Monitoring and Fault-Diagnosis with **Digital Clocks**

Karine Altisen¹ Franck Cassez² Stavros Tripakis¹

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●目目 のへで

¹VERIMAG Grenoble. France

²IRCC_yN Nantes. France

ACSD'06 June 27th, 2006

Turku, Finland

Monitoring

Plant generates $\mathcal{L}(Plant) \subseteq \Sigma^*$ Specification $= \mathcal{L}(S) \subseteq \Sigma^*$

Plant $w \in \mathcal{L}(Plant)$ Monitor

Plant generates $\mathcal{L}(Plant) \subseteq (\Sigma \cup \{\varepsilon, f\})^*$ Spec. = $\mathcal{L}(S) = \{\rho. f. \rho' \text{ s.t. } |\rho'| \ge k\}$

Role of the monitor:

- can shout when $w \notin \mathcal{L}(S)$
- never shout when $w \in \mathcal{L}(S)$

Role of the *k*-diagnoser:

- must shout when $w \in \mathcal{L}(S)$
- \blacktriangleright never shout when no f in w

Image: A math a math

Monitoring

Plant generates $\mathcal{L}(Plant) \subseteq \Sigma^*$ Specification $= \mathcal{L}(S) \subseteq \Sigma^*$

Plant $w \in \mathcal{L}(Plant)$ Monitor

Plant generates $\mathcal{L}(Plant) \subseteq (\Sigma \cup \{\varepsilon, f\})^*$ Spec. = $\mathcal{L}(S) = \{\rho. f. \rho' \text{ s.t. } |\rho'| \ge k\}$

Role of the monitor:

- can shout when $w \notin \mathcal{L}(S)$
- never shout when $w \in \mathcal{L}(S)$

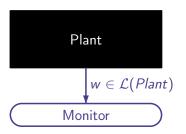
Role of the *k*-diagnoser:

- must shout when $w \in \mathcal{L}(S)$
- \blacktriangleright never shout when no f in w

Image: Image:

Monitoring

Plant generates $\mathcal{L}(Plant) \subseteq \Sigma^*$ Specification $= \mathcal{L}(S) \subseteq \Sigma^*$



Diagnosis Plant generates $\mathcal{L}(Plant) \subseteq (\Sigma \cup \{\varepsilon, f\})^*$

Spec. =
$$\mathcal{L}(S) = \{\rho.f.\rho' \text{ s.t. } |\rho'| \ge k\}$$

Role of the monitor:

- can shout when $w \notin \mathcal{L}(S)$
- never shout when $w \in \mathcal{L}(S)$

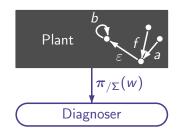
Role of the *k*-diagnoser:

- must shout when $w \in \mathcal{L}(S)$
- never shout when no f in w

Monitoring Plant generates $\mathcal{L}(Plant) \subseteq \Sigma^*$ Specification = $\mathcal{L}(S) \subseteq \Sigma^*$

Plant $w \in \mathcal{L}(Plant)$ Monitor

Diagnosis Plant generates $\mathcal{L}(Plant) \subseteq (\Sigma \cup \{\varepsilon, f\})^*$ Spec. = $\mathcal{L}(S) = \{\rho.f.\rho' \text{ s.t. } |\rho'| \ge k\}$



Role of the monitor:

- can shout when $w \notin \mathcal{L}(S)$
- never shout when $w \in \mathcal{L}(S)$

Role of the *k*-diagnoser:

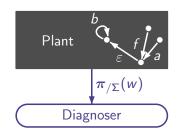
- must shout when $w \in \mathcal{L}(S)$
- never shout when no f in w

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Monitoring Plant generates $\mathcal{L}(Plant) \subseteq \Sigma^*$ Specification = $\mathcal{L}(S) \subseteq \Sigma^*$

Plant $w \in \mathcal{L}(Plant)$ Monitor

Diagnosis Plant generates $\mathcal{L}(Plant) \subseteq (\Sigma \cup \{\varepsilon, f\})^*$ Spec. = $\mathcal{L}(S) = \{\rho.f.\rho' \text{ s.t. } |\rho'| \ge k\}$



Role of the monitor:

- can shout when $w \notin \mathcal{L}(S)$
- never shout when $w \in \mathcal{L}(S)$

Role of the *k*-diagnoser:

- must shout when $w \in \mathcal{L}(S)$
- never shout when no f in w

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Image: Image:

Known Results & Related Work

► Discrete Events Systems [Sampath et al., IEEE'95]

Finite Automata

- ► Monitoring ≡ determinize the specification
- Diagnosis
 - Check diagnosability (PTIME)
 - 2 Compute a diagnoser (EXPTIME)

