooses action 0 at s1 and action 1 at s2; in either case the next
state is s3, and L observes 0. Whatever the value of b, H has guaranteed that L
observes b at time 2, so this bit has been communicated. Intuitively, this means
that the system is unable to block Trojan Horses at H from communicating with
L, even though it satisfies NDI. (The structure can be repeated so that H can
communicate a message of any length to L in plaintext.) ut

The essence of this example is that L is able to deduce H secrets based not
just on its knowledge of the system, but also its knowledge that H is following
a particular strategy for communication of information to L. In response to this
example, Wittbold and Johnson proposed the following stronger definition of
security.

First, define an H strategy in a system M to be a function π mapping
each possible view of H in M to an H action. Intuitively, H’s behaviour must
depend on what H has been able to observe in the system. Say that a run
r = s0a1s1 . . . ansn is consistent with an H strategy π if for all i = 0 . . . n − 1,
we have pH(ai+1) = π(viewH(s0a1s1 . . . aisi)). We write R(M,π) for the set of
runs of M that are consistent with the H strategy π.

Definition 2. A synchronous system M satisfies Nondeducibility on Strategies
(M ∈ NDS), if for all H strategies π1, π2 in M , we have viewL(R(M,π1)) =
viewL(R(M,π2)).

Intuitively, this definition says that the system is secure if L is not able to
distinguish between different H strategies by means of its views. In Example 1, H
uses a strategy when b = 1 that produces the L view 00001 that is not produced
when H uses the strategy for b = 0. Thus, the sets of L views differ for these
two strategies, so the system is not in NDS.



An alternate formulation of the definition can be obtained by noting that for
every possible L view v, there is an H strategy π such that v ∈ viewL(R(M,π)),
viz., if v = viewL(r), we take π to be a strategy that always performs the same
action at each time i < |r| as H performs at time i in r. Thus, we can state the
definition as follows:

Proposition 1. M ∈ NDS iff for all H strategies π in M , we have
viewL(R(M,π)) = viewL(R(M)).

This formulation makes clear that H cannot communicate any information
to L by means of its strategies. It is also apparent that allowing H strategies
to be nondeterministic (i.e., functions from H views to a set of H actions)
would not lead to a different definition of NDS, since the more choices H has
in a strategy the more L-views are compatible with that strategy. We remark
that in asynchronous systems (in which we use an asynchronous notion of view),
similarly defined notions of non-deducibility on inputs and non-deducibility on
strategies turn out to be equivalent [FG95a,vdMZ06]. The example above shows
that this is not the case in synchronous machines, where the two notions are
distinct.

Nondeducibility-based definitions of security are quite intuitive, but they turn
out to have some disadvantages as a basis for secure systems development. One
is that they are not compositional: combining two systems, each secure according
to such a definition, can produce a compound system that is not secure [McC88].
For this reason, some stronger, but less intuitive definitions have been advocated
in the literature.

One of these, McCullough’s notion of restrictiveness [McC88], is closely re-
lated to an approach to formal proof of systems security based on what are known
as “unwinding relations.” A variety of definitions of unwinding relations have
been proposed in the literature [GM84,Rus92,Man00b,BFPR03], in the context
of a number of different underlying systems models and associated definitions of
security for which they are intended to provide a proof technique. We propose
here a variant of such definitions that is appropriate to the machine model we
consider in this paper, drawing on definitions proposed by van der Meyden and
Zhang [vdMZ08] for machines acting under the control of a scheduler.

A synchronous unwinding relation on a system M is a symmetric relation
∼⊆ S × S satisfying the following:

– s0 ∼ s0,
– s ∼ t implies obsL(s) = obsL(t).

– s ∼ t implies for all a1, a2 ∈ AH and a3 ∈ AL, if s
(a1,a3)−−−−→ s′ then there

exists a state t′ such that t
(a2,a3)−−−−→ t′, and s′ ∼ t′.

Intuitively, an unwinding relation is a bisimulation-like relation over S that
shows L observations are locally uncorrelated with H actions.

Definition 3. A synchronous machine M satisfies restrictiveness (M ∈ RES),
if there exists a synchronous unwinding relation on M .
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Part of the significance of RES is that it provides a proof technique for our
notions of nondeducibility, as shown by the following result, which relates the
three notions of security we have introduced:

Theorem 1. The following containments hold and are strict: RES ⊂ NDS ⊂ NDI.

