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Abstract—Our reliance on cyber–physical systems (CPSs) is in-
creasingly widespread, but scalable methods for the analysis of
such systems remain a significant challenge. Runtime verification
of CPSs provides a reasonable middle ground between formal ver-
ification and simulation approaches, but it comes with its own
challenges. A runtime verification system must run directly on the
deployed application. In the CPS domain, it is therefore critical
that a runtime verification system exhibits low overhead and good
scalability so that the verification does not interfere with the ana-
lyzed CPS application. In this paper, we introduce Brace, a runtime
verification system whose focus is on ensuring these performance
qualities for applications in the CPS domain. Brace strives to bound
the computation overhead for CPS runtime verification while pre-
serving a high level of monitoring accuracy in terms of the number
of false positive and false negative reports. Brace is particularly
suitable to systems in which scheduling is distributed across net-
worked CPS components. We evaluate Brace to determine how
effectively and efficiently it can detect injected errors in two ex-
isting real-life CPS applications with distributed scheduling. Our
results demonstrate that Brace efficiently detects those errors and
a few true bugs and is able to bound both the memory and com-
putation overhead even in systems with large numbers of observed
events.

Index Terms—Collaborative work, distributed computing, for-
mal verification, publish-subscribe, real-time systems, runtime.

I. INTRODUCTION

CYBER–PHYSICAL systems (CPSs) entail digital devices
interacting with analog ones, the surrounding world, and

humans in that world. Many systems we use daily are CPS,
including autonomous vehicles, automated health care, smart
grids, structural health monitoring, and other mission-critical
applications. As a consequence, we expect these systems to be
reliable. There have been many efforts to improve and ensure
CPS reliability. Formal methods, simulation, and testing have
been applied to increase the quality of parts of CPS, like the op-
erating system [27], but it is still a challenge to formally verify
complete CPS [60]. This challenge stems from the following:
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1) CPS contains analog components that are modeled, for ex-
ample, via differential equations, making a complete formal
model of a CPS a hybrid system, which are known to be hard to
formally analyze and 2) assumptions made to enable tractable
verification are often too restrictive; defects occur when the sys-
tem is deployed in a real environment in which the assumptions
are no longer satisfied [36].

Because formal verification of an end-to-end CPS is challeng-
ing, a second option is to execute the CPS and detect anomalies
at runtime. Runtime verification monitors the system execution
with respect to some specified properties and issues warnings
when a property is violated. Since CPS are often real-time hybrid
systems, the properties range from qualitative ones (e.g., safety
and liveness) to quantitative ones (e.g., responsiveness). This
variety often requires monitoring many events and capturing
the time that elapses between events (e.g., using clocks). Run-
time verification of CPS first requires the ability to collect events
needed to detect anomalies; this is done by instrumenting the
application, as is done in our recent work using lightweight dis-
tributed runtime monitors [59]. Even so, the number of events
is extremely large. Others’ previous work has demonstrated that
runtime checking of complicated (quantitative) properties with
a large number of events imposes a high overhead on system
performance [11]. Reining in this overhead is essential, espe-
cially in CPS, which are often constrained in terms of memory
and CPU resources.

Consider an example CPS, which we use throughout this pa-
per: A multiagent application coordinates a fleet of autonomous
vehicles in a global monitoring task. Application correctness re-
quires ensuring that a set of provided waypoints is navigated (a
safety property). Another (quantitative) property is determining
whether all waypoints can be navigated within τ time (a live-
ness property). Runtime checking of even these two properties
involves many variables. Considering there might be hundreds
of properties to check in a complex CPS, overhead can sky-
rocket, potentially impact the observed application [59]. The
state of the art in online monitoring based on formal specifica-
tions [2], [3], [34] focuses on very fine-grained management of
monitor state updated continuously by the application. However,
these approaches neither provide nor guarantee bounds for the
impact of memory and computational overhead on the observed
application.

Runtime verification of CPS is also made challenging
because the systems are large-scale distributed systems or
complex systems of systems. Monitoring properties requires
collecting and synchronizing events from nodes spread across
the distributed environment. Consider the multiagent CPS ex-
ample; one property to be checked is whether the total number
of messages required for the agents to reach a consensus on
task assignment is bounded [44]. Checking this global property
requires collecting and correlating information about messages
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and their sizes and numbers from the many distributed nodes
(e.g., unmanned vehicles). Stating correctness properties of CPS
requires at least the expressiveness of quantitative temporal and
first-order logic [13], [59]; efficient and scalable online mon-
itoring of global properties with the required expressiveness
remains an open challenge [11].

To make online runtime verification of CPS more efficient
and scalable while preserving accuracy, we introduce the Brace
runtime verification framework, which relies on a novel linear
optimization model and load balancing at runtime to guarantee
bounded computational and memory resources employed for
runtime monitoring of local properties (i.e., those involving just
a single computational node in a CPS). Brace allows develop-
ers to directly specify thresholds for memory and running time
allocated to the verification components. Brace’s load balanc-
ing uses additional dedicated monitor nodes as delegates for
runtime checking of the computational nodes in a CPS. Our so-
lution is the first to seek balance among CPU, memory, network
bandwidth, and additional computation units to provide bounds
for the overhead for runtime checking of CPS applications. To
monitor global properties, we create event transformation algo-
rithms that derive essential events from the observed traces so
that we can guarantee efficient monitoring of global properties
while reducing complex distributed monitoring to a standard
decision problem for testing membership of a trace in a regular
language [20]. Brace builds on existing work in runtime mon-
itoring that solves the problem of expressing local and global
properties [59]; this paper’s fundamental contributions are on
the mechanisms that enable efficiently checking these properties
at runtime. Specifically the following.

1) We combine lightweight event transformation, linear pro-
graming, and load balancing to enable efficient online
monitoring of CPS. Our approach is applicable to many
applications, including those with distributed scheduling.

2) We evaluate Brace in two test beds with real CPS appli-
cations, demonstrating that it is efficient and scalable.

We introduce our approach in Section II. In Section III, we
discuss our empirical study design and present the results in
Section IV. We overview the state of the art and practice in
Section V and relate it to Brace’s contributions. Section VI
summarizes the paper and discusses some future research.