Dense-time Systems

- Monitoring
 - TA are not determinizable Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]
- Diagnosis
 - Diagnoser = Turing Machine [Tripakis, FTRTFT'02]
 - TA-Diagnosability: the diagnoser is a deterministic/Event-Recording timed automaton [Bouyer et al., FoSSaCS'05]

Monitoring & Diagnosis	Timed Automata	Monitoring	Diagnosis with	Digital Clocks	Conclusio
Known Res	ults & Re	lated W	/ork		
 Discrete Eve Monitori Diagnosi 	$ng \equiv determiniz$			Finite /	Automata

- Check diagnosability (PTIME)
- Compute a diagnoser (EXPTIME)

Dense-time Systems

Monitoring

TA are not determinizable – Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]

Diagnosis

Diagnoser = Turing Machine [Tripakis, FTRTFT'02]

 TA-Diagnosability: the diagnoser is a deterministic/Event-Recording timed automaton [Bouyer et al., FoSSaCS'05]

- Discrete Events Systems [Sampath et al., IEEE'95]
- Finite Automata

- Monitoring \equiv determinize the specification
- Diagnosis
 - Check diagnosability (PTIME)
 - Compute a diagnoser (EXPTIME)
- Dense-time Systems
 - Monitoring

TA are not determinizable – Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]

Diagnosis

Diagnoser = Turing Machine [Tripakis, FTRTFT'02]

 TA-Diagnosability: the diagnoser is a deterministic/Event-Recording timed automaton [Bouyer et al., FoSSaCS'05]

Finite Automata

Timed Automata

Known Results & Related Work

- Discrete Events Systems [Sampath et al., IEEE'95]
 - ► Monitoring ≡ determinize the specification
 - Diagnosis
 - Check diagnosability (PTIME)
 - Compute a diagnoser (EXPTIME)

Dense-time Systems

Monitoring

TA are not determinizable – Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]

Diagnosis

Diagnoser ≡ Turing Machine [Tripakis, FTRTFT'02] Checking Diagnosability PSPACE

- TA-Diagnosability: the diagnoser is a deterministic/Event-Recording timed automaton [Bouyer et al., FoSSaCS'05]
 - building the Diagnoser: 2EXPTIME-complete/PSPACE-complete

- Discrete Events Systems [Sampath et al., IEEE'95]
- Finite Automata

Timed Automata

비타 (종) (종) (종) (종)

- Monitoring \equiv determinize the specification
- Diagnosis
 - Check diagnosability (PTIME)
 - Compute a diagnoser (EXPTIME)
- Dense-time Systems
 - Monitoring

TA are not determinizable – Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]

- Diagnosis

- Discrete Events Systems [Sampath et al., IEEE'95]
- Finite Automata

Timed Automata

- **∢ ∃** ►

- Monitoring \equiv determinize the specification
- Diagnosis
 - Check diagnosability (PTIME)
 - Compute a diagnoser (EXPTIME)
- Dense-time Systems
 - Monitoring

TA are not determinizable – Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]

- Diagnosis
 - Diagnoser = Turing Machine [Tripakis, FTRTFT'02] Checking Diagnosability PSPACE
 - TA-Diagnosability: the diagnoser is a deterministic/Event-Recording timed automaton [Bouyer et al., FoSSaCS'05]

building the Diagnoser: 2EXPTIME-complete/PSPACE-complete

- Discrete Events Systems [Sampath et al., IEEE'95]
- Finite Automata

Timed Automata

- Monitoring \equiv determinize the specification
- Diagnosis
 - Check diagnosability (PTIME)
 - Compute a diagnoser (EXPTIME)
- Dense-time Systems
 - Monitoring

TA are not determinizable – Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]

- Diagnosis
 - **1** Diagnoser \equiv Turing Machine [Tripakis, FTRTFT'02] Checking Diagnosability PSPACE

2 TA-Diagnosability: the diagnoser is a deterministic/Event-Recording. timed automaton [Bouyer et al., FoSSaCS'05] building the Diagnoser: 2EXPTIME-complete/PSPACE-complete

Use of Analog Clocks = arbitrarily precise

3 3 9 9 9 9

- Discrete Events Systems [Sampath et al., IEEE'95]
- Finite Automata

Timed Automata

- ► Monitoring ≡ determinize the specification
- Diagnosis
 - Check diagnosability (PTIME)
 - Compute a diagnoser (EXPTIME)
- Dense-time Systems
 - Monitoring

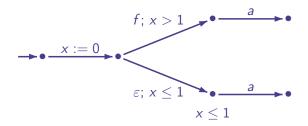
TA are not determinizable – Checking determinizability is undecidable On-the-fly solutions [Krichen, Tripakis, FORMATS'04]