Example 2. We present a machine in fig. 2 that satisfies NDS but does not satisfy
RES. In this system we let AH = {0, 1}, AL = {0}. We use the conventions
from Example 1. One may easily observe that L’s view is in the pattern of
000((00)∗ + (01)∗) all of which are compatible with every possible H strategy.
However, there does not exist a synchronous unwinding relation to relate s0 to
s0. Suppose there were such a relation ∼ such that s0 ∼ s0, then for joint actions

(0, 0) and (1, 0), we have s0
(0,0)−−−→ s1, s0

(1,0)−−−→ s2 and s0
(1,0)−−−→ s3, and we would

require s1 to be related to either s2 or s3. However, neither s2 nor s3 can be
related to s1: from s2 user L can only observe (00)∗ in the future, and from s3

only (01)∗ can be observed by L. Note from s1 both (00)∗ and (01)∗ are possible
for L. ut

Our main contribution in this paper is to characterise the complexity of
checking the three notions of security we have introduced above. The results are
given in the following theorem:

Theorem 2. Restricted to finite state synchronous machines, and with respect
to PTIME reductions,

1. NDI is PSPACE-complete,
2. NDS is EXPSPACE-complete, and
3. RES is in PTIME.

We remark that the lower bound results for NDI and NDS require only sched-
uled machines, so these problems are already PSPACE-hard and EXPSPACE-
hard, respectively, on this subclass. We describe the proof of these three claims
in the following three sections, in turn.



3 Synchronous Nondeducibility on Inputs

In this section we establish the complexity of NDI, Theorem 2(1).

3.1 NDI: Upper bound

Stating the definition in the negative, a system is not in NDI if there exists an
L view v and a sequence of H actions α with |α| = |v| such that there exists no
run r with ActH(r) = α and viewL(r) = v. We show that NDI is decidable by a
procedure that searches for such an L view v and H action sequence α. The key
element of the proof is to show that we need to maintain only a limited amount
of information during this search, so that we can bound the length of the witness
(v, α), and the amount of space needed to show that such a witness exists.

To show this, given a sequence α ∈ A∗
H and a possible L view v, with |α| = |v|,

we define the set K(α, v) to be the set of all final states of runs r such that
ActH(r) = α and viewL(r) = v. For the system M define the labelled transition
system L(M) = (Q, q0,⇒) as follows:

1. Q = S × P(S),
2. q0 = (s0, {s0}),
3. ⇒ is the labelled transition relation on Q with labels in AH × AL × AH ,

defined by (s, T ) ⇒(a,b,a′) (s′, T ′) if a ∈ AH , b ∈ AL, a′ ∈ AH such that

s
(a,b)−−−→ s′ and T ′ = {t′ ∈ S | for some t ∈ T we have t

(a′,b)−−−→ t′ and obsL(t′) =
obsL(s′)}.

Intuitively, the component s in a state (s, T ) ∈ Q is used to ensure that we
generate an L view v that is in fact possible. The components a, b in a transition
(s, T ) ⇒(a,b,a′) (s′, T ′) represent the actions used to generate the run underlying
v, and the component a′ is used to generate a sequence α. The set T represents
K(α, v). More precisely, we have the following result:

Lemma 1. If q0 ⇒(a1,b1,a′
1) (s1, T1) ⇒ · · · ⇒(an,bn,a′

n) (sn, Tn), then the se-
quence v = obsL(s0)b1obsL(s1) . . . bnobsL(sn) is a possible L view, and α =
a′1 . . . a′n is a sequence of H actions such that |v| = |α| and K(α, v) = Tn.

Conversely, for every possible L view v with |v| = n, and sequence of H
actions α = a′1 . . . a′n, there exists a path q0 ⇒(a1,b1,a′

1) (s1, T1) ⇒ · · · ⇒(an,bn,a′
n)

(sn, Tn) such that v = obsL(s0)b1obsL(s1) . . . bnobsL(sn) and K(α, v) = Tn.

We now note that for an H action sequence α and a possible L view v,
with |v| = |α|, there exists no run r such that ActH(r) = α and viewL(r) = v
iff K(α, v) = ∅. The existence of such a pair (α, v), is therefore equivalent, by
Lemma 1, to the existence of a path in L(M) from q0 to a state (s, T ) with T = ∅.
This can be decided in NSPACE(O(|M |)) = SPACE(O(|M |2)) ⊆ PSPACE.
This proves the following theorem.