II. BRACE APPROACH

In this section, we describe Brace, its architecture, and de-
tails of its components. We assume that local clocks for the un-
derlying distributed systems are sufficiently synchronized (i.e.,
that the worst case drift is below a very small and acceptable
σ); this is achievable using established algorithms [15], [35].
We assume low-level monitors generate event traces over which
Brace operates. We also assume facilities for translating between
high-level property specifications and implementable property
models (i.e., automata); our own work [59] achieves this for ex-
pressive CPS properties. Brace improves runtime verification of
high-level properties related to application logic, assumptions
made about a distributed deployment environment, temporal
constraints, and scheduling, all of which are otherwise hard or
impossible to check at runtime. We presume the low-level sys-
tems aspects (e.g., overflow, limit cycle, stability, and minimum
phase) have been thoroughly verified (e.g., through simulation),
though the impacts of such properties on application logic, de-
ployment environment assumptions, timing, and scheduling, can

Fig. 1. CPS monitor architecture.

also be checked in Brace. Dealing with unreliable communica-
tion is important in CPS; for now we assume a reliable message
passing mechanism (MQTT) [22], thereby delegating the re-
sponsibility to a lower layer. Recent work on a real-time data
distribution in CPS over slow or unstable networks [25] can
further mitigate this concern. In the future, Brace could inte-
grate more sophisticated handling of these unreliabilities, al-
lowing developers to state properties relating to communication
reliability.

A. Overview

Runtime monitoring of a CPS is shown in Fig. 1. An annotated
CPS program is deployed to an instrumented environment. A
CPS developer specifies correctness properties that guide the
collection of an execution trace (to limit what is collected to
what is necessary to check properties of interest). At runtime,
the CPS runtime monitor checks the execution trace against the
stated properties.

Brace is built using existing CPS runtime verification tools.
Existing CPS runtime verification methodologies [59] require
developers to write properties using formal specifications (e.g.,
temporal logics), and the runtime monitors are synthesized from
the specifications. Efficient runtime verification tools [34], [59]
often involve using the synthesized monitors to instrument the
binary code of the monitored application to improve monitoring
efficiency. These tools are all event-triggered, where events are
monitored as they occur. Instead, Brace uses time-triggered on-
line monitoring [10], [54], where runtime monitors are activated
periodically to avoid unnecessary overhead. We use time-driven
monitoring instead of event-driven monitoring to better deal
with the stochastic nature of CPS. For example, a CPS rover
might be deployed to an environment in which it is possible
(and often likely) that event generation will trigger events at un-
expected times or frequencies and event spikes may occur ran-
domly, making event-triggered monitoring less predictable. In
comparison, time-triggered approaches have more predictable
behavior, better enabling an approach whose overhead’s poten-
tial impact on the application can be mitigated. A time-triggered
monitoring system that can dynamically allocate the monitor-
ing time slots can handle the inherent stochastic effects with a
performance overhead that is more predictable than an event-
driven approach. While time-driven monitoring is particularly
suitable for multiagent systems (which are the most frequently
used architecture for self-adaptive CPS [38]) where there are
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a lot of consensus messages/events to be made, we acknowl-
edge that when events are extremely sudden and not frequent,
event-driven monitoring might be more suitable.

Therefore, instead of determining a fixed activation period
for runtime monitors statically, we introduce a linear optimiza-
tion model that is evaluated at runtime. The linear model can
determine a dynamic activation period for instructing the run-
time monitor when to start the next monitoring cycle. The linear
model requires executing an efficient solver at runtime to avoid
additional overhead. While it is quite hard to formally bound
the execution time of the solver as the number of variables
grows, our approach performs well empirically. We leave the
exploration of further optimization for future work; these op-
timizations may include interior-point optimization algorithms
and iterative refinements within a time bound or may convert
the problem into one solvable in constant time.

The linear optimization observes the application and runtime
monitors (e.g., the application’s signal generation speed and the
runtime monitors’ signal processing speeds), and determines
how long a monitor should sleep during each cycle and how long
it should remain active to process events to meet the required
balance of CPU and memory overheads. When the model cannot
produce an optimal solution, for example, due to an unexpect-
edly large number of events, Brace uses internal load balancing
to offload local monitoring to shared monitor nodes (which are
also used to monitor global properties). To minimize the penalty
for responsiveness while load balancing, Brace relies on low-
latency, scalable, and reliable message passing protocols [19],
[31]. While this is dependent on the communication channels
available in deployment environments, increasingly fast and re-
liable communications (e.g., 5G mobile networks) make this
much less of a constraint on the runtime verification system.

Brace’s monitors capture the execution of a CPS as an infi-
nite sequence of observations δ = δ0δ1 · · · δn · · ·. Each δi ⊆ 2E ,
where E is a set of propositions that describes the observed state
of the application. Since a CPS application is also a real-time
system, we assume the instrumentation also captures timing.
A timed trace is a pair Θ = (δ̄, τ̄), where δ̄ is a trace and τ̄
is an infinite sequence of non-negative real numbers. The tim-
ing sequence respects monotonicity (τi < τi+1) and progress
(∃i ∈ N ∀j ∈ R, τi > j).

Unlike a traditional timed system where each observation
can be a simple tuple (eid, τ) (where eid is the unique identifier
for “something happened” and τ is a timestamp), observations
for a CPS require additional semantic information. The event
observed is often associated with one or more keys. For ex-
ample, consider the property “the total number of messages
required to achieve consensus on task assignment is bound by
m.” Observation of the implicit event “when an agent is as-
signed a task” contains the taskID, and the observation of each
“consensus message” also contains the taskID. This key, i.e.,
taskID, connects the implicit event with the messages, which
is required to check the property. The property monitor may
require additional information to resolve the property. Consider
the property “after an agent is assigned a task, the atomic actions
of the task shall eventually be in the agent’s schedule,” which
must observe the agent’s local schedule. To accommodate in-
creased expressiveness in events, a program trace records event
observations using a generic event template that can include key
fields, numeric fields (that are aggregatable), and non-numeric
fields. The event template is in the form (eid, τ, nvk, nvn, nvnn)
where the last three fields each contain a list of zero or more

Fig. 2. Brace architecture—overview.

name-value pairs. nvk stores keys associated with the observa-
tion, nvn records numeric fields (to be aggregated by Brace),
and nvnn records non-numeric fields (e.g., a list of tasks).