- Diagnosis
 - Diagnoser = Turing Machine [Tripakis, FTRTFT'02] Checking Diagnosability PSPACE
 - TA-Diagnosability: the diagnoser is a deterministic/Event-Recording timed automaton [Bouyer et al., FoSSaCS'05] building the Diagnoser: 2EXPTIME-complete/PSPACE-complete

Our contribution: Monitoring & Fault Diagnosis with Digital Clocks

Perfect Clocks vs. Fuzzy Clocks

Digital Clocks cannot have arbitrary precision: imprecision $\boldsymbol{\Delta}$

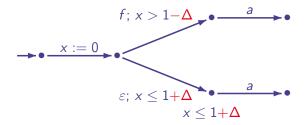


Perfect Clock *t*: if a@t and t > 1 say "Fault" otherwise say nothing Fuzzy Clocks: value of *t* is an interval $[t - \Delta, t + \Delta]$

 $f \mathbb{Q}(1 + \frac{\Delta}{4}).a \mathbb{Q}(1 + \frac{\Delta}{3})$ and $\varepsilon \mathbb{Q}1.a \mathbb{Q}(1 + \frac{\Delta}{2})$ are indistinguishable

Perfect Clocks vs. Fuzzy Clocks

Digital Clocks cannot have arbitrary precision: imprecision Δ

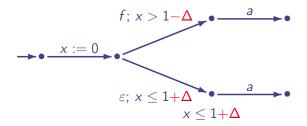


Perfect Clock t: if a@t and t > 1 say "Fault" otherwise say nothing Fuzzy Clocks: value of t is an interval $[t - \Delta, t + \Delta]$

 $f \mathbb{Q}(1 + \frac{\Delta}{4}) \cdot a \mathbb{Q}(1 + \frac{\Delta}{3})$ and $\varepsilon \mathbb{Q} 1 \cdot a \mathbb{Q}(1 + \frac{\Delta}{2})$ are indistinguishable

Perfect Clocks vs. Fuzzy Clocks

Digital Clocks cannot have arbitrary precision: imprecision Δ



Perfect Clock t: if a@t and t > 1 say "Fault" otherwise say nothing Fuzzy Clocks: value of t is an interval $[t - \Delta, t + \Delta]$

 $f \mathbb{Q}(1 + \frac{\Delta}{4}).a \mathbb{Q}(1 + \frac{\Delta}{3})$ and $\varepsilon \mathbb{Q}1.a \mathbb{Q}(1 + \frac{\Delta}{2})$ are indistinguishable

Outline of the talk

Models for Timed Systems & Digital Clocks

Monitoring with Digital Clocks

Diagnosis with Digital Clocks

Conclusion & Open Problem

- Models for Timed Systems & Digital Clocks
- Monitoring with Digital Clocks
- Diagnosis with Digital Clocks
- **Conclusion & Open Problem**

Outline of the talk

- Models for Timed Systems & Digital Clocks
- Monitoring with Digital Clocks
- Diagnosis with Digital Clocks
- **Conclusion & Open Problem**

Outline of the talk

- Models for Timed Systems & Digital Clocks
- Monitoring with Digital Clocks
- Diagnosis with Digital Clocks
- Conclusion & Open Problem

Models for Timed Systems & Digital Clocks

- Monitoring with Digital Clocks
- Diagnosis with Digital Clocks
- **Conclusion & Open Problem**

[Alur & Dill, TCS'94]

Timed Automaton = Finite Automaton + clock variables All clocks evolve at the same speed

Clocks take their value in a dense-time domain

- ▶ g: guard of the form $g ::= x \sim c \mid g \land g$ where x is a clock and $c \in \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$
- \triangleright *R* : the set of clocks to be **reset** when firing the transition
- ▶ $Inv(\ell)$ is an invariant to ensure "liveness"
- Semantics of TA: Timed Transition Systems

[Alur & Dill, TCS'94]

Timed Automaton = Finite Automaton + clock variables All clocks evolve at the same speed

Clocks take their value in a dense-time domain

Transitions are guarded by clocks constraints

- ▶ g: guard of the form $g ::= x \sim c \mid g \land g$ where x is a clock and $c \in \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$
- \triangleright R : the set of clocks to be reset when firing the transition
- ▶ $Inv(\ell)$ is an invariant to ensure "liveness"
- Semantics of TA: Timed Transition Systems

[Alur & Dill, TCS'94]

Timed Automaton = Finite Automaton + clock variables All clocks evolve at the same speed

Clocks take their value in a dense-time domain



- ▶ g: guard of the form $g ::= x \sim c \mid g \land g$ where x is a clock and $c \in \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$
- \triangleright R : the set of clocks to be reset when firing the transition
- ▶ $Inv(\ell)$ is an invariant to ensure "liveness"
- Semantics of TA: Timed Transition Systems