Theorem 3. M ∈ NDI is decidable in PSPACE.

We note, moreover, that since there are at most |S| × 2|S| states in Q, if
there exists a pair (α, v) witnessing that M 6∈ NDI there exists such a pair with
|α| ≤ |S| × 2|S|.



3.2 NDI: Lower bound

We show that NDI is PSPACE-hard already in the special case of scheduled ma-
chines. The proof is by a polynomial time reduction from the problem of deciding
if the language L(A) accepted by a nondeterministic finite state automaton A
on alphabet Σ is equal to Σ∗ \ {ε}. This is easily seen to be a PSPACE-hard
problem, since testing L(A) = Σ∗ is known to be PSPACE-hard [SM73].

Let A = 〈Q,Q0, Σ, δ, F 〉 be a nondeterministic finite state automaton (with-
out ε-transitions), with states Q, initial states Q0 ⊆ Q, alphabet Σ, transition
function δ : Q × Σ → P(Q), and final states F . Without loss of generality, we
assume Q0 ∩ F = ∅.5 We define M(A) = 〈S, A, s0,→, obs, O〉 to be a scheduled
machine, and use a function sched : S → {H,L} to indicate the agent (if any)
whose actions determine transitions. In view of this, when sched(s) = u and
a ∈ Au, we may write s

a−→ t to represent that s
b−→ t for all joint actions b with

pu(b) = a. The components of M(A) are defined as follows.

– S = Q ∪ {s0, s1, s2, s3}, where Q ∩ {s0, s1, s2, s3} = ∅,
– sched(s0) = H and sched(s) = L for all s ∈ S \ {s0},
– A = AH ∪AL where AL = Σ and AH = {h, h′},
– O = {0, 1},
– obs : {H,L} × S → O with obsH(s) = 0 for all s ∈ S and obsL(s) = 0 for all

s ∈ S \ {s2}, and obsL(s2) = 1.
– −→⊆ S × A × S is defined as consisting of the following transitions (using

the convention noted above)

• s0
h−−→ q for all q ∈ Q0, and s0

h′

−−→ s1.
• s1

a−−→ s1 and s1
a−−→ s2 for all a ∈ Σ,

• s2
a−−→ s2 for all a ∈ Σ,

• s3
a−−→ s3 for all a ∈ Σ,

• for q, q′ ∈ Q and a ∈ AL = Σ we have q
a−−→ q′ for all q′ ∈ δ(q, a)

• for q ∈ Q and a ∈ AL = Σ such that δ(q, a) ∩ F 6= ∅, we have q
a−−→ s2,

• for q ∈ Q and a ∈ AL = Σ such that δ(q, a) = ∅, we have q
a−−→ s3.

The construction of M(A) from A can be done in polynomial time.

Proposition 2. L(A) = Σ∗ \ {ε} iff M(A) ∈ NDI.

Proof. Intuitively, the runs of M(A) produce two sets of L views. Runs in which
H does h′ in the first step produce all L views in 0Σ0(Σ0)∗(Σ1)∗. Runs in which
H does h in the first step correspond to simulations of A and produce L views
in 0Σ0(Σ0)∗ or of the form 0Σ0a10 . . . an−10an1(Σ1)∗ with a1 . . . an ∈ L(A).
Note that L may obtain any view in 0Σ0(Σ0)∗ by means of a run that stays in
Q for as long as possible, and moves to s3 whenever an action is not enabled.
Views in 0Σ0a10 . . . an−10an1(Σ1)∗ come from runs that pass through Q and
then jump to s2. Note that since H is not scheduled after the first step, replacing
5 This is just to let ε 6∈ L(A). If not, we apply unfolding on the initial states, and

study the resulting automaton which accepts the language L(A) \ {ε}.



any action by H after the first step in a run by any other action of H results in
another run, with no change to the L view. Thus the only thing that needs to
be checked to determine whether M(A) ∈ NDI is whether the same can be said
for the first step.

– For the ‘only if’ part, suppose L(A) = Σ∗ \ {ε}. We show that M(A) ∈ NDI.
Let r = s0(b1, a1)t1 . . . (bn, an)tn be a run of M(A), with the bi ∈ AH and
the ai ∈ AL. Let b′1 . . . b′n be any sequence of actions in AH . If b′1 = h′,
then it is clear that we can find a run r = s0(b′1, a1)t′1 . . . (b′n, an)t′n with
viewL(r) = viewL(r′). On the other hand, if b′1 = h then the same is true,
since L(A) = Σ∗ \ {ε}. Thus, the run required by M(A) ∈ NDI has been
shown to exist.