Our prior work [59] extended an existing Agile specification
to cover the essential semantics of Event Clock Automata [1],
generated timed traces of the system’s execution using cus-
tomized annotations inside the implementation, and synthesized
runtime monitors to check property violations against the gen-
erated timed traces. We demonstrated that this approach had
both low overhead and high accuracy in capturing wild bugs
and injected ones. However, the approach is offline (the timed
trace is generated as the program executes, but the synthesized
monitor is checked against the timed trace offline). In the offline
approach, property violations are only detected after the fact,
making fault detection much more challenging. In this paper,
we use similar fundamentals but check properties online. We
check local properties at each application node and also check
global properties that cross multiple application nodes. Most
importantly, Brace bounds the computational overhead or prop-
erty checking and delivers fault notifications close in time to the
occurrence of the fault.

B. Brace Architecture

Fig. 2 shows an overview of Brace runtime monitoring.
Node 1 and Node 2 are distinct computational nodes in the
observed CPS. Each node hosts a Property Monitor that parses
program traces collected from the application execution; each
Property Monitor is associated with one local correctness prop-
erty (Pn); a single application node may host more than one
Property Monitor. BRACE (DISTRIBUTED) represents the
Brace executable on each computational node; it determines
whether to turn ON and OFF Property Monitors according to
the solution of the local optimization model, which is eval-
uated periodically. This component also aggregates events re-
quired for checking global properties and sends these aggregates
to global monitors via the underlying message passing frame-
work. Global monitors are hosted on monitor nodes, which are
designated for monitoring global properties and load-balancing
monitoring of local properties (i.e., in situations when the (lo-
cal) Property Monitor is turned OFF to avoid overhead). Each
monitor node contains (proxy) Property Monitors and a ded-
icated buffer to hold a program trace for each computational
node (node delegate in the figure). Each node delegate is by de-
fault deactivated and activated only when the corresponding
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Fig. 3. Brace architecture—components.

computational node requires load balancing. BRACE
(GLOBAL) is the Brace executable on each monitor
node. It listens to load balancing requests from computa-
tional nodes and activates the corresponding node delegates.
BRACE (GLOBAL) also listens to event aggregation data, fur-
ther filters and aggregates events, and places aggregated events
into a dedicated buffer (Aggregated Traces). These aggregated
events are checked by the global monitors against formally spec-
ified Global Properties (GPn). The monitor nodes are external to
the deployed CPS. The requirement for the computational power
of these nodes is determined by the number of application nodes
and the number of local properties and global properties to be
monitored. In our current implementation, we retrieve the re-
quirement empirically from a given evaluation application. We
leave the automation of requirement assessment as future work.

Fig. 3 shows the internal components of BRACE
(DISTRIBUTED) and BRACE (GLOBAL) and the interac-
tions between the two. BRACE (DISTRIBUTED) has three
components with distinct roles. The Linear Optimization ob-
serves each Property Monitor and the associated program traces
periodically evaluates its linear programing model, and uses the
solution to determine when to activate (and deactivate) Property
Monitors. The Linear Optimization also determines how to al-
locate the memory buffer required to hold unprocessed events
while the Property Monitor is OFF. Whenever the linear pro-
graming model cannot generate an optimal solution, it turns
OFF the associated Property Monitor and generates an LB (i.e.,
Load Balancing) signal, which is sent to the Load Balancing
component. The Linear Optimization component continues to
keep a track of the Property Monitor and program traces and
continues to evaluate the linear programing model. If it finds
an optimal solution, a specified number of times in a row, it
generates and sends a Revert signal (i.e., Revert to monitoring
properties locally) to Load Balancing. After Load Balancing
returns the signal “OK” (indicating that the latest monitor in-
stances from monitor nodes are restored), Linear Optimization
turns ON the local Property Monitor. Load Balancing for-
wards any LB signal to BRACE (GLOBAL), takes a snapshot
of Property Monitor, and publishes the snapshot along with
events from the program traces to BRACE (GLOBAL). After-
ward, Load Balancing periodically publishes a snapshot of new
events from the program traces along with the latest timestamp
(T_LB). Upon receiving a Revert signal, Load Balancing sends
the signal to BRACE (GLOBAL) and, then, waits for the corre-
sponding node delegate to return the latest instance of Property
Monitor. Finally, Event Aggregator is used to locate, aggre-
gate, and publish to BRACE (GLOBAL) aggregates of events
using the Brace format from the original program traces.

Fig. 4. Brace-timed-triggered monitoring.

BRACE (GLOBAL) has two components. The Event
Aggregator receives published aggregate events from
BRACE (DISTRIBUTED), synchronizes events across the dis-
tributed computational nodes, further filters and aggregates the
events, and generates the final aggregated signals into Aggre-
gated Traces for the Global Monitors. The Load Balancing
component receives snapshots of Property Monitor instances
and events from computational nodes that delegate monitoring
tasks to the monitor node. Load Balancing then activates the
corresponding node delegate and sends received events to the
queue holding program traces. Upon receiving a Revert signal
from a BRACE (DISTRIBUTED) instance, Load Balancing
takes a snapshot of the node delegate’s Property Monitor and
sends this snapshot back to BRACE (DISTRIBUTED). In
this paper, we focus primarily on Linear Optimization (see
Section II-C) and Event Aggregator (see Section II-D).

C. CPS Specific Linear Programing Model

Brace uses time-triggered online monitoring [10], [39], [54]
to reduce computational and memory overhead. However, in-
stead of statically analyzing a linear programing model to deter-
mine the monitor’s sampling and sleeping cycle, Brace allows
CPS developers a finer granularity of control (i.e., to specify
lower bounds on the sampling and sleeping states of the moni-
tor and an upper bound for the active time (AT) of the monitor).
Fig. 4 shows how Brace uses the linear programing model for
time-triggered online monitoring, targeted specifically for CPS,
where the linear optimization is evaluated dynamically, depend-
ing on the evolution of the system.

Each Property Monitor is deactivated during a computed
Monitor Idle time (IT). To prevent losing events, Brace’s event
buffer caches events from the underlying program traces. When
the property monitor is activated, it processes events collected
during the IT. The state of the art is to determine the first time for
activation (τA0) statically and subsequently activate and deacti-
vate the monitor on regular intervals, i.e., the next activation time
τA1 is statically determined to be 2 ∗ τA0 . The dynamic nature
of CPS quickly invalidates any statically determined monitor
activation schedule. CPS are often characterized by surges of
events that such a static schedule cannot handle. Instead, to cre-
ate dynamic activation schedules, we measure characteristics of
the CPS and use them as inputs to the linear programing model.
First, we measure event creation speed (CS, in events/second)
simply by observing the underlying program traces. This gives
us a good indication how much computational and memory
overhead will be incurred in the Property Monitor. Second, we
measure the event processing speed (PS, also in events/second)
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by observing the Property Monitor itself. This measurement is a
good indicator of whether the Property Monitor is overloaded in
spite of a reasonable CS. Our linear programing model relies on
these two inputs; Brace evaluates the linear programing model
each time the Property Monitor is deactivated to determine the
next activation time (i.e., when to wake up the sleeping monitor).
Since part of the runtime monitor’s job is to check the program
trace, retrieving CS has trivial overhead [59]. The overall over-
head of using Brace is proven to be very well bounded as shown
in Section IV.

