
BraceAssertion:
Runtime Verification of Cyber-Physical Systems

Xi Zheng and Christine Julien
The University of Texas at Austin

Email: jameszhengxi@utexas.edu, c.julien@utexas.edu

Rodion Podorozhny
Texas State University, San Marcos

Email: rp31@txstate.edu

Franck Cassez
Macquarie University, Sydney

Email: franck.cassez@mq.edu.au

Abstract—Cyber-Physical Systems (CPS) have gained wide
popularity, however, developing and debugging CPS remain
significant challenges. Many bugs are detectable only at runtime
under deployment conditions that may be unpredictable or at
least unexpected at development time. The current state of the
practice of debugging CPS is generally ad hoc, involving trial and
error in a real deployment. For increased rigor, it is appealing to
bring formal methods to CPS verification. However developers
often eschew formal approaches due to complexity and lack of
efficiency. This paper presents BraceAssertion, a specification
framework based on natural language queries that are auto-
matically converted to a determinitic class of timed automata
used for runtime monitoring. To reduce runtime overhead and
support properties that reference predicate logic, we use a second
monitor automaton to create filtered traces on which to run
the analysis using the specification monitor. We evaluate the
BraceAssertion framework using a real CPS case study and show
that the framework is able to minimize runtime overhead with
an increasing number of monitors.

I. INTRODUCTION
Cyber-Physical Systems (CPS) are found in applications in

structural monitoring, autonomous vehicles, and many other
fields. Compared with the growth of the domain, verification
and validation of CPS lags far behind [32]. The state of the
practice in debugging CPS generally entails a combination of
simulation and in situ debugging. In a 2007 DARPA Urban
Challenge Vehicle, a bug undetected by more than 300 miles
of test-driving resulted in a near collision. An analysis of the
incident found that, to protect the steering system, the interface
to the physical hardware limited the steering rate to low
speeds [23]. When the path planner produced a sharp turn at
higher speeds, the vehicle physically could not follow, and this
unanticipated situation caused the bug. The analysis concluded
that, although simulation-centric tools are indispensable for
rapid prototyping, design, and debugging, they are limited
in providing correctness guarantees. State of the art formal
methods tools, including static analysis, theorem proving, and
model checking, are insufficient in tackling the challenges
in CPS verification and validation [32]. Other verification
techniques, including model-based testing [11] and simula-
tion [16] have high learning curves, impractical development
costs, and scalability issues. Domain specific tools (e.g., pas-
sive distributed assertions [29] and symbolic execution [30]),
though more scalable, fail to formally verify either qualitative
constraints (e.g., the ordering of events), quantitative ones (e.g.,
timing), or both. Ad hoc debugging has become the de facto

This work was supported in part by the NSF under grant CNS-1239498.
The authors would like to thank Muhammad Shiraz for work on the imple-
mentation of the vehicular application.

standard for debugging CPS, though it suffers tremendously
from a lack of robustness [32]. More formal runtime verifi-
cation is a perfect candidate to identify subtle errors that are
otherwise hard to capture due to scalability (state explosion) or
unexpected interactions with physical environments. Moreover,
on-line monitors (e.g., JavaMOP [12]) can react to errors in
actual executions, which is essential for CPS applications.

Runtime verification requires correctness properties to be
written in a formal specification language. In addition to many
other characteristics, every CPS is a real-time system; therefore
formal specifications of CPS must capture real time properties
such as event ordering, timeout, and delay. Temporal logics and
first/higher order logic have been used to specify concurrent
and real-time programs. However, CPS practitioners tend not
to use formal specification because of the steep learning curve
and a lack of reliability [10]. The use of informal models as
a transition has been recommended [15], and Behavior-Driven
Development (BDD) tools are gaining popularity among CPS
developers [32]. This paper introduces BraceAssertion, a BDD-
style specification language that is accessible to CPS develop-
ers yet expressive enough to represent a determinizable class
of Timed Automata [3] and to support predicate logic. We also
design a monitor framework to automate verification based on
BDD specifications. Our concrete contributions are:

◦ We bring Behavior-Driven Development to Cyber-Physical
Systems (CPS) to enable formal specification of correct
system behaviors using natural language.

◦ We create the BraceAssertion language, which extends BDD
to support the expressiveness of deterministic timed au-
tomata and adds support for predicate logic to cater for
complex requirements of CPS applications.

◦ To support BDD-style specification, we implement an effi-
cient dual monitor architecture, consisting of a synthesized
event monitor that generates filtered traces and a synthesized
timed automata monitor to verify quantitative properties on
traces.

◦ We provide real-world case studies to evaluate the effective-
ness and efficiency associated with the synthesized monitors
derived from BraceAssertions.

II. MOTIVATION AND OVERVIEW
In this section, we introduce a motivating CPS application

and the research challenges therein. We then provide back-
ground information on Behavior Driven Development (BDD),
our formal framework, and the foundational logics.

A. Motivating Application
Our work can be easily motivated by agent-based CPS [24],

where the system’s concurrency and distribution are handled

2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems

978-1-4673-9101-6/15 $31.00 © 2015 IEEE

DOI 10.1109/MASS.2015.15

298

by each agent, so verification can be localized to each agent.
These systems require a runtime verification framework with
high expressiveness, intuitiveness, and with low runtime over-
head. We use this example throughout the paper, though the
BraceAssertion framework is applicable to CPS in general.

Consider a multi-agent vehicular patrol application with a
set of unmanned vehicles that coordinate to achieve a global
monitoring task. As part of the cooperative exercise, each
vehicle’s agent develops a schedule of tasks to execute. Such an
application may specify the following three constraints: (1) if
a vehicle is selected as responsible for a waypoint, its schedule
will eventually contain a task to reach that waypoint (Spec 1);
(2) a vehicle will reach the locale of each selected waypoint
before a specified deadline (Spec 2); and (3) the choice of
which vehicle to perform each waypoint task is optimal relative
to a chosen system utility function (Spec 3).