– For the ‘if’ part, suppose there is a word w = a1a2 . . . an 6∈ L(A). Then for
an arbitrary a0 ∈ Σ, the L view 0a00a10a2 . . . an1 cannot be obtained from
runs in which the first H action is h, because otherwise w would be accepted
by A. However this view is obtained from a run in which the first action is
h′. Therefore M(A) 6∈ NDI. ut

4 Nondeducibility on Strategies

In this section we establish the complexity of NDS, Theorem 2(2).

4.1 NDS: upper bound

For the proof that NDS is decidable in EXPSPACE, we show that the problem
is in DSPACE(2O(n)).

We use characterization of NDS given in Proposition 1. Let π be an H strategy,
let α be an H view, and let β be an L view, with |α| ≤ |β|. Say that π excludes
β if there does not exist a run r consistent with π such that β = viewL(r). Since
always R(M,π) ⊆ R(M), by Proposition 1, a system M satisfies NDS if it is not
the case that there exists a possible L view β in M and a strategy π such that π
excludes β. We first give a lemma that enables strategies excluding a particular
L view to be put into a uniform structure.

Given an H view α ∈ viewH(R(M,π)), define K(α, π, β) to be the set of all
final states of runs r consistent with π such that viewH(r) = α and viewL(r) is
a prefix of β.

Lemma 2. If there exists a strategy π that excludes β, then there exists a strat-
egy π′ that also excludes β, and has the property that K(α, π′, β) = K(α′, π′, β)
and |α| = |α′| implies π′(α) = π′(α′) for all H views α and α′.

Proof. Suppose that π excludes β. For purposes of the proof, note that we can
assume without loss generality that β is infinite — this helps to avoid men-
tion of views longer than β as a separate case.6 It is convenient to consider K

6 Note that it is equivalent to say that π excludes some prefix of β.



and strategies π to be defined over the larger set P = O(AHO)∗ rather than
viewH(R(M,π)). In case of K, we take K(α, π, β) = ∅ when there is no run r
consistent with π such that viewH(r) = α and viewL(r) is a prefix of β.

Let f be any mapping from P to P such that for all α, α′ ∈ P we have
(1) |f(α)| = |α| and (2) K(α, π, β) = K(f(α), π, β), and (3) if |α| = |α′| and
K(α, π, β) = K(α′, π, β), then f(α) = f(α′). Such a mapping always exists;
intuitively, it merely picks, at each length, a representative f(α) ∈ [α]∼ of the
equivalence classes of the equivalence relation defined by α ∼ α′ if K(α, π, β) =
K(α′, π, β).

Now define the mapping g on P as follows. Let α0 = OH(s0) be the only
possible H view of length 0. For α ∈ P of length 0, we define g(α) = α0 if α = α0

and g(α) = α otherwise. For longer α, we define g(αao) = f(g(α))π(f(g(α))o.
Also, define the strategy π′ by π′(α) = π(f(g(α))).

We claim that for all α ∈ P we have K(α, π′, β) = K(g(α), π, β). The
proof is by induction on the length of α. The base case is straightforward, since
α0 is consistent with all strategies, so K(α0, π

′, β) = {s0} = K(α0, π, β), and
K(α, π′, β) = ∅ = K(α, π, β) for α 6= α0. Suppose the claim holds for α ∈ P
of length i. Let αao ∈ P . By induction and (2), K(α, π′, β) = K(g(α), π, β) =
K(f(g(α)), π, β). Since action a = π′(α) = π(f(g(α)), K(αao, π′, β) is equal to
K(f(g(α))ao, π, β) = K(g(αao), π, β), as required.

To see that π′ has the required property, if K(α, π′, β) = K(α′, π′, β) with
|α| = |α′|, then we have K(g(α), π, β) = K(g(α′), π, β). By (3) we have f(g(α)) =
f(g(α′)). Therefore π′(α) = π(f(g(α))) = π(f(g(α′))) = π′(α′) by definition.