In addition to enabling dynamic activation, CPS developers
also want to maximize the monitor’s IT and minimize its AT,
reducing CPU overhead and the potential impact of the monitor
on the CPS application, of course without impacting its ability
to detect violations. Brace allows CPS developers to specify a
minimum value for monitor IT (ITqos) and a maximum value
for monitor activation time (ATqos) of each Property Monitor.
To limit the memory required to store the idle period’s events
in the event buffer, the linear programing model searches for
an optimal solution to minimize the memory usage while find-
ing a satisfying IT and AT. Brace’s linear programing model’s
objective function is, therefore,

minimize(CS ∗ IT + (CS − PS) ∗ AT). (1)

This model is also framed by additional constraints imposed
by practicalities of the CPS environment. First, and simply:
ITqos ≤ IT and ATqos ≥ AT ensures that the application’s ob-
served IT, i.e., the time when no monitoring is occurring, meets
the required minimum IT and maximum AT provided by the
CPS developer. To bound memory overhead further, we add
the constraint: CS ∗ IT ≤ maxMemory to restrict how much
memory can be allocated to store unprocessed events during
each segment of IT (i.e., when the program is generating events
but the Property Monitor is not processing them because it is
deactivated). The value of maxMemory is provided by the CPS
developer. CS captures the average event generation speed in the
most recent sampling period, which Brace uses as a prediction
for the generation rate in the next sampling period.1

The optimal solution, if found, balances CPU overhead with
responsiveness and memory overhead. If the optimal solution
is not found, the node resorts to load balancing, which seeks
a balance between local computational overhead and network
overhead. Brace’s load balancing uses publish/subscribe [31] to
coordinate computational nodes running Brace software com-
ponents. BRACE (DISTRIBUTED) uses a bundle to combine
events and other data to save network overhead. Each bundle
contains a message header with the unique id of the application
node, a timestamp of the bundle’s creation, and a unique se-
quence number. Because we only want one monitor node to be
responsible for each computational node, we implement a can-
cel protocol on the publish/subscribe mechanism using a sec-
ond topic shared among monitor nodes. When a monitor node
receives a bundle and intends to process it, it publishes the bun-
dle’s node id and sequence number, along with the timestamp
at which it was received. If there are duplicates, the monitor
node that received the bundle first according to the reception

1Other approaches for estimating a future event generation rate exist, for
example, using a running average over a window of sampling periods or using
other context information to identify similar situations; we use this simple
approach in our prototype and leave the exploration of other heuristics to future
work.

timestamp keeps and processes the bundle while others discard
it. When a monitor node keeps and processes a bundle, it takes
responsibility for the load balanced Property Monitor, instanti-
ating the relevant node delegate and subsequently receiving and
processing events destined for the delegated Property Monitor.
The node delegate continues to do this until it receives a signal
from the Property Monitor’s computational node indicating that
the node is ready to retake responsibility for its own Property
Monitor.

D. Event Aggregation and Transformation

Aggregating events to evaluate global properties requires co-
ordinated actions among distributed (local) computational nodes
and (global) monitor node(s). Observations in program traces
from each local computational node adhere to the same Brace
event template (see Section II-A). We treat all event observa-
tions with the Brace event template as “instructions” for the dis-
tributed nodes as to which events to collect and send to global
property monitors. Reusing the Brace event template for this
purpose requires an additional field to differentiate whether the
event is for a local property, a global property, or both. The
Event Aggregator inside each BRACE (DISTRIBUTED) in-
stance aggregates events that have the same eid (i.e., those to
be sent to the same global property monitor) to reduce net-
work overhead and ultimately simplify the checking of global
properties that depend upon these events. The aggregation algo-
rithm groups observations with the same eid using the following
rules.

1) If any observations contain nvk (i.e., an observation is
associated with one or more keys), we add a count field
to contain the total number for each unique key.

2) If any observations contain nvn (i.e., an observation has
one or more variables with numeric fields), we add max,
min, and sum fields for each unique numeric field across
the aggregated observations.

3) If any observations contain nvnn (i.e., an observation is
associated with one or more variables with non-numeric
fields), we simply aggregate the values into a linked list
for each unique non-numeric field.

4) Instead of recording the timestamp (τ ) of each observa-
tion, we record τmin and τmax across all of the observa-
tions to capture a first and last timestamp for the aggregate.

Aggregated events are combined into bundles, which
are sent to BRACE (GLOBAL) at an application-specific
interval.

As bundles containing aggregated events are received at the
(global) monitor nodes, they are synchronized and transformed
to generate events in the aggregated traces used for checking
global properties. This process has two levels of synchroniza-
tion. The first is to synchronize events received from a single
computational node. Brace simply checks the unique sequence
number inside each bundle to guarantee a total ordering of mes-
sages from each application node and to detect missing bundles.
The second level is to synchronize events across distributed
nodes. Brace uses the timestamps of the events and known
maximum network delay to detect out-of-order delivery across
distributed nodes. Since the timestamp of each aggregate event
is a min and a max, we use the max. To check quantitative
properties that require finer granularity, we could introduce a
field in the Brace event template that keeps an event’s individ-
ual timestamp. The synchronization algorithms are similar to
existing literature [47].
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Fig. 5. Event transformation automata.

After events are fully synchronized and stored in an internal
lock-free queue, Brace uses two automata (shown in Fig. 5) to
transform the observed events into those checked by the global
monitor. The Count Automata transforms multiple aggregat-
able events with the same event identifier (eid) and matching
keys into a single event with all the information. It accepts
three inputs: a raw signal containing the aggregated event from
the internal queue, a list of keys that should be matched across
signals, and a counter indicating the number of raw signals re-
quired to generate the transformed signal, which is the output.
As an example, consider the property: “after all tasks are as-
signed, all tasks shall be completed within τ time units;” the
input is the event id for “an agent is assigned a task;” there is
one key (“taskID”); and the counter is the total number of tasks
that should be assigned (which is an application-level correct-
ness constraint).2 The generated signal represents the event “all
tasks are assigned,” which is the event of interest to the Property
Monitor.