[Alur & Dill, TCS'94]

Timed Automaton = Finite Automaton + clock variables All clocks evolve at the same speed

Clocks take their value in a dense-time domain

- ▶ g: guard of the form $g ::= x \sim c \mid g \land g$ where x is a clock and $c \in \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$
- \triangleright R : the set of clocks to be reset when firing the transition
- ▶ $Inv(\ell)$ is an invariant to ensure "liveness"
- Semantics of TA: Timed Transition Systems

[Alur & Dill, TCS'94]

Timed Automaton = Finite Automaton + clock variables All clocks evolve at the same speed

Clocks take their value in a dense-time domain

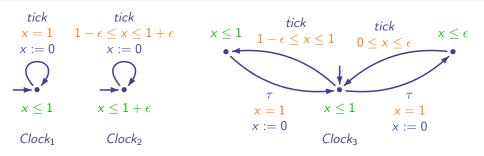
- ▶ g: guard of the form $g ::= x \sim c \mid g \land g$ where x is a clock and $c \in \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$
- \triangleright *R* : the set of clocks to be reset when firing the transition
- $Inv(\ell)$ is an invariant to ensure "liveness"
- Semantics of TA: Timed Transition Systems

[Alur & Dill, TCS'94]

Timed Automaton = Finite Automaton + clock variables All clocks evolve at the same speed

Clocks take their value in a dense-time domain

- ▶ g: guard of the form $g ::= x \sim c \mid g \land g$ where x is a clock and $c \in \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$
- \triangleright *R* : the set of clocks to be reset when firing the transition
- $Inv(\ell)$ is an invariant to ensure "liveness"
- Semantics of TA: Timed Transition Systems



```
Timed Words:

Clock_1 : 1.tick.1.tick..... 1.tick....

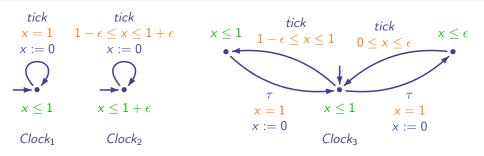
Let \epsilon = 0, 3

Clock_2 : 0, 8.tick.1, 14.tick..... 0, 98.tick....

n^{th} tick at t with n \cdot (1 - 0, 3) \le t \le n \cdot (1 + 0, 3)

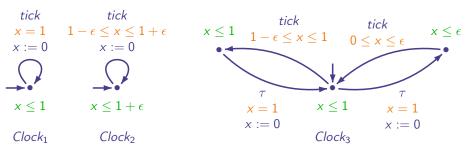
Clock_3 : 0, 8.tick.1, 3.tick..... 1, 15.tick....

n^{th} tick at t with n - 0, 3 \le t \le n + 0, 3
```



Timed Words:

 $\begin{array}{l} Clock_{1}: 1.tick.1.tick.\cdots .1.tick.\cdots \\ Let \ \epsilon = 0,3 \\ Clock_{2}: 0,8.tick.1, 14.tick.\cdots .0,98.tick.\cdots \\ n^{th} \ tick \ at \ t \ with \ n \cdot (1-0,3) \leq t \leq n \cdot (1+0,3) \\ Clock_{3}: 0,8.tick.1, 3.tick.\cdots .1, 15.tick.\cdots \\ n^{th} \ tick \ at \ t \ with \ n-0,3 \leq t \leq n+0,3 \end{array}$



```
Timed Words:

Clock_1 : 1.tick.1.tick.... 1.tick...

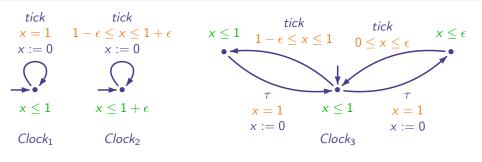
Let \epsilon = 0, 3

Clock_2 : 0, 8.tick.1, 14.tick.... 0, 98.tick...

n^{th} tick at t with n \cdot (1 - 0, 3) \le t \le n \cdot (1 + 0, 3)

Clock_3 : 0, 8.tick.1, 3.tick... 1, 15.tick...

n^{th} tick at t with n - 0, 3 \le t \le n + 0, 3
```



```
Timed Words:

Clock_1 : 1.tick.1.tick. \cdots .1.tick. \cdots

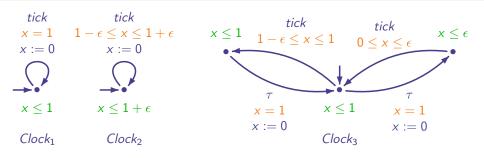
Let \epsilon = 0, 3

Clock_2 : 0, 8.tick.1, 14.tick. \cdots .0, 98.tick. \cdots

n^{th} tick at t with n \cdot (1 - 0, 3) \le t \le n \cdot (1 + 0, 3)

Clock_3 : 0, 8.tick.1, 3.tick. \cdots .1, 15.tick. \cdots

n^{th} tick at t with n - 0, 3 \le t \le n + 0, 3
```