Since π excludes β, there exists a length n such that for all α ∈ P with
|α| = n, we have K(α, π, β) = ∅. Thus, we also have for all α of length n that
K(α, π′, β) = K(g(α), π, β) = ∅. This means that π′ also excludes β. ut

Based on Lemma 2, we construct a transition system (Q, q0 ⇒) that simul-
taneously searches for the strategy π and an L view β that is omitted by π.
The states Q are sets of sets k ⊆ S. The initial state q0 is {{s0}}. We use an
“update” function δaL,oL,aH ,oH

: P(S) → P(S), for each aL ∈ AL, aH ∈ AH ,
and oL, oH ∈ O, defined by

δaL,oL,aH ,oH
(k) = {t ∈ S | there exists s ∈ k with s

(aL,aH)−−−−−→ t and
obsH(t) = oH and obsL(t) = oL}.

The transitions are defined as follows: q ⇒(ρ,aL,oL) q′ if ρ : q → AH , aL ∈ AL

and oL ∈ O, and q′ = {δaL,oL,aH ,oH
(k) | k ∈ q and aH = ρ(k) and oH ∈ O}.

Intuitively, each state q represents a collection of all possible knowledge sets
that H can be in at a certain point of time, while attempting to omit some
sequence β. More specifically, each set k in q ∈ Q corresponds to an H view α
such that k = K(α, π, β). In a transition, we both determine the next phase of
π, by extending π so that π(α) = ρ(K(α, π, β)), and extend β to βaLoL.

The following results justify the correspondence between this transition sys-
tem and NDS.

Lemma 3. There exists a strategy π and a Low view β such that π excludes β,
iff there exists a path q0 ⇒∗ qn = {∅}.



We obtain the claimed complexity bound from Lemma 3, simply by noting
that it reduces NDS to a reachability problem in the transition system. Since the
states of the system can be represented in space |S| · 2|S| = 2O(|S|), we obtain
from Savitch’s theorem that we can do the search in DSPACE(2O(|S|)).

4.2 NDS: Lower Bound

To show that NDS is EXPSPACE-hard, we show how to encode the game BLIND-
PEEK of Reif [Rei84]. We need only scheduled machines for the encoding, so
the problem is EXPSPACE-hard already for this subclass.

BLIND-PEEK is a variant of the two-player game PEEK introduced by
Stockmeyer and Chandra [SC79]. A PEEK game consists of a box with two
open sides and containing horizontally stacked plates; the players sit at opposite
sides of the box. Each plate has two positions, ‘in’ and ‘out’, and contains a
knob at one side of the box, so that this plate can be controlled by one of the
players. At each step, one of the two players may grasp a knob from his side and
push it ‘in’ or ‘out’. The player may also pass. Both the top of the box and the
plates have holes in various positions, and each hole is associated to a player. If,
just after a move of player a ∈ {1, 2}, the plates are positioned so that for one
of the player’s holes, each plate has a hole positioned directly underneath that
hole, so that the player can peek through a sequence of holes from the top of
the box to the bottom, then player a wins. In PEEK, both players can observe
the position of all plates at all times. BLIND-PEEK [Rei84] is a modification
of PEEK in which player 1’s side of the box is partially covered, so that it is
not possible for player 1 to see the positions of the plates controlled by player 2.
Deciding whether there exists a winning strategy for player 1 in a PEEK game
is EXPTIME-hard, and it is EXPSPACE-hard in the case of BLIND-PEEK. We
make a reduction from a BLIND-PEEK game to achieve the lower bound result
for NDS.

Due to space limitations, we just give a brief sketch of the construction. Given
an instance G of BLIND-PEEK, we construct a synchronous system M(G), with
the following property: player 1 has a winning strategy in G iff there exists an
L view vL and an H strategy π that excludes vL in M(G). Note that since
player 1 plays blindfold in G, a player 1 strategy can be represented as simply
a sequence of player 1 moves, rather than a function from player 1 views to
player 1 moves. This sequence of player 1 moves will be encoded in the L view
vL. Nondeterminism will be used to represent the universal behaviour of player
2, and also to guess certain aspects of game state transitions. The role of the
H strategy π in the encoding will be to perform certain checking operations.
We make use of the sets K(vH , π, vL) to represent states of G. H will observe
all actions of H and L in the game, so H is always aware of the game state.
However, there remains some uncertainty in H’s knowledge of the state of the
system M(G) - we use this to represent the positions of the n plates in the game
as a set of n states of the system M(G).



5 Synchronous Bisimulation-based Notions

In this section we establish the complexity of RES, Theorem 2(3). We first note:

Lemma 4. 1. The largest synchronous unwinding relation is transitive.
2. If all states in M are reachable then the largest synchronous unwinding re-

lation ∼ is an equivalence relation.
3. A system satisfies RES iff its restriction to its reachable states satisfies RES.