Checking CPS properties requires first-order logic, where
a function implementing the predicate is invoked; the
Predicate Automata serves this purpose in Brace. It accepts
three inputs: a raw signal containing the aggregated event, a
Boolean expression (conditions) providing a required relation-
ship among events in the aggregated trace, and the predicate.
For the property “the number of messages required to reach
the consensus of which agent shall be assigned a given task is
bounded by m,” the signals are events representing each con-
sensus message; there is a single condition, which represents
“an agent is assigned a task;” and the predicate accepts a list
of aggregated consensus messages with each event object con-
taining the total number of consensus messages from a specific
vehicle regarding the task(s) that it is assigned. Brace invokes
the function with the required input and generates the output
signal if the function evaluates to TRUE. The aggregation and
filtering of the raw signal is bounded by the time span of those
events in the conditions. The aggregation relies on the key-value
pairs collected from the events (i.e., group by the unique node
id, event id, and key value).

The aggregation algorithms are largely dependent on the de-
cision procedure they preserve, and in turn, of the properties that
can be verified on the aggregated data. We presume it is intuitive
for the engineer using Brace to understand that the aggregation
process might lose information and prevent the verification of
certain classes of properties. Intuitively, we introduce event ag-
gregation and event transformation to reduce the number of
messages transmitted (thus saving network bandwidth) and the
number of states/events to be checked (thus lowering perfor-
mance overhead and increasing scalability). We will show this

2In our implementation, we automatically synthesize these automata based
on natural language specifications from developers [59].

first analytically and, then, with a case study on two test beds
with real-life CPS applications.

E. Combinatorial Analysis

Lemma II.1: The runtime complexity for the Event Aggre-
gator algorithm at each (local) computational node is O(|e|),
and the space complexity is also O(|e|), where |e| is the number
of observed events in the program trace.

Proof: The Event Aggregator algorithm iterates over each
event to create an aggregated event. The complexity of the ag-
gregation process is determined by the number of keys, number
of numeric fields, and number of non-numeric fields, which are
constant. So the runtime complexity is O(|e|). The extra space
required for the aggregated event is an additional “count” field
for each key field, and three additional fields (“min,” “max,”
“sum”) for each numeric field, which are also constant. So the
space complexity is O(|e|). !

Lemma II.2: The runtime complexity for the Event Aggre-
gator algorithm at the global monitor node is O(|e|2), and the
space complexity is O(|e|), where |e| is the number of observed
(raw) events.

Proof: The runtime complexities for the two levels of event
synchronization are both O(|e|2) (we assume the implementa-
tion uses an ordered link list). The runtime complexity of storing
events into an internal queue (another ordered link list) is also
O(|e|2). Each Count Automata requires one iteration to loop
through the internal queue created above, the runtime complex-
ity is O(|e|) for each of the automata, and there is a fixed constant
number of automata. The Predicate Automata requires one it-
eration to loop through the internal queue of raw events and
another internal loop over the conditions for the aggregated pro-
gram trace (another ordered link list); the runtime complexity
is therefore O(|e|2). Thus, the runtime complexity overall for
the event aggregator is O(|e|2). The space complexity is two
internal queues for event synchronization, one internal queue
for raw signals, and the queue for the program trace, which is,
in total, O(|e|). !.

III. EMPIRICAL DESIGN

Brace’s main design goals are to improve efficiency and scal-
ability of runtime monitoring of CPS properties while main-
taining effectiveness. To these ends, we measure the CPU and
memory overheads for monitoring local and global properties
of CPS, including for a large number of monitored properties.
We also measured the false positives and false negatives in mon-
itoring both local and global properties.

Our prior work [59] introduced runtime monitors that check
formally specified properties with the expressiveness of a quan-
titative temporal logic [42]. This monitoring was performed
offline and only checked local properties. In this paper, we gen-
erate global property monitors using the same monitor synthesis
process and also handle complexities of distributed monitoring
(e.g., event synchronization and generating necessary event sig-
nals) within the Brace framework. Brace essentially reduces the
distributed monitoring problem into a local one as long as we
provide the required input and output for Count Automata and
Predicate Automata.

We implemented our time-triggered online monitoring
with our underlying linear optimization model, which uses
SCPSolver [46]. We implement publish/subscribe communica-
tion using a combination of Really Small Message Broker [12]
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and the Paho MQTT client [40]. All the queues required for the
program trace, event buffer, and aggregated program traces are
implemented using lock-free lists [49].

We apply our implementation to two existing multiagent CPS
applications based on the Soft Real Time Agent Control Archi-
tecture [21] and GPGP coordination architecture [30], whose
software architectures are representative of CPS systems includ-
ing those with distributed scheduling. In both cases, we acquired
the application from other researchers in the CPS domain in an
attempt to mitigate biases introduced in using applications that
we build just for evaluating Brace.

The first evaluation application is a Rover Patrol application
that was built in Android and deployed to a Samsung Galaxy S3
phone to control a Rover 5 Robot Platform.3 In this application,
each robot in a team is assigned a set of tasks by a global
scheduler; each task is effectively a set of waypoints that the
robot must visit. We used the language defined in [59] to state six
(local) correctness properties for this application, then we used
the Brace implementation described in this paper to monitor
those properties at runtime. The properties are as follows.

LP1 After a vehicle is assigned a task, the atomic actions of
the task shall eventually be in the vehicle’s schedule.

LP2 The completion time for a given task is bounded.
LP3 The assignment of a task to a vehicle reflects the optimal

choice.
LP4 The integral of absolute cross track error is bounded

(i.e., the vehicle is not weaving).
LP5 The duration of the main control loop is bounded.
LP6 The number of messages for each task negotiation is

bounded.
We assess Brace’s computational and memory overhead and

its effectiveness at checking these local properties which are oth-
erwise hard to detect. We intentionally selected the above prop-
erties as ones that are associated with the distributed algorithm,
timing requirements, and the control algorithm. We deployed
and executed this application in a laboratory environment on
real rovers. We used three surfaces to mimic different physical
deployment environments (wood, grass, and linoleum4). The
test bed also contains an overhead camera that is used for both
positioning and for recording the tests.