Spec 1 & 2 require qualitative constraints (e.g., those that
reference the ordering of events) and quantitative constraints
(e.g., those that reference timeouts and bounds on response
times). JavaMOP [12], a state of the art runtime verification
framework, is not able to capture these constraints. Instead,
capabilities like those of Metric Temporal Logic (MTL) [20]
and Metric Interval Temporal Logic (MITL) [2] are required.
Spec 3 is more subtle and actually requires a predicate logic
whereby each waypoint task can be quantified and a predicate
function can evaluate whether a chosen utility function is opti-
mal. Existing runtime verification techniques based on metric
temporal logic cannot capture this expressiveness. Recent work
on Metric First-Order Temporal Logic (MFOTL) [6] can, but
the complexity and lack of binding between the specification
and the implementation make it unwieldy and impractical for
CPS practitioners. An even more challenging requirement is
to minimize the runtime overhead for the application, since
CPS are usually deployed to resource constrained platforms;
this challenge remains open.

In summary, the motivating application requires a speci-
fication that is intuitive to specify, provides a tight binding
to the implementation, can express quantitative requirements
and a predicate logic, and incurs low runtime overhead. These
combined research challenges push us first to look at a widely
accepted and intuitive industrial specification, Behavior Driven
Development (BDD), on which our work is based.

B. Behavior Driven Development
Behavior Driven Development (BDD) was created to clar-

ify common misunderstandings in Test-Driven Development
related to what to test, what not to test, how much to test,
and how to understand why a test fails [8]. However, formal
semantics are still lacking for BDD. A BDD specification
typically starts with a story template: As a [X], I want [Y],
So that [Z] and is further refined into multiple test scenarios
of the form: Given [initial condition], When [events occur],
Then [ensure some outcomes]. As an example, a correctness
specification for the push operation on a Stack data structure
would be Given [A stack is not full] When [an element is
added to the stack] Then [that element is at the top of the
stack]. Each fragment of a test scenario has to be associated
with segments of program code using inheritance or as a plug-
in to the programming language.

Intuitively, to give formal semantics to the Given-When-
Then template, we can treat the template as a state transition
in a finite automaton. Given specifies in which states the

transition is enabled, When specifies which input signals or
events trigger the transition, and Then specifies what actions
to take and which state(s) to move to. The popularity of
BDD reflects the willingness of developers “in the wild” to
accept a less formal specification language. However, state
of art frameworks in BDD (e.g., Cucumber, JBehave1) ignore
quantitative constraints such as timing, qualitative ones such as
ordering of events (happens-before), quantification (∃ and ∀),
and predicates (as in first-order logic), which are all crucial
in specifying CPS applications. Our goal is to support CPS
applications by filling the gap between BDD (which is reason-
ably accessible to CPS developers) and formal methods (which
are not). Instead of asking developers to write the underlying
temporal logic formulae directly, we create BraceAssertion,
a natural description language in BDD style that allows
developers to capture a correctness specification’s essential
semantics and to annotate the CPS application to connect the
implementation to the specifications. Our monitor synthesis
algorithms can automatically generate runtime monitors that
are timed automata obtained from the textual description.

C. Our Basic Formal Framework
Because CPS applications require reactions to timeouts

or incoming events, our models must consider a dense time
domain, for which we use non-negative real numbers. The
implementation of such a time domain requires digital clocks;
we assume that local clocks are sufficiently synchronized
(i.e., that the worst case drift is below a very small and
acceptable σ); this assumption is achievable using established
clock synchronization algorithms [14], [22].

We model the execution of a CPS application as an infinite
sequence of observations δ = δ0δ1 · · · δn · · · . Each δi ⊆ 2E ,
where E is a set of propositions that describes the observed
state of the application. Since a CPS application is also a
real-time system, events’ timing information must be captured.
A timed trace is a pair Θ = (δ̄, τ̄), where δ̄ is a trace
and τ̄ is an infinite sequence of non-negative real numbers
representing the time at which each event is observed. The
timing sequence respects monotonicity and progress (τi < τi+1

and ∃i ∈ N, ∀j ∈ R, τi > j).
This basic framework underpins the BraceAssertion lan-

guage, which captures both qualitative and quantitative con-
straints and identifies constraint violations by considering
captured timed traces of the system’s execution. Event Clock
Automata (ECA) [3] has many of the semantic capabilities
required for modeling quantitatiev properties of CPS. We next
provide a brief introduction to ECA and the associated State
Clock Logic (SCL) [28], which is used to express ECA, and
relate their capabilities to the goals of BraceAssertion.

D. ECA and SCL
Timed automata [1] are finite automata extended with real-

time clocks. In timed automata [1], one can annotate state
transitions with timing constraints using real-valued clock
variables. The constraints on clocks can specify time intervals
e.g., a given event eventually happens or happens before a
deadline. Contrary to standard automata, timed automata are
not always determinizable and thus difficult to use directly for
runtime verification. Event Clock Automata (ECA) [3] restrict
the use of the clock and thus embody a determinizable class
of timed automata. In ECA, for each event, a recording clock

1cukes.info, jbehave.org

299

records the time of the last occurrence and a predicting clock
predicts the time of the next occurrence. An ECA is in the
form A = (Σ, L, L0, Lf , E), where Σ is a set of symbols,
L is a set of states, L0 represents a single start state, Lf

represents a set of accepting states, and E is a set of edges
representing transitions. Two edges with the same source and
the same input must have mutually exclusive clock constraints
to preserve determinism. Notice that finite automata are ECA
with no clocks.

S0start

S1

S1

e

e

e

e

Fig. 1. Specification in ECA: If
a vehicle is selected for a way-
point, its schedule eventually con-
tains that waypoint.

Fig. 1 shows how Spec
1 can be expressed using a
finite automaton. S0 refers
to the initial state after
the agent was assigned to
reach the given waypoint.
S1 is the accepting state,
where the agent’s schedule
contains the task to reach
the waypoint. The event e
adds the waypoint to the
agent’s schedule. S1 represents the set of states reachable from
S0 in which the waypoint is not in the agent’s schedule; e
represents any event that does not insert the waypoint into
the agent’s schedule. This very simple automaton accepts any
trace in which the desired event eventually happens, which is
required by the specification. Fig. 2 shows how the quantitative
properties Spec 2 can be represented with ECA. Here, in the
accepting state S1, the agent has reached the waypoint before
a deadline. The timing constraint xa associated with the edge
from S0 to S1 ensures that each r (which refers to the event
that the agent has reached the waypoint) occurs within τ time
units of the preceding a (which refers to the event that the
agent was assigned to reach a waypoint).