Timed Words: $Clock_1 : 1.tick.1.tick..... 1.tick....$ Let $\epsilon = 0, 3$ $Clock_2 : 0, 8.tick.1, 14.tick..... 0, 98.tick.....$ n^{th} tick at t with $n \cdot (1 - 0, 3) \le t \le n \cdot (1 + 0, 3)$ $Clock_3 : 0, 8.tick.1, 3.tick..... 1, 15.tick.....$ n^{th} tick at t with $n - 0, 3 \le t \le n + 0, 3$

イロト イポト イヨト イヨト

Timed Languages & Region Graph/Automaton

- ► Timed words: alternating sequences of symbols in $\Sigma \cup \mathbb{R}_{\geq 0}$ Dense-Time: $0.a.\pi.b.\frac{1}{3}.b.\cdots$
 - $1.a.2.\varepsilon.1.b \equiv 1.a.3.b$
- ► Timed Language = set of timed words accepted by a timed automaton L(A) and L^ω(A)
- ► Untimed Language = projection on Σ of the Timed Language $\pi_{/\Sigma}(1.a.2.\varepsilon.1.b.1) = a.b$

Duration $(1.a.2.\varepsilon.1.b.1) = 4$

- ▶ Product of timed words/languages: w || w' (for languages L || L') 1.a.2.b || 0, 5.c.1.d = 0, 5.c.0, 5.a.0, 5.d.1, 5.b
 - $1.a \parallel 1.b = \{1.a.0.b, 1.b.0.a\}$
 - 1.a∥2.a=∅

Timed Languages & Region Graph/Automaton

► Timed words: alternating sequences of symbols in $\Sigma \cup \mathbb{R}_{\geq 0}$ Dense-Time: $0.a.\pi.b.\frac{1}{3}.b.\cdots$

 $1.a.2.\varepsilon.1.b \equiv 1.a.3.b$

- ► Timed Language = set of timed words accepted by a timed automaton L(A) and L^ω(A)
- ► Untimed Language = projection on Σ of the Timed Language $\pi_{/\Sigma}(1.a.2.\varepsilon.1.b.1) = a.b$

Duration $(1.a.2.\varepsilon.1.b.1) = 4$

- ▶ Product of timed words/languages: w || w' (for languages L || L') 1.a.2.b || 0,5.c.1.d = 0,5.c.0,5.a.0,5.d.1,5.b
 - $1.a \parallel 1.b = \{1.a.0.b, 1.b.0.a\}$
 - $1.a \parallel 2.a = \emptyset$

・ロト ・ 同ト ・ ヨト ・ ヨト

Timed Languages & Region Graph/Automaton

► Timed words: alternating sequences of symbols in $\Sigma \cup \mathbb{R}_{\geq 0}$ Dense-Time: $0.a.\pi.b.\frac{1}{3}.b.\cdots$

 $1.a.2.\varepsilon.1.b \equiv 1.a.3.b$

- ► Timed Language = set of timed words accepted by a timed automaton L(A) and L^ω(A)
- Untimed Language = projection on Σ of the Timed Language $\pi_{/\Sigma}(1.a.2.\varepsilon.1.b.1) = a.b$

Duration $(1.a.2.\varepsilon.1.b.1) = 4$

- ▶ Product of timed words/languages: w || w' (for languages L || L') 1.a.2.b || 0,5.c.1.d = 0,5.c.0,5.a.0,5.d.1,5.b
 - $1.a \parallel 1.b = \{1.a.0.b, 1.b.0.a\}$
 - $1.a \parallel 2.a = \emptyset$

(日) (周) (日) (日) (日)

- ► Timed words: alternating sequences of symbols in $\Sigma \cup \mathbb{R}_{\geq 0}$ Dense-Time: $0.a.\pi.b.\frac{1}{3}.b.\cdots$
 - $1.a.2.\varepsilon.1.b \equiv 1.a.3.b$
- ► Timed Language = set of timed words accepted by a timed automaton L(A) and L^ω(A)
- Untimed Language = projection on Σ of the Timed Language π_{/Σ}(1.a.2.ε.1.b.1) = a.b Duration(1.a.2.ε.1.b.1) = 4
- Product of timed words/languages: w || w' (for languages L || L') 1.a.2.b || 0,5.c.1.d = 0,5.c.0,5.a.0,5.d.1,5.b 1.a || 1.b = {1.a.0.b,1.b.0.a} 1.a || 2.a = 0