The second application models a utility-based distributed
scheduling multiagent system. In this instantiation of the ap-
plication, the rovers performing the global patrol task share a
blackboard that is updated concurrently by scheduling and ex-
ecution components of agents on those nodes. The complexity
of this application lies in its concurrency and correctness of the
scheduling algorithms, which are very difficult to check. In this
application, we state and check three local properties.

LP7 When a vehicle is assigned a task, the vehicle shall have
this task in its local scheduler.

LP8 An agent accomplishes an assigned task within a time
bound.

LP9 Each agent’s schedule is optimal for that agent.
We also check three global properties:
GP1 There are no duplicate task assignments (i.e., each task

is assigned to only one agent).
GP2 The number messages required to reach a consensus is

bounded.

3[Online]. Available: https://www.sparkfun.com/products/10336
4Sample videos for the three surfaces. [Online]. Available:

https://goo.gl/PkxDa4, https://goo.gl/Vv3fF2, and https://goo.gl/s097Ag.

GP3 The global patrol must eventually finish (i.e., all way-
points must be visited).

Through this application, we aim to assess Brace’s effective-
ness in checking global CPS properties and its efficiency in
online monitoring, including in the face of surges of events.

In the first application, we injected ten logical errors that
cause deliberate violations of each of the six properties. We
profiled the CPU and memory utilization using TraceView [48]
and MAT [33], respectively, and recorded the number of false
positives and false negatives in property detection by analyz-
ing the property monitor trace files and comparing them to the
overhead camera recording of the rovers’ behavior.

We deployed and ran the second application on a replica
of the ORBIT testbed [43] with 40 physical machines (i.e.,
nodes) based on a VIA 1 Ghz, 512 MB board [24], [56], inter-
connected via multiple networking technologies, including two
wired 1 GB Ethernet networks, which separate control traffic
and experiment/data traffic. The nodes’ clocks are synchro-
nized via NTP, which ensures offsets smaller than 5 ms. We
used OMF [41] to systematically describe and orchestrate our
Orbit experiments. We divided the nodes into ten subsets of four
nodes, then ran our experiment on each subset (in parallel). Each
running instance has its own parameters. We evaluated with an
increasing number of tasks: 4 (default), 48, and 384. We use this
as a baseline before rerunning the annotated application, instru-
mented with varying numbers of local and global properties to
measure the impact on CPU and memory overhead (computed
from Orbit’s performance log data). We then hold the number of
tasks constant but increase the number of injected local events
(i.e., we introduce artificial events observable by the property
monitors to ascertain the scalability of monitors in the face of
CPS event surges). We then execute the application with injected
logical errors to determine whether Brace can detect the errors,
recording the number of false positives and negatives by ana-
lyzing property monitor trace files and comparing with Orbit’s
application log files. We ran each experiment multiple times to
enable a statistically meaningful analysis.

For Brace settings in both evaluations, we used an AT (max-
imum activation time) of 4 s, an IT of 10 s (minimum IT), and
maxMemory of 2500 events. These settings were selected as
representative of normal behavior of our applications on the
computers in the given testbed.

IV. RESULTS AND DISCUSSION

We next evaluate the efficiency, scalability, and effectiveness
of Brace’s. We also briefly discuss some threats to validity.

Efficiency of Brace Runtime Monitoring: To measure effi-
ciency of using Brace for runtime monitoring of CPS applica-
tions, we measured its CPU and memory usage. Fig. 6 shows
results for running our second application in the Orbit testbed
in terms of CPU overhead (percentage increase relative to run-
ning the application without any instrumentation) for increasing
numbers of tasks. With increasing numbers of properties moni-
tored (which increases the number of distinct executing Property
Monitors) and increasing number of tasks monitored (which in-
creases the number of events monitored), the CPU overhead is
controlled: the average overhead for monitoring one local prop-
erty ranges from a 0.77% to 1.7%; and the average overhead for
monitoring three local properties ranges from 0.40% to 2.98%.
This finding is consistent with our results for the first appli-
cation executing in the Android Test Bed, which we omit for
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Fig. 6. CPU overhead—orbit test bed. (a) One local property. (b) Three local properties. (c) Three local, three global properties.

Fig. 7. Memory overhead—orbit test bed. (a) One local property. (b) Three local properties. (c) Three local, three global properties.

brevity. These relatively low overheads are largely attributed to
Brace’s time-triggered online monitoring. Another interesting
finding is that the additional CPU overhead for monitoring three
global properties in addition to the three local properties is only
(on average) 0.3%, which is consistent with our combinatorial
analysis.

Fig. 7 shows the results for memory overhead, again in com-
parison to a baseline with no instrumentation. One interesting
finding is when there is a relatively small number of events (i.e.,
tasks) to monitor, the memory overhead is larger than the CPU
overhead. We believe the cost of building a lock-free queue to
hold unprocessed events (as required for the time-triggered on-
line monitoring) has a minimum cost that is amortized as the
number of tasks increases.

In the Android Test Bed, we compare results of Brace
with our previous work [59] (which does not employ time-
triggered online monitoring or load balancing). In our previous
approach, our instrumented event monitoring significantly
changed the behavior of rovers (e.g., navigating from one point
to another took a lot longer and sometimes the rovers did not
move at all). The elements of Brace introduced in this paper
make it demonstrably better suited for resource constrained CPS
applications where the computational overhead of runtime mon-
itoring has to be maintained to be very low.

In the application in the Orbit testbed, we also notice a ten-
dency for some of the execution times to vary substantially be-
tween runs. After some investigation of the issue, we found one
of the wild bugs detected by Brace is related to a concurrency
issue in the application. This bug causes significant fluctuations
in CPU and Memory usage in some cases. Though the number
of nodes used in the Orbit test bed (40 nodes) and the number
of trials used (ten times) allow us to get fairly accurate mean
value, the variance captures these fluctuations.

Fig. 8. Scalability—orbit test bed. (a) CPU Scalability. (b) Memory
Scalability.