S0start S1

r[xa ! τ]

Fig. 2. Specification in ECA: A
vehicle will reach the locale of the
waypoint within a bounded time τ .

As a de-facto stan-
dard, State Clock Logic
(SCL) is used to ex-
press ECA [28]. How-
ever, there remain char-
acteristics of CPS that
limit the usefulness of SCL to runtime verification. Consider
Spec 2; the event that causes the transition to the final accepting
state is associated with an action “enter the waypoint.” Such
methods in CPS interact with the environment in ways that
are not possible to capture in SCL. In our example, the
nature of the physical space (e.g., indoors versus outdoors), or
environmental conditions (e.g., wind) and their impacts on the
system’s correctness must be considered. As a simple example,
the vehicle must have an auxiliary procedure that detects that it
has reached the waypoint with some guarantee; this procedure
generates the event r that causes the state transition in Fig. 2.
Clearly this requires the specification to be expressive enough
to locate this procedure in the implementation, quantify the
waypoint, and evaluate the procedure at the right time, none
of which is available in SCL (or in temporal logics in general).
This limitation of SCL applied to CPS is even more striking
for Spec 3. This constraint cannot even be specified in SCL
because SCL does not have the ability to associate utility
with events. The demand of CPS applications for a more
powerful logic to express such constraints, along with the
low acceptance of formal specification in general [31] and
by CPS developers especially [32] motivates us to create the
BraceAssertion specification language on top of ECA.

III. BRACEASSERTION
Our BraceAssertion language is expressive enough to spec-

ify quantitative and qualitative constraints that characterise
behaviors of CPS applications. At the same time, it builds on
the simplicity and abstraction level of Behavior Driven Devel-
opment (BDD) frameworks to make it more accessible to CPS
developers. BDD is based on natural language and provides
tighter integration between specification and implementation
through customized annotations in the code. In this section,
we introduce the essential syntax of BraceAssertion and show
how to express standard real-time contraints. We then define
the formal semantics in terms of SCL formulas.

A. BraceAssertion Language
Qualitative Constraints. In existing BDD approaches,

support for specifications that reference the order of events
is minimal. Further, providing specifications in the usual BDD
form e.g., Given [initial condition], When [events occur], Then
[ensure some outcome], only considers instantaneous (logi-
cal) state transitions, which are unlikely in CPS applications
considering delays in responses from physical devices and
the environment. BraceAssertion augments the BDD language
with the capability to define the system as an aggregate of
individual components. BraceAssertion then allows associating
automata (monitors) with each component to enable distributed
runtime verification at the level of each component. To connect
this with BDD, we change the BDD story template “As a
[X]-I want [Y]-So that [Z]” into “In [S]-As a [X]-I want
[Y]-So that [Z]” where S is a component for the story.
A story is associated with one or more BDD specifications
in the Given-When-Then form2. BraceAssertion also adds a
When-Then-Else construct to define alternative state transitions
from a Given state and When events. As a concrete example,
using these new qualitative constraint constructs, Spec 1 can
be written as “In [Agent], Given [All] When [agent was
chosen to reach a waypoint] Then [Eventually its scheduler
contains the task to reach that way point].” We also extend
the BDD Then fragment to support four qualitative operators:
Always, Eventually, Eventually Permanent, and Never, which
correspond, respectively, to the linear temporal logics operators
", ♦, ♦", and ¬" (see [28] for the timed version of the
operators).

Quantitative Constraints. While timing constraints are
essential in CPS applications and in theory expressible in SCL,
BDD lacks the semantics to annotate state transitions with
timing constraints such as specifying deadlines. To bridge this
gap, we add new constructs and keywords Within, Exactly, and
More Than in a BDD When fragment. Each construct and its
associated time value provides a hard deadline constraint on
the timing of the event clause. This enables us to easily specify
standard timing contraints in CPS. As an example, the bounded
time response constraint “a p event is always followed by a
q event within k (time units),” is expressed in BraceAssertion
as: “Given [p] When [Within k (time units) After [p]] Then
[q].” The BraceAssertion to specify an exact response time
is similar but uses the “Exactly” keyword in place of the
“Within” keyword. A timeout specification can be given by
a BraceAssertion of the form: “Given [All] When [Exactly k
(time units) After q] Then [p].” Triggering an alarm can be
specified by using a negated guard and the “Within” keyword.

2Following BDD convention, nesting of the BDD constructs is not
allowed. Users can always use separate BDD specifications instead.

300

Finally, constraining the minimal time interval between two
events can be specified by a BraceAssertion in the form:
“Given [All] When [More Than k (time units) Before p] Then
[q].” As a concrete example, Spec 2 can be written as: “In
[Agent], Given [chosen to reach a waypoint] When [Within xx
time units After] Then [reach the locale of that waypoint].”

Predicate Logic. To tie specifications of correctness prop-
erties to the implementation, developers using BDD associate
every event to a method signature. The BDD specification
treats the method signature as a propositional expression i.e.,
the evaluation of “has the method A been executed?”. In
CPS, however, it is insufficient to bind events only to method
invocations. CPS applications require events to be associated
with a variety of additional system aspects (e.g., thread safety
checks against specific data structures), but most importantly
and uniquely, elements of the physical environment (e.g.,
validation against sensor values). For instance, consider Spec 1
once again. The text description in the Then clause actually re-
quires predicate logic because the specification existentially or
universally quantifies over tasks. To handle such complexities,
CPS correctness specifications require predicate logic (e.g.,
first order logic). To continue to support the tight integration
between the specifications and the implementation in BDD,
we (1) add two new constructs and keywords to the Given-
When-Then structure in the BDD specification, (2) we define
additional semantics in the BDD Then fragment, and (3) we
create additional BDD annotations for the implementation.

The two new constructs based on the keywords With
and And, allow the creator of the specification to indicate
parameters to the logical predicate contained within the Then
clause. The three new BDD annotations connect the predicate
provided in the extended Then clause to the implementation.
For instance, the quantification of the parameters in a predicate
(i.e., the task and schedule in our first specification) relies on
a BDD annotation created specifically for this purpose. More
generally, Table I lists our additional BDD annotation classes:
Event, Predicate, Param, and Execution.