► Timed words: alternating sequences of symbols in $\Sigma \cup \mathbb{R}_{\geq 0}$ Dense-Time: $0.a.\pi.b.\frac{1}{3}.b.\cdots$

 $1.a.2.\varepsilon.1.b \equiv 1.a.3.b$

- ► Timed Language = set of timed words accepted by a timed automaton L(A) and L^ω(A)
- Untimed Language = projection on Σ of the Timed Language π_{/Σ}(1.a.2.ε.1.b.1) = a.b Duration(1.a.2.ε.1.b.1) = 4
- Product of timed words/languages: w || w' (for languages L || L') 1.a.2.b || 0,5.c.1.d = 0,5.c.0,5.a.0,5.d.1,5.b 1.a || 1.b = {1.a.0.b, 1.b.0.a}
 - $1.a \parallel 2.a = \emptyset$

► Timed words: alternating sequences of symbols in $\Sigma \cup \mathbb{R}_{\geq 0}$ Dense-Time: $0.a.\pi.b.\frac{1}{3}.b.\cdots$

 $1.a.2.\varepsilon.1.b \equiv 1.a.3.b$

- ► Timed Language = set of timed words accepted by a timed automaton L(A) and L^ω(A)
- Untimed Language = projection on Σ of the Timed Language $\pi_{/\Sigma}(1.a.2.\varepsilon.1.b.1) = a.b$

Duration $(1.a.2.\varepsilon.1.b.1) = 4$

Product of timed words/languages: w || w' (for languages L || L') 1.a.2.b || 0,5.c.1.d = 0,5.c.0,5.a.0,5.d.1,5.b 1.a || 1.b = {1.a.0.b, 1.b.0.a} 1.a || 2.a = Ø

Product of Automata

Given A and B, we can effectively build a TA $(A \parallel B)$ that accepts the timed language $\mathcal{L}(A) \parallel \mathcal{L}(B)$.

► Timed words: alternating sequences of symbols in $\Sigma \cup \mathbb{R}_{\geq 0}$ Dense-Time: $0.a.\pi.b.\frac{1}{3}.b.\cdots$

 $1.a.2.\varepsilon.1.b \equiv 1.a.3.b$

- ► Timed Language = set of timed words accepted by a timed automaton L(A) and L^ω(A)
- Untimed Language = projection on Σ of the Timed Language π_{/Σ}(1.a.2.ε.1.b.1) = a.b Duration(1.a.2.ε.1.b.1) = 4
- ► Product of timed words/languages: w || w' (for languages L || L') 1.a.2.b || 0,5.c.1.d = 0,5.c.0,5.a.0,5.d.1,5.b 1.a || 1.b = {1.a.0.b, 1.b.0.a} 1.a || 2.a = Ø

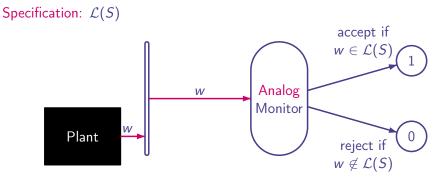
Theorem (Region Graph Region Graph)

For each Timed Automaton A, we can effectively build a finite automaton RG(A) s.t. $\mathcal{L}(RG(A)) = Untimed(\mathcal{L}(A))$. [Alur & Dill, TCS'94]

Models for Timed Systems & Digital Clocks

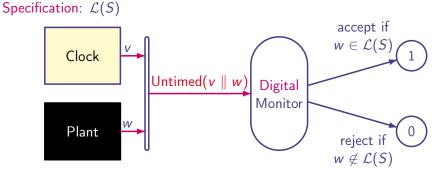
Monitoring with Digital Clocks

- Diagnosis with Digital Clocks
- **Conclusion & Open Problem**

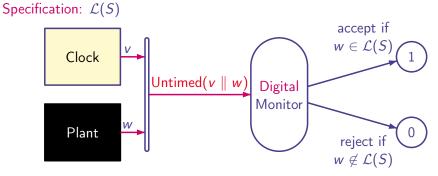


- ▶ Plant: generates timed words $w = t_0 a_0 t_1 a_1 \cdots t_n a_n$
- ▶ Digital Clock: generates $v \in (tick \cup \mathbb{R}_{\geq 0})^*$, non zeno
- ▶ Plant || Clock: generates timed words in $(\Sigma \cup \{tick\} \cup \mathbb{R}_{\geq 0})^*$ $\rho = v \parallel w = 1.a.0.tick.2.b.1.tick.2.tick.8$
- ► Monitor: deterministic, accepts untimed words in $(\Sigma \cup \{tick\})^* \pi_{\Sigma \cup \{tick\}}(1.a.0.tick.2.b.1.tick.2.tick.8) = a.tick.b.tick.tick$