Scalability of Brace Runtime Monitoring: To evaluate Brace’s
scalability, we again measured CPU and memory overheads,
but this time in the presence of increasing numbers of injected
events. Fig. 8 shows the results in the Orbit testbed; the values
shown are relative to those in Figs. 6 and 7 with 384 tasks. With
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TABLE I
LINOLEUM LOCAL PROPERTY ERROR REPORT

Property Found/Injected Errors Wild Errors (Confirmed)

LP1 10 / 10 0 (0)
LP2 10 / 10 7 (6)
LP3 10 / 10 22 (22)
LP4 10 / 10 1 (0)
LP5 10 / 10 2 (0)
LP6 10 / 10 0 (0)

an increasing number of injected events (mimicking an increas-
ing number of properties to monitor), CPU usage is basically
constant (and actually decreases slightly). However, memory
usage increases. In the scenario with 800 injected events, Brace
periodically invokes load balancing on the global monitor nodes
to guarantee the local runtime monitoring behavior; in the sce-
nario with 1600 injected events, Brace uses the load balancing
mechanism almost exclusively. This explains the flat to slight
decline in (local) CPU overhead. The increase in memory over-
head is explained by the storage of the events; even with load
balancing, these events must be maintained before being sent to
monitor nodes. We configured the experiment to send aggregate
bundles to the monitor node every 10 s; if we increased the fre-
quency, we expect memory usage to drop but CPU usage to in-
crease. This result demonstrates that Brace style time-triggered
online monitoring (with linear optimization5 and load balanc-
ing combined) can guarantee the runtime monitor behavior with
large number of events for complex CPS applications.

Effectiveness of Brace Runtime Monitoring: To measure the
effectiveness of Brace in its support for runtime monitoring of
CPS applications, we measured the degree to which it could
find both injected and wild bugs in the applications under test.
In the rover test bed, Brace detected all of the injected logic
errors in all three environments. Brace also detected errors
in these properties that are related to data collected from the
rovers’ sensors and, thus, related to the physical deployment.
These errors were actual bugs discovered in the CPS program
we were given. As one example, Table I shows the errors that
Brace found for the run on the linoleum surface. As shown,
Brace found an additional 22 wild errors for LP3. We verified
with the CPS application developers that these were in fact le-
gitimate (previously unknown) errors related to the scheduling
algorithm that resulted in suboptimal solutions when relying on
actual position data from the sensors. In the case of LP2, Brace
found an additional seven errors over the ten injected ones, six
of which were confirmed to be legitimate errors related to an
inefficient implementation of the controller loop. The seventh
was a false positive. For brevity, we omit the results for the
grass and wood floor deployments, but in both environments,
Brace was able to detect all of the injected errors and to report
additional true wild bugs (e.g., we found bugs related to the fact
that the rover unexpectedly weaves on the grass surface due to
the unexpected high level of friction).

Table II shows the results of our experiment on Brace’s effec-
tiveness for the second application, with 40 randomly injected
logic errors in the application’s distributed algorithms. Brace

5We evaluated the overhead by measuring the total cost of running the linear
optimization model in the experiment; the running time of each run is always
less than 1 ms.

TABLE II
ORBIT GLOBAL PROPERTY ERROR REPORT

Property Found/Injected Errors Wild Errors (Confirmed)

GP1 40 / 40 2 (2)
GP2 40 / 40 14 (10)
GP3 40 / 40 8 (4)

detected all of the injected errors; again Brace also detected wild
errors. For the first global property (GP1), all of the additional
errors detected were confirmed by the application developers;
they were related to a concurrency error in the scheduling algo-
rithm. For the other two properties, Brace detected some con-
firmed wild bugs. Brace also detected errors that the application
developers deemed false positives (especially for GP3). The logs
show that this is a direct result of “bad” instrumentation in the
application. To emulate a true environment, we asked the CPS
application developers to perform the annotations that generate
program traces. In some cases, this annotation is nontrivial. If
the annotation is in a thread-critical location, then the required
event observations are not immune from thread safety issues
(in GP3, some waypoint acknowledgement messages/events are
overwritten nondeterministically due to a subtle race condition);
in this instance, incorrect instrumentation resulted in events that
carried “false” data. This large number of false positives could
be avoided by ensuring that the annotations are in the correct
place(s), either by moving them outside of thread-critical sec-
tions or, when it is necessary to check these critical sections, to
use static analysis to verify the annotation placement.

Validity Discussion: We did not conduct the same experiments
for efficiency and scalability in the rover test bed as we did in the
Orbit Test Bed. In Android, when we injected a large number
of events per second, the profiling tools available to measure
the CPU and memory usage incurred too much overhead, which
changed the application’s behavior. Better profiling tools for
Android could make this evaluation possible; investigating such
tools is an avenue for future work. This is not a deficit of Brace,
but it made us unable to evaluate the overheads of Brace at a
large scale on Android.

In the Orbit test bed, we did not analyze network transmission
data. The evaluation application has a nondeterministic way of
sending network packets due to the nature of the complex ne-
gotiation and scheduling algorithm and the message passing
system the application uses. As a result, we do not know an ex-
act value of how much additional network overhead is required
for running the CPS application with Brace versus without it,
especially for load balancing and checking global properties.
Our Brace implementation did use our data aggregation, event
filtering, and package compression schemes, but we cannot as-
certain the degree of their impact on the observed application.
Again, this does not point to a deficit of Brace but of the eval-
uation environment; one option is to use a dedicated network
channel for Brace to avoid the impact on the hosted application.

We did not measure the CPU and memory overheads for
checking global properties on monitor nodes in the Orbit test
bed because we did not evaluate global properties in isolation
from local ones (so the monitor node was always engaged in
some amount of load balancing). However, the global monitor
is exactly the same as the local monitor (using the same monitor
synthesis algorithms in our implementation), it just executes on a
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different (aggregate) trace. The event transformation algorithms
required for checking global properties on the monitor nodes
are proven quadratic in runtime complexity and linear in space
complexity. We conducted a few experiments that demonstrated
that the runtime overhead of running a global monitor is similar
to running a local monitor. In the worst case, we can have a
cluster of more computationally powerful monitor nodes in the
debugging environment that we dedicate for use for the monitor
nodes.

V. STATE OF RESEARCH AND PRACTICE

Runtime verification is dynamic program analysis that aims
to prove the correctness of programs at runtime. There are three
key elements:

1) the language to specify properties to check;
2) the generation of traces on which to check properties;
3) algorithms that check the properties against the traces.
We target runtime verification for CPS by reducing com-

putational and memory overheads of the approaches for these
resource constrained applications.