TABLE I. NEW BDD ANNOTATIONS

Annotation Description
Event bind an event to a method invocation

or a single statement
Predicate reference a boolean function
Param identify quantified variables
Execution identify execution place for a predicate

The following code snippet shows how the implementation
reflects the newly introduced annotations. The developer uses
the Predicate annotation to associate a boolean function check-
TaskOptimal with the predicate (“check schedule is optimal”).
The developer provides the implementation of the function,
which is standard practice in BDD. The developer uses the
Param annotation to locate the variable associated with the
quantified parameter (“the task”), while the mode’s value of
List indicates that the variable’s quantification is ∀, i.e., each
instance is verified against the predicate. Alternatively, the
mode can be assigned Single to specify ∃, where the latest
instance is verified against the predicate. Finally the timing for
predicate evaluation is determined by the Execution annotation
(in this case, after execution of CalculateSchedule).
@Pred i ca t e (name=" check s c h e d u l e i s o p t i m a l ")
p u b l i c boolean checkTaskOpt ima l (Task t a s k) {

/ / d e v e l o p e r ’ s i m p l e m e n t a t i o n o f p r e d i c a t e check
}
/ / somewhere e l s e . . .

@Param (name=" t a s k " , v a r i a b l e =" t " , mode= L i s t)
@Execution (name=" check s c h e d u l e i s o p t i m a l " , mode=

Execut ionMode . A f t e r)
p u b l i c S c h e d u l e C a l c u l a t e S c h e d u l e (Task t) {

/ / d e v e l o p e r ’ s i m p l e m e n t a t i o n o f a p i e c e o f l o g i c
/ / f rom t h e a c t u a l CPS a p p l i c a t i o n

}

Enabling support for predicate logic in BraceAssertions
includes adding support for these new keywords and annota-
tions. We omit the details for brevity, but we accomplished
the integration of this support via non-trivial engineering
efforts based on aspect-oriented programming (e.g., through
AspectJ) and some data structure manipulation. The complete
BraceAssertions syntax is given in [33].

B. BraceAssertion Formal Semantics
The formal semantics of BraceAssertion is given in terms

of SCL formulas. Each BraceAssertion is translated into an
SCL formula according to the rules of Table II, where φ,φ1,φ2

are predicate logics formulas (with no timing constraints),
$∈ {<,≤,=, >,≥}, and c is an integer. The syntax and
formal semantics of SCL over timed traces are given in [33].
By provinding a translation (Table II) we provide a formal se-
mantics to BraceAssertion. Our translation into SCL provides
a correct-by-construction algorithm to build monitors to check
BraceAssertion specifications. Indeed, one result of [28] is that,
for any φ in SCL, an ECA Aφ can be constructed that accepts
exactly the timed traces that satisfy φ. As any BraceAssertion
specification f is translated in an SCL formula φf , the ECA
Aφf thus accepts exactly the timed traces defined by f .

TABLE II. FORMAL SEMANTICS OF BRACEASSERTION

BraceAssertion SCL
Given φ1 When After Then φ2 φ1Uφ2

Given φ1 When Before Then φ2 φ1Sφ2

When ! c Before φ ◃!c φ
When ! c After φ ▹!c φ
When ! c After φ1 Then φ2 φ1 →◃!c φ2

When ! c Before φ1 Then φ2 φ1 →▹!c φ2

Then Always φ1 ♦φ1

Then Eventually φ1 %φ1

Then Eventually Permanent φ1 ♦%φ1

IV. DUAL MONITOR ARCHITECTURE
One of our main concerns is to establish a tight integration

between specification and implementation. At the conceptual
level, we accomplish this through the annotations in the BDD-
based BraceAssertion. From a practical perspective, we lever-
age Aspect Oriented Programming (AOP) to effectively insert
behavior-augmenting pieces of code based on the annotations;
this code is used to check the programmer specified properties.
Using AOP, we devise a dual monitor architecture shown in
Fig. 3. Our AOP-based approach allows BraceAssertion cor-
rectness properties to include complex logics (e.g., predicates
and quantification) that can be resolved using pointcuts in AOP.
Further, the architecture allows for a separation of concerns
related to event maintenance and monitor execution: an Event
Monitor uses the BDD annotations to generate a filtered
event trace that can be analysed by runtime monitors, which
explicitly monitor the run-time state to check a specified prop-
erty during program execution. Because the BraceAssertion
annotations give us the pointcuts for parameters, predicates,
and points of execution, the Event Monitor can weave them
together with the source code of the CPS application and
generate only the needed (aggregated) events that result from
evaluating each predicate at runtime. BraceAssertion’s support

301

for customized predicates makes our framework more flexible
than the state of the art in runtime monitoring [6], [7], which
constrain monitoring to a set of predefined predicates.

As an overview of the entire process of employing Brace-
Assertion, a CPS developer creates a system specification by
defining BraceAssertion specifications and annotating the pro-
gram in BDD style. Our framework synthesizes two monitors
from each specification3. We first synthesize an Event Monitor
that generates pointcuts and advice [17], monitors underlying
events at runtime, and generates filtered execution trace. We
then synthesize an ECA monitor to verify system correctness
based on collected execution traces.

Fig. 3. The Dual Monitor Architecture

A. Event Monitor
The event monitors synthesized from the BDD specifica-

tions instrument the annotated program by injecting AspectJ
pointcuts which at runtime feed "raw" signals to event monitors
to generate filtered timed traces. Our creation of the event
monitor is driven by performance limitations of existing run-
time verification approaches and by scalability challenges that
emerge in attempting to directly implement BraceAssertions.
First, as shown in Fig. 1, a BraceAssertion can refer to the
negation of an event. Every time an event that is not e occurs,
an event e must be output to the trace. Second, the Given-
When-Then notation specifies events (and not states) [8]. A
naïve implementation of BraceAssertion requires generating
an internal state for each unique event and an aggregate state
for every set of events within a given structure (e.g., we
require an aggregate state for the multiple events specified
in a BraceAssertion’s When clause). A complete transition
table must consider all possible permutations of internal
states (including aggregate states). In addition, our BDD-
based approach requires instrumenting the implementation to
support the semantics of BDD annotations, which can also
include predicate logic. Such predicates must be dynamically
evaluated at runtime. For all of these reasons, we synthesize an
Event Monitor from a given BraceAssertion specification. This
synthesized monitor allows the BraceAssertion framework to
(1) create pointcuts in the implementation through instrumen-
tation and (2) monitor events at runtime and generate filtered
traces over which correctness specifications can be checked.
For brevity, we omit the main algorithm the Event Monitor
uses to instrument the program; refer to [33] for details.