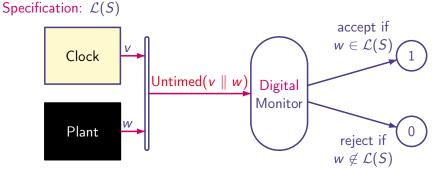
June 2006 (ACSD'06, Turku)



- ▶ Plant: generates timed words $w = t_0 a_0 t_1 a_1 \cdots t_n a_n$
- ▶ Digital Clock: generates $v \in (tick \cup \mathbb{R}_{\geq 0})^*$, non zeno
- ► Plant || Clock: generates timed words in $(\Sigma \cup \{tick\} \cup \mathbb{R}_{\geq 0})^*$ $\rho = v \mid w = 1.a.0.tick.2.b.1.tick.2.tick.8$
- ▶ Monitor: deterministic, accepts untimed words in $(\Sigma \cup \{tick\})^* \pi_{\Sigma \cup \{tick\}}(1.a.0.tick.2.b.1.tick.2.tick.8) = a.tick.b.tick.tick$



- ▶ Plant: generates timed words $w = t_0 a_0 t_1 a_1 \cdots t_n a_n$
- ▶ Digital Clock: generates $v \in (tick \cup \mathbb{R}_{\geq 0})^*$, non zeno
- ► Plant || Clock: generates timed words in $(\Sigma \cup \{tick\} \cup \mathbb{R}_{\geq 0})^*$ $\rho = v \parallel w = 1.a.0.tick.2.b.1.tick.2.tick.8$
- ▶ Monitor: deterministic, accepts untimed words in $(\Sigma \cup \{tick\})^* \pi_{\Sigma \cup \{tick\}}(1.a.0.tick.2.b.1.tick.2.tick.8) = a.tick.b.tick.tick$



- ▶ Plant: generates timed words $w = t_0 a_0 t_1 a_1 \cdots t_n a_n$
- ▶ Digital Clock: generates $v \in (tick \cup \mathbb{R}_{\geq 0})^*$, non zeno
- ► Plant || Clock: generates timed words in $(\Sigma \cup \{tick\} \cup \mathbb{R}_{\geq 0})^*$ $\rho = v \parallel w = 1.a.0.tick.2.b.1.tick.2.tick.8$
- Monitor: deterministic, accepts untimed words in $(\Sigma \cup \{tick\})^* \pi_{\Sigma \cup \{tick\}}(1.a.0.tick.2.b.1.tick.2.tick.8) = a.tick.b.tick.tick$

Definition (Soundness)

An monitor *M* is sound w.r.t. *Clock* if $\forall \rho \in \mathcal{L}(S)$ and $\rho' \in \mathcal{L}(Clock)$ *M* accepts Untimed $(\rho \parallel \rho')$ (or equivalently $M(Untimed(\rho \parallel \rho')) = 1$).

This is **NOT** equivalent to $\mathcal{L}(S) \subseteq (\mathcal{L}(M) \parallel \mathcal{L}(Clock))$

Property 1 (Better Clock Preserves Soundness)

If M is sound w.r.t. $Clock_1$ and $\mathcal{L}(Clock_2) \subseteq \mathcal{L}(Clock_1)$ then M is sound w.r.t. $Clock_2$.

Property 2 (Minimal Language of a Sound Monitor)

If M is sound w.r.t. Clock then $\mathsf{Untimed}(\mathcal{L}(S) \parallel \mathcal{L}(\mathsf{Clock})) \subseteq \mathcal{L}(M)$.

June 2006 (ACSD'06, Turku)

Diagnosis with Digital Clocks

Definition (Soundness)

An monitor M is sound w.r.t. Clock if $\forall \rho \in \mathcal{L}(S)$ and $\rho' \in \mathcal{L}(Clock) M$ accepts Untimed $(\rho \parallel \rho')$ (or equivalently $M(Untimed(\rho \parallel \rho')) = 1)$.

This is **NOT** equivalent to $\mathcal{L}(S) \subseteq (\mathcal{L}(M) \parallel \mathcal{L}(Clock))$

Property 1 (Better Clock Preserves Soundness)

If M is sound w.r.t. $Clock_1$ and $\mathcal{L}(Clock_2) \subseteq \mathcal{L}(Clock_1)$ then M is sound w.r.t. $Clock_2$.

Property 2 (Minimal Language of a Sound Monitor)

If *M* is sound w.r.t. *Clock* then $\text{Untimed}(\mathcal{L}(S) \parallel \mathcal{L}(Clock)) \subseteq \mathcal{L}(M)$.

June 2006 (ACSD'06, Turku)

Definition (Soundness)

An monitor M is sound w.r.t. Clock if $\forall \rho \in \mathcal{L}(S)$ and $\rho' \in \mathcal{L}(Clock) M$ accepts Untimed $(\rho \parallel \rho')$ (or equivalently $M(Untimed(\rho \parallel \rho')) = 1$).