A few efficient online monitoring algorithms for checking
a formal specification have been proposed [2], [3], [5], [17],
[18], and some are incorporated into tool sets [9], [26]. Among
them, monitor oriented programming (MOP) [34] is one of the
most efficient approaches, and some recent work is explicitly
designed to improve monitoring efficiency in MOP, for exam-
ple, by jointly exploring shared parameters and events across
multiple specifications [23], or by improving the index trees
and caches used to manage monitors’ internal states [32]. How-
ever, when there is a large number of events monitored, MOP
cannot guarantee a bounded computational and memory over-
head; moreover, MOP does not provide any means to monitor
global properties, which are essential in checking correctness of
combined behavior of CPS components.

Eagle [2] is a monitoring logic that provides explicit oper-
ators (e.g., fix-point) to be extended to capture qualitative and
quantitative constraints required for CPS. RuleR [3] improves
Eagle by replacing the fix-point operators with flexible rules ac-
tivated in response to observed events. Though Eagle and RuleR
have the expressiveness needed for CPS and provide developers
finer control of the monitor state, which leads to more efficient
monitoring, they still are unable to guarantee bounded over-
heads. Moreover, these logics do not provide efficient means to
check global properties. Adaptive runtime verification [4] uses
an offline state estimation of the probability of a property being
violated to assign a critical level to each monitor, which it uses
to turn the monitor ON and OFF at runtime to control an overhead.
Though this work is effective in reducing overhead, the result-
ing false positive and false negative rates are not acceptable for
mission critical CPS.

Much of the overhead for runtime monitoring comes from
trace generation [11], a finding consistent with our observations
in our prior work [59]. While the above approaches have im-
proved the inner state of the monitors or algorithms, we are
also interested in controlling the overhead of instrumentation
required to extract traces from an observed application.

Traditional runtime verification instrumentation calls a run-
time monitor whenever an event associated with an observed
property occurs [10], [54]. This can lead to unpredictable
overhead whenever there are bursts of monitored events. In-
stead, in time-triggered online monitoring, a monitor is invoked

periodically to sample events stored in a buffer. In [10], for in-
stance, a linear programing model finds the longest sampling
period with minimum event history buffer for time-triggered
online monitoring. The work in [54] integrates event- and
time-triggered monitoring to balance responsiveness and per-
formance overhead. In both cases, the linear programing models
are based on a statically analyzed control-flow graph (CFG); as
a result, these approaches are intended for sequential programs.
While they might work for more traditional embedded systems,
they are not applicable to CPS, which are generally mobile,
distributed, stochastic, and multithreaded. Our solution com-
plements this work by introducing a linear programing model
with finer granularity of control over overhead. We invoke the
model using runtime inputs and complement the model with
load balancing for backup. This is more resilient to stochastic
changes in the number and frequency of observed events and,
thus, more suitable to CPS.

In runtime monitors for distributed systems, online mon-
itoring that allows LTL specifications to be distributed and
observed by each component can: 1) reduce communication
overhead (though some communication is still required to re-
solve nonlocal properties) and 2) increase responsiveness in
detecting violations at the expense of performance overhead on
the local component [6]. Such an approach is similar to ours
in that it explores the use of distributed monitoring, but it as-
sumes perfect synchrony among components and that the sets
of events on different components are unique. In many CPS,
perfect synchrony cannot be guaranteed (and is very unlikely),
and the sets of events on different components often intersect.
We use event transformation algorithms to reduce distributed
online monitoring into a simpler problem of checking language
membership, which handles network noise and delay and has
no restriction on event set similarity.

In passive distributed assertions [45], distributed assertions
are instrumented in the application and evaluated at a single
global node. Properties used for checking are collected passively
from the network. Though this provides lower communication
overhead, it has little or no control over the computational and
memory overhead of checking distributed properties. Moreover,
many CPS properties are locally observable, and checking them
only at a global node reduces responsiveness and significantly
restricts the prospects of runtime feedback and recovery, which
is an essential piece of what makes runtime verification attractive
for CPS.

We focus on ensuring performance of a runtime verification
system while not sacrificing monitoring accuracy (in terms of
false positives and false negatives) and minimizing the impact
on the behavior of the monitored application.

Our work is complementary to model-based verification [14]
where the combination of Simulink and Simulink Design Ver-
ifier are used to check (low-level) properties of the models in
simulation. Such a model-based approach can be applied in the
earlier stages of CPS application verification to reduce later ver-
ification costs, but our approach provides the last line of defense
where the actual implementation is verified at runtime against
the deployment environment.

Our study also differs from hybrid verification of embedded
software [7], in which a function call graph derived from an
underlying C program is verified against LTL properties using
software model checkers (e.g., CBMC [29] and ESBMC [37]).
For those functions that are too complex to be verified (i.e.,
Marked Function), hybrid verification launches a simulation in
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which a SystemC [8] model derived from the embedded software
is connected to the SystemC Temporal Checker [53]. The sim-
ulation model is executed in parallel with the temporal checker,
which monitors the inputs and outputs of each Marked Function
to detect violations. Our study verifies properties more suitable
for CPS at runtime, which are distributed (e.g., across multiple
application nodes) and complex (e.g., quantitative constraints
and predicate logics).

In [57] and [58] combined static and dynamic information to
predict future behaviors of an observed CPS application is used.
The goals are complementary to ours; in fact, we could use these
approaches within Brace to validate a developer’s event instru-
mentation and improve monitoring accuracy. However, these
approaches use either a CFG or a program dependency graph to
gather dynamic information. For distributed large-scale CPS, the
inherent lack of support for interactions among distributed pro-
cesses make these approaches suboptimal [55]. In [50], [52], and
[51], multitier context information (e.g., car, road, and weather
conditions) and cloud computation detect malicious behaviors
and predict future behavior in vehicular CPS. We intend to
combine these works and predictive semantics in future work to
predict violation of safety-critical properties. Further, we will
explore connecting with automatic program repair to recover
(at runtime) from violated properties, where a genetic program-
ing approach [16] can search for repair candidates as variants of
original source codes with different sequences of edits. To make
this approach more effective in CPS, we can infuse the notion
of allowed statespace [28], where each repair candidate must
function within acceptable physical limits (e.g., landing altitude
and pitch angle for an autonomous aircraft).

VI. CONCLUSION

In this paper, we present Brace as an approach to improve
efficiency and scalability of runtime monitoring of CPS. Brace
uses a combination of a linear programing model created specif-
ically for time-triggered online monitoring for CPS, load bal-
ancing, and lightweight event aggregation and transformation
algorithms to minimize the overhead of runtime monitors. With
a thorough case study both on a real rover application and a com-
plex simulation on distributed robotic planning, we prove Brace
as efficient, effective, and scalable for CPS runtime verification.
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