3We omit the monitor synthesis algorithms, see [33] for details.

At runtime, the injected pointcuts pass events to the Event
Monitor to create expressive runtime traces. The Event Monitor
can filter/generate four types of events from input atomic
events: (1) clock events; (2) single events; (3) complemented
events; and (4) aggregate events.

Algorithm 1 Event Filter (FILTER)
1: if e.isClockEvent ∨ e.isEvent then
2: output(e)
3: for ∀ce ∈ e.ces do
4: FILTER(ce)
5: for ∀em ∈ eventMonitorStore(e.id) do
6: em.setTransition(e.id)

Algorithm 1 shows the basic filter algorithm, which filters
atomic events (e) passed from the instrumented execution.
If the atomic event is a clock event or single event (e.g.,
with only one event with one When clause), the algorithm
outputs the event to the trace (lines 1-2). If the input atomic
event has any complemented events, we recursively apply the
algorithm to the complemented events instead of outputting
them directly (lines 3-4). Each Event Monitor is essentially
a state machine that keeps track of a list of atomic events
and makes a state transition upon receiving an event. If the
input atomic event is associated with any Event Monitor, the
algorithm invokes setTransition of the Event Monitor to check
whether all the internal events for the Event Monitor have been
detected and, if so, outputs the aggregate event for the Event
Monitor (lines 5-6). The Event Monitors are therefore essential
in limiting the scale of the generated event traces.

B. ECA Monitor
Given a BraceAssertion, we automatically construct an

ECA that checks whether the specification is violated. While
similar approaches are non-trivial [28], our synthesis algorithm
is straightforward and efficient since the BraceAssertion is
already a textual description of an ECA. For instance, from
the Given-When-Then specification, we can extract a set of
transitions {E} together with initial and accepting states.
Checking whether a trace violates a specification amounts to
checking whether the ECA accepts the trace. Our verification
algorithm is based on a standard decision algorithm for testing
membership of a trace in a regular language [18]. Testing
membership of timed traces for general timed automata is NP-
complete [4], but, as we prove below, because we restrict our-
selves to a subclass of timed automata that are deterministic,
testing membership can be done in polynomial time.

We also introduce two major enhancements. The first one is
essential in dealing with the recording and predicting clocks
for each BraceAssertion. Because we evaluate specifications
over trace files, we handle the predicting clock using a look
ahead algorithm that relies on a concurrent queue to access
the future in the trace file. A producer reads from the trace
file and fills in the concurrent queue, while a consumer reads
one timed word after another as input to the ECA monitors.
The length of the queue is (lower) bounded by the maximum
clock constraint across all specifications. The length of the
queue also reflects another parameter specifying a minimum
number of timed words in the queue (to minimize the overhead
of context switching when the buffer is too small). When
a predicting clock is referenced, the ECA monitor can look
ahead in the queue to check a constraint.

302

Our second enhancement is essential in handling the fact
that there may be a large number of BraceAssertion specifica-
tions for even a modest system, and we need a scalable solution
for checking the correctness of these specifications. We use
lazy initialization to activate an instance of a monitor only
when the monitor’s initial event is detected, and we terminate
the monitor instance as soon as we reach an accepting (speci-
fication passed) or rejecting (specification violated) state. This
minimizes the number of active monitors. Each timed word
can be consumed by only one instance of a particular monitor
but can be shared among instances of other monitors (to allow
parallel processing). At any point in the process, there are three
possible values for each ECA monitor: accepting, rejecting, or
undetermined (if the monitor is still active).

In [33], we provide the complete ECA monitor synthesis
algorithm. In essence, since SCL is used to represent ECA [28]
and BraceAssertion formal semantics are expressed using SCL,
the synthesis algorithm is quite straightforward. The validity
of the monitor synthesis algorithm has been demonstrated
exhaustively via hundreds of synthesized timed traces.

C. Combinatorial Analysis
Because one of our goals is to reduce the overhead of

runtime monitoring, we perform a combinatorial analysis of
the Event Monitor and the ECA Monitor.

Lemma 4.1: The time cost for an Event Monitor to output
one event in the event trace is O(|e|+|p|), and the storage cost
(for all events) is O(|e|), where |e| is the number of events and
|p| is the number of parameters in the BraceAssertion.

Proof: The atomic events are generated from the point-
cuts. The BraceAssertion framework simply passes the atomic
events or parameters directly to the Event Monitor. The Event
Monitor filters and generates the required events, without any
other logic; therefore the runtime cost is O(|e| + |p|). Our
analysis of the Event Monitor is based on Algorithm 1. From
lines 1-2, checking whether an input event is a clock event
or a single event is O(1) because the Event Monitor uses
hashtables4 to register the types of events. Similarly, from
lines 5-6, the Event Monitor uses a hashtable to register all
Event Managers, which in turn keep track of corresponding
atomic events. Since each Event Manager has a maximum
O(|e|) events stored, the time cost is O(|e|). Considering
the above, the combined time cost for all events is O(|e|);
considering also lines 3-4, as each event has a maximum of one
complemented event, the recursive function is called at most
once for each event. So the overall time cost for each event
(combined with the event generation) is O(2 · |e|+ |e|+ |p|) =
O(|e| + |p|). During the synthesis process, an Event Monitor
stores a number of auxiliary data structures (all based on
hashtables), each of which has storage cost of O(|e|). The
number of these auxiliary data structures is constant, so the
overall storage cost for all events is O(|e|).

Lemma 4.2: The space complexity of the synthesis algo-
rithm (i.e., the size of the ECA monitor) is O(n·|e|), where |e|
is the number of events, and n is the number of specifications.