This is **NOT** equivalent to $\mathcal{L}(S) \subseteq (\mathcal{L}(M) \parallel \mathcal{L}(Clock))$

Property 1 (Better Clock Preserves Soundness)

If *M* is sound w.r.t. $Clock_1$ and $\mathcal{L}(Clock_2) \subseteq \mathcal{L}(Clock_1)$ then *M* is sound w.r.t. $Clock_2$.

Property 2 (Minimal Language of a Sound Monitor)

If *M* is sound w.r.t. *Clock* then $\text{Untimed}(\mathcal{L}(S) \parallel \mathcal{L}(Clock)) \subseteq \mathcal{L}(M)$.

June 2006 (ACSD'06, Turku)

Diagnosis with Digital Clocks

Definition (Soundness)

An monitor *M* is sound w.r.t. *Clock* if $\forall \rho \in \mathcal{L}(S)$ and $\rho' \in \mathcal{L}(Clock)$ *M* accepts Untimed $(\rho \parallel \rho')$ (or equivalently $M(Untimed(\rho \parallel \rho')) = 1$).

This is **NOT** equivalent to $\mathcal{L}(S) \subseteq (\mathcal{L}(M) \parallel \mathcal{L}(Clock))$

Property 1 (Better Clock Preserves Soundness)

If *M* is sound w.r.t. $Clock_1$ and $\mathcal{L}(Clock_2) \subseteq \mathcal{L}(Clock_1)$ then *M* is sound w.r.t. $Clock_2$.

Property 2 (Minimal Language of a Sound Monitor)

If *M* is sound w.r.t. *Clock* then $Untimed(\mathcal{L}(S) \parallel \mathcal{L}(Clock)) \subseteq \mathcal{L}(M)$.

June 2006 (ACSD'06, Turku)

Diagnosis with Digital Clocks

Problem 0

Inputs: Two timed automata *S* and *Clock*. Problem: Build a sound monitor.

Problem 0

Inputs: Two timed automata *S* and *Clock*. Problem: Build a sound monitor.

Trivial Solution:
$$M(u) = 1$$
 for any u

Problem 0

Inputs: Two timed automata *S* and *Clock*. Problem: Build a sound monitor.

Trivial Solution:
$$M(u) = 1$$
 for any u

Definition (Order on Monitors)

M is better than *M'* if $\mathcal{L}(M) \subseteq \mathcal{L}(M')$.

Problem 1

Inputs: Two timed automata *S* and *Clock*. Problem: Build a minimal (or optimal) sound monitor.

Problem 1

Inputs: Two timed automata *S* and *Clock*. Problem: Build a minimal (or optimal) sound monitor.

• Build the region graph of $(S \parallel Clock)$ and determinize it: result = RG

Problem 1

Inputs: Two timed automata *S* and *Clock*. Problem: Build a minimal (or optimal) sound monitor.

Build the region graph of (S || Clock) and determinize it: result = RG
Define M₀ by: M₀(u) = 1 iff u is accepted by RG

Problem 1

Inputs: Two timed automata *S* and *Clock*. Problem: Build a minimal (or optimal) sound monitor.

Build the region graph of (S || Clock) and determinize it: result = RG
Define M₀ by: M₀(u) = 1 iff u is accepted by RG

Theorem (Soundess and Optimality of M_0)

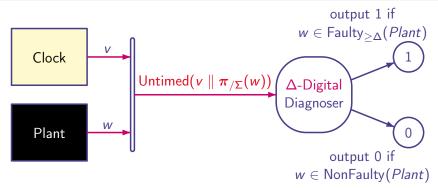
 M_0 is sound and optimal.

Proof

Soundness: If not, $\exists u \in \mathcal{L}(RG)$ s.t. $u \notin \text{Untimed}(\mathcal{L}(S) \parallel \mathcal{L}(Clock))$. Optimality: By Property 2, a sound monitor must contain at least Untimed $(\mathcal{L}(S) \parallel \mathcal{L}(Clock))$ which is equal to $\mathcal{L}(RG)$.

- Models for Timed Systems & Digital Clocks
- Monitoring with Digital Clocks
- Diagnosis with Digital Clocks
- **Conclusion & Open Problem**

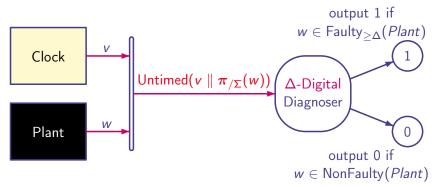
Δ -Diagnosers & Digital Clocks



• Plant: ε and f unobservable