It is not hard to show that finding the largest synchronous unwinding relation
(if any exists) on the reachable fragment of a machine 〈S, A, s0,→, O, obs〉 can be
done in polynomial time. The following algorithm, which works in O(|S|3×|→|)
time, resembles the algorithm for calculating the relational coarsest partition by
Kanellakis and Smolka [KS83].

Algorithm 1 Let So = {s ∈ S | obsL(s) = o}, and the initial partion P0 =
{So | o ∈ O} ∪ pbad with pbad = ∅. We repeat the following for all i ≥ 0 until
termination. Try every p1, p2 ∈ Pi in the following transformation rules:

1. If there exist s ∈ p1, a1, a2 ∈ AH and a3 ∈ AL such that (1) there exist

s
(a1,a3)−−−−→ t1 and t1 ∈ p2, and (2) s

(a2,a3)−−−−→ t2 implies t2 6∈ p2, then Pi+1 =
Pi \ {p1, pbad} ∪ {p1 \ {s}, pbad ∪ {s}}.

2. If there exist a1 ∈ AH and a2 ∈ AL, and we can split p1 into nonempty sets

p11 and p12 such that (1) for all s1 ∈ p11, {t′ ∈ S | s1
(a1,a2)−−−−→ t′} ∩ p2 6= ∅

and (2) for all s2 ∈ p12, {t′ ∈ S | s2
(a1,a2)−−−−→ t′} ∩ p2 = ∅, then we let

Pi+1 = Pi \ {p1} ∪ {p11, p12}.

When neither transformation rule applies, Pi+1 = Pi, and we return Pi.

The above algorithm produces the coarsest partition over S according to the def-
inition of synchronous unwinding, which yields a relation that is not necessarily
reflexive. If (s0, s0) is within that relation then the system is in RES. In practice,
whether or not (s0, s0) is still within a ‘good’ partition can be checked on-the-fly:
note that once (s0, s0) is moved into pbad, the algorithm can immediately return
false, indicating that the system is not in RES.

6 Related Work

In asynchronous machines the verification complexities of NDI and NDS are
both PSPACE-complete, and RES (based on asynchronous unwinding) is in
polynomial time [FG95b,FG96,vdMZ07]. Interestingly, PSPACE is also the com-
plexity result for verifying Mantel’s BSP conditions [Man00a] on asynchronous
finite state systems. For (asynchronous) push-down systems, the verification
problem is undecidable [DHK+08].

A number of works have defined notions of security for synchronous or timed
systems, but fewer complexity results are known. Köpf and Basin [KB06] define



a notion similar to RES and show it is PTIME decidable. Similar definitions are
also used in the literature on language-based security [Aga00,VS97].

Focardi et al [FGM00] define a spectrum of definitions related to ours in a
timed process algebraic setting, and state a decidability result for one of them,
close to our notion tNDS. However, this result concerns an approximation to
the notion tBNDC that is their real target, and they do not give a complexity
result. Beauquier and Lanotte defined covert channels in timed systems with
tick transitions by using strategies [BL06]. They prove that the problem of the
existence of a covert channel in such systems is decidable. However, their defini-
tion of covert channel requires that H and L have strategies to enforce a system
into sets of runs with projections into disjoint sets of L views. Intuitively, the
induced definition on free of covert channels turns out to be a weaker notion
than NDS.

7 Conclusion

We remarked above that nondeducibility-based notions of security may have
the disadvantage that they do not readily support a compositional approach
to secure systems development, motivating the introduction of unwinding-based
definitions of security. The complexity results of the present paper can be in-
terpeted as lending further support to the value of unwinding-based definitions.
We have found that the two nondeducibility notions we have considered, while
both decidable, are intractable. On the other hand, the unwinding-based notion
of synchronous restrictiveness has tractable complexity. This makes this defi-
nition a more appropriate basis for automated verification of security. Even if
the desired security property is nondeducibility on inputs or nondeducibility on
strategies, it is sufficient to verify that a system satisfies synchronous restrictive-
ness, since this is a stronger notion of security. It remains to be seen whether
there is a significant number of practical systems that are secure according to the
nondeducibility-based notions, but for which there does not exist a synchronous
unwinding. If so, then an alternate methodology needs to be applied for the
verification of security for such systems.
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