Proof: In the ECA monitor synthesis, we reuse a shared
state transition table, which has maximum number of transi-
tions of O(|e|). For each monitor, we also record accepted and
rejected states. The total storage cost is therefore O(n · |e|).

Lemma 4.3: The time complexity of the offline member-

4We get constant time performance using efficient hashing [25].

ship test is O(|t| · |e| · |c|), where |t| is the number of timed
words in the trace file, |e| is the number of events, and |c| is
the number of clock variables (constraints).

Proof: Our work is based on the membership test al-
gorithm in [18]. The only difference is instead of checking
words, we check timed words. So in the worst case scenario,
for each timed word, we must traverse all state transitions (|e|)
in the global transition table and check all clock constraints
(|c|). In practice, the behavior of our monitor will be close to
O(|t|). Traversing each state transition is replaced by querying
a hashtable for the transition records with the beginning state
of the current state recorded in each ECA monitor (constant
time on average), and there are a constant number of clock
constraints per specification, thus on average the time cost can
be reduced to O(|t|).

We implemented a Java prototype of our dual monitors and
tested the semantic correctness on synthetic traces. Since our
main contribution is to use BDD to efficiently and effectively
bring ECA and first order logic into CPS development, we
conducted an empirical study on a real multi-agent patrol
system to analyze effectiveness and efficiency.

V. CASE STUDY AND EVALUATION
We evaluate the BraceAssertion framework using a case

study application5 that existed before the creation of Brace-
Assertion; this is the application we have used for examples.

A. The Case Study Briefly
We used an existing robot planning system, which is a

distributed version of Generalized Partial Global Planning
(GPGP) [21]. This system’s planning algorithm is a version
of Anytime A∗ that is customized to distributed planning for
a group of mobile vehicles. A group of vehicles is assigned
patrols that must visit a set of specified waypoints. The
vehicles negotiate, and each derives a schedule that contains a
subset of the waypoints. The schedules are chosen to optimize
the combined utility of the vehicles. Each vehicle hosts an
intelligent agent that can optimize its actions, autonomously
and interactively. Each agent includes a local scheduler, which
derives a schedule based on a set of tasks assigned for
execution; a negotiator, which coordinates with other agents to
derive the schedule; and an execution system. To accomplish
a global task, agents negotiate over multiple attributes. In this
paper, we used a deployment instance in which two vehicles
cyclically move along their generated waypoint sets. The utility
of visiting a waypoint can change dynamically, which may
change the agents’ schedules.

B. Research Questions (RQs)
Our evaluation answers the following research questions:

RQ1: How efficient is the Event Monitor in generating a
filtered event trace (in terms of CPU, memory overhead,
and the size of traces generated)?

RQ2: How effective is BraceAssertion in detecting runtime
violations (e.g., to capture injected errors and, even better,
to detect real bugs)?

RQ3: How efficient is the ECA Monitor in detecting runtime
violations using the filtered event trace, and how do the
features of the ECA Monitor help to improve efficiency?

5We refer readers to the complete case study in [33]

303

C. Experiment Design
To answer these questions, we use our Java prototype and

our case study application. We use the patrol application to
generate traces as described in Section IV, and we check those
traces for the three properties from Section III:

◦ “In [Agent], Given [All] When [agent chosen to reach a
waypoint] Then [Eventually its scheduler contains the task
to reach that way point].” (Spec 1)

◦ “In [Agent], Given [agent was chosen to reach a waypoint]
When [Within 40 seconds After] Then [reach the locale of
that waypoint].” (Spec 2)

◦ “In [Scheduler], Given [All] When [a task is added] Then
[check schedule is optimal With the task].” (Spec 3)

The application developer must annotate application code
with hooks for BraceAssertion specifications. The code below
shows how this happens for the When event in Spec 1. Using
the BraceAssertion library, which contains customized Java
annotation classes, the developer uses the Event annotation to
assign the name field to the event name (“agent was chosen to
reach a waypoint”). This is the only step required to connect
an event in BraceAssertion to the implementation.
/ / somewhere i n t h e Agent c l a s s . . .
@Event (name=" a g e n t chosen t o r e a c h a waypo in t ")
p u b l i c vo id a s s i g n T a s k (Task t a s k) {

/ / Deve loper ’ s i m p l e m e n t a t i o n when a s t a t i c
/ / t a s k t o reach a w a y p o i n t i s a s s i g n e d

}

We evaluate BraceAssertion’s ability to detect injected
violations in traces, and we benchmark its performance. In this
process, we also found violations in the patrol implementation
other than those we injected. All of the experiments were
performed on a PC with an Intel i5 CPU (2.30GHz, 2 cores
4 threads) and 4GB RAM. We control the size of an instance
of the problem by adjusting the number of waypoints visited
by the agents. For each of the three specifications, the Event
Monitor monitors the atomic events and generates the required
aggregate events in the trace.

We report results for the following experiments:

Baseline: we run the original application with an increasing
number of statically determined waypoints: 6 (default), 48,
384, and 30726. The last situation is an extreme one that
requires monitoring recurring tasks at a very high frequency;
in normal situations, events generated for checking specifi-
cations have a much lower frequency.

Experiment 1 (E1): we re-run Baseline with the application
annotated and instrumented with Spec 1. We randomly inject
errors to exercise Spec 1.

Experiment 2 (E2): we re-run E1 with the application also
annotated and instrumented with Spec 2. We randomly inject
errors to exercise both specifications.

Experiment 2-Wild (E2-Wild): we run the original application
annotated and instrumented with a version of Spec 2 that
incrementally tightens the timing constraint.

Experiment 3 (E3): we run the original application annotated
and instrumented with the third specification using an
increasing number of dynamically determined tasks (i.e.,
waypoints): 6 (default), 32, and 64. We randomly inject
errors to exercise the specification.

6A monitor is activated when a waypoint is assigned. We increase the
waypoints to increase the number of concurrent monitors.

Experiment 4 (E4): we use the trace file from E2’s largest test
and multiply it by 10 (i.e., pasting ten copies of the trace
back to back). We then synthesize increasing numbers of
arbitrary specifications (i.e., with arbitrary events for the
Given, When, and Then clauses of a BraceAssertion): 3
specifications (default), 24, 192, and 1536.

Experiment 5 (E5): we use the same scaled trace file, using
ECA monitors to verify the trace file while incrementally
increasing the size of the trace buffer.

We report average values for CPU usage and memory
consumption using VisualVM7. Results are averages of 5 runs.

D. RQ1: The Efficiency of the Event Monitor
To report CPU usage and memory consumption, we com-

pute the percent increase in comparison to Baseline, e.g., for
E1, we compute E1−Baseline

Baseline .

Fig. 4. CPU Overhead

Fig. 4
shows that the
CPU overhead
of running the
Event Monitor
alongside the
application
is minimal,
with a 0.23%
increase in
CPU usage
for E1 with 6
tasks and 0.25% for E2 with 6 tasks, growing to only 1.09%
for E2 with the largest test set. The results show that using
the Event Monitor to generate runtime traces incurs a trivial
performance overhead for the monitored CPS application.

Fig. 5. Memory Overhead of the Event Monitor
Fig. 5 shows the Event Monitor’s memory overhead. The

memory usage in E1 shows that adding one specification to
monitor high-frequency events adds only less than 1% over-
head. In both E1 and E2, the memory overhead does not always
increase with the size of the test sets. This results from our
use of a lock-free concurrent queue for predicate parameters
with ∀ quantification (e.g., Spec 1 checks “for all” way points);
in this implementation, the size of the queue depends on the
timing of evaluating the predicate (e.g., “its scheduler contains
the task”) and some optimization parameters defined for the
concurrent queue, which causes the observed discontinuities.

We also measured the size of the trace files generated as
a measure of the BraceAssertion overhead (Fig. 6). Each task
requires at least two timed words in the trace file. Even in the
largest test set, the sizes of the trace files are 145.2 and 218.6
KB for E1 and E2, respectively, which is a very reasonable
size for the ECA monitor to process.

7http://visualvm.java.net/

304

Fig. 6. Size of Traces Generated (in KB)
E. RQ2: The Effectiveness of BraceAssertion

For each trace from E1, E2, and E3, we used the syn-
thesized ECA monitor to verify the trace and compared the
number of reported violations with our injected errors. In all
cases, our synthesized monitor was able to find the injected
violations. In our first few runs of E2, our ECA monitor
located many more violations than the number injected. The
application developers quickly determined that these were
actual errors resulting from synchronization faults in the coor-
dination across the distributed agents. Ultimately, we used an
implementation with these bugs resolved for the results.

When we executed E2 on the corrected version of the
application, we successfully detected all of the injected vi-
olations, but we also detected one additional violation in the
case of 384 tasks and two additional violations in the case
of 3072 tasks. We devised and executed E2-Wild to adjust
the timing constraint to attempt to find more subtle errors in
the application. Fig. 7 shows that when we restrict the timing
constraint from 40 seconds down to 10 and execute the dual
monitors without injecting errors, we find violations “in the
wild” in all cases. The application developers confirmed that
these violations are the result of inefficient thread management
and synchronization in the application.y pp

Fig. 7. E2-Wild: Finding Real Bugs
Because dynamic tasks are more difficult for the patrol ap-

plication to generate, checking the third specification for very
long traces was not possible. For E3, we checked violations
for the third specification with injected errors for 6 and 64
tasks; our ECA monitor found all injected violations.

F. RQ3: ECA Monitor Efficiency and Unique Features
For all the traces generated from E1 and E2, it took the

synthesized ECA monitor seconds or less (around 4 seconds
for the largest trace in E2) to give verification results; these
speeds are too quick for VisualVM to profile usage. For this
reason, we used the largest trace from E2 and increased its
size by 10 times as a basis for the experiments here.

We first measured the performance impact of lazy initial-
ization, which activates the ECA monitor only when the initial
event is detected in the trace and deactivates the monitor as
soon as the monitor reaches an accepting (or rejecting) state.
We measured the CPU usage and memory consumption with
and without lazy initialization (Fig. 8). Though there is a
small amount of overhead required to maintain a registry of
every ECA for activation, the overall performance reduction
is effective. We believe the saving is mainly due to number

of (specification related) concurrent data structures saved for
monitors not activated or deactivated.

Fig. 8. Lazy Initialization

Finally, we
used E5 to
measure the
performance
impact of setting
the parameters
on the lock-free
concurrent queue.
When the size
of the buffer is
low (e.g., 10 to
30 timed words),
the CPU and
memory usage are
quite high (Fig. 9)
due to frequent
context switching
and conditional
synchronization.
When the size is
very large, CPU utilization is marginally impacted, while
memory usage is more significantly impacted due to wasted
space in the buffer. The running time, for all settings, remains
flat around 60 seconds. These results demonstrate that a
balance in defining the size of the buffer is important.

Fig. 9. Trace Buffer- ECA Monitor

G. Threats to Validity
A potential threat to the external validity of our work arises

because we evaluated BraceAssertion using a single applica-
tion. We have attempted to mitigate this issue by choosing a
real world application that is representative of a broad class of
cooperative CPS applications. We also chose correctness prop-
erties that exercise diverse aspects (e.g., qualitative, quantative,
and first-order expressiveness) of the BraceAssertion frame-
work. Though we used a limited number of specifications, our
experiments increase the number of waypoints dramatically to
activate more instances of monitors, which is more relevant to
real requirements of CPS applications.

With respect to construct validity, we measured the CPU
and memory overhead of our approach using the free Virtu-
alVM instead of a commercial-level tool like JProfiler8. In
addition, the impact on the running time of the observed
application is hard to assess. We measured a decrease in
runtime when running an increasing number of monitors,
which is counter-intuitive. However, we believe that this is
reasonable for CPS because the interdependencies among
multiple threads and events are not always deterministic and
cannot be measured as in traditional software systems.

8www.ej-technologies.com/products/jprofiler/overview.html

305

VI. RELATED WORK
In addition to the previously described work on runtime-

verification and behavior-driven development, this paper is in-
formed by work on runtime monitors based on temporal logics
and other runtime monitors mainly designed for efficiency.

Monitors Based on Temporal Logics. Efforts in real-
time temporal logics have resulted in Metric Temporal Logic
(MTL) [20] and Metric Interval Temporal Logic (MITL) [2],
which check execution traces for real-time properties. State
Clock Logic (SCL) [28] includes prophecy and history clocks
and is decidable by a simple decision procedure that relies
on event clock automata. Eagle [5] is a fixed-point based
logic capable of supporting MTL with bounded space/time
complexity. This line of work introduces metrics (often with
relaxed punctuality) into temporal logic and enables synthe-
sizing decidable monitors. These approaches only support
propositional logic, which cannot express quantification and
predicates. Metric First-Order Temporal Logic (MFOTL) [13]
adds first-order logic expressiveness and metrics to quantify
timing constraints [7]. This work might be most similar to our
approach, however, it does not measure runtime performance
and cost, and there is no implementation to show this approach
can work in a manner that is not intrusive to functional and
non-functional behaviors of monitored applications.

Efficient Monitors. Based on JavaMOP, an optimization
for parametric runtime monitoring relies on efficient data
structures [19]. This is similar to our approach; we aggregate
repetitive atomic events to significantly reduce the number of
events to be processed, and we use a global transition table
backed by an efficient data structure. Our approach is also
similar to [27], where inter-property and intra-property monitor
compaction deal with large numbers of monitors and high-
frequency events. Another way to improve the efficiency of
runtime monitoring is to apply static analyses to eliminate
unnecessary instrumentation [9]. Since the underlying BDD for
BraceAssertion requires manual instrumentation, this approach
is orthogonal and complementary to our framework. There are
a few existing efficient specification languages that we could
use as the basis of our framework [26], however we believe
the wide popularity and intuitiveness of BDD makes our work
more accessible to real CPS practitioners.

VII. CONCLUSION
This paper brings Behavior-Driven Development (BDD)

into runtime verification of CPS applications. To provide a
balance between expressiveness and accessibility, we bridge
the gap between BDD and Metric Temporal Logics (e.g., SCL)
and first order logic. We support our approach using a dual
monitor architecture and algorithms, build a prototype on top
of aspect-oriented programming, and show the framework to
have minimal runtime overhead for the host applications.

REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical

Computer Science, 1994.
[2] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing

punctuality. JACM, 1996.
[3] R. Alur, L. Fix, and T. A. Henzinger. A determinizable class of timed

automata. In Computer Aided Verification, 1994.
[4] R. Alur, R. P. Kurshan, and M. Viswanathan. Membership questions

for timed and hybrid automata. In Proc. of RTSS, pages 254–263, 1998.
[5] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based

runtime verification. In Verification, Model Checking, and Abstract
Interpretation, 2004.

[6] D. Basin, F. Klaedtke, and S. Müller. Monitoring security policies with
metric first-order temporal logic. In Proc. of SACMAT, 2010.

[7] D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring
of metric first-order temporal properties. In Proc. of LIPICS, 2008.

[8] Introducing behavior-driven development. http://dannorth.net/
introducing-bdd, 2006.

[9] E. Bodden. Verifying finite-state properties of large-scale programs.
PhD thesis, McGill University, 2009.

[10] J. P. Bowen and M. G. Hinchey. Ten commandments revisited: a ten-
year perspective on the industrial application of formal methods. In
Proc. of Formal methods for industrial critical systems, pages 8–16,
2005.

[11] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: a
framework for simulating and prototyping heterogeneous systems. In
Readings in hardware/software co-design, 2001.

[12] F. Chen and G. Roşu. Java-MOP: A monitoring oriented programming
environment for java. In Proc. of TACAS. 2005.

[13] J. Chomicki. Efficient checking of temporal integrity constraints using
bounded history encoding. Trans. on Database Systems, 1995.

[14] C. Fetzer and F. Cristian. An optimal internal clock synchronization
algorithm. In Proc. of COMPASS, 1995.

[15] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Strategies for incorporat-
ing formal specifications in software development. Comm. of the ACM,
1994.

[16] N. He, P. Rümmer, and D. Kroening. Test-case generation for embedded
simulink via formal concept analysis. In Proc. of DAC, 2011.

[17] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In Proc. of
AOSD, 2004.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata
theory, languages, and computation. ACM SIGACT News, 2001.

[19] D. Jin, P. O. Meredith, and G. Rosu. Scalable parametric runtime
monitoring. 2012.

[20] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-time systems, 1990.

[21] V. Lesser, K. Decker, T. Wagner, et al. Evolution of the GPGP/TAEMS
Domain-Independent Coordination Framework. Autonomous Agents
and Multi-Agent Systems, 2004.

[22] D. L. Mills. Internet time synchronization: the network time protocol.
IEEE Trans. on Comm., 1991.

[23] S. Mitra, T. Wongpiromsarn, and R. M. Murray. Verifying cyber-
physical interactions in safety-critical systems. IEEE Security &
Privacy, 2013.

[24] T. A. Moehlman, V. R. Lesser, and B. L. Buteau. Decentralized
negotiation: An approach to the distributed planning problem. Group
decision and Negotiation, 1992.

[25] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[26] L. Pike, S. Niller, and N. Wegmann. Runtime verification for ultra-
critical systems. In Runtime Verification, 2012.

[27] R. Purandare, M. B. Dwyer, and S. Elbaum. Optimizing monitoring of
finite state properties through monitor compaction. In Proc. of ISSTA,
pages 280–290, 2013.

[28] J. F. Raskin and P. Y. Schobbens. The logic of event clocks: decidability,
complexity and expressiveness. IFAC, 1998.

[29] K. Romer and J. Ma. PDA: Passive distributed assertions for sensor
networks. In Proc. of IPSN, 2009.

[30] R. Sasnauskas, O. Landsiedel, M. H. Alizai, et al. Kleenet: discovering
insidious interaction bugs in wireless sensor networks before deploy-
ment. In Proc. of IPSN, 2010.

[31] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal
methods: Practice and experience. CSUR, 2009.

[32] X. Zheng, C. Julien, S. Khurshid, and M. Kim. On the state of the
art in verification and validation in cyber physical systems. Technical
Report UTARISE-2014-001, 2014.

[33] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez. Braceassertion:
Behavior-driven development for cps application. http://goo.gl/XpTksg.

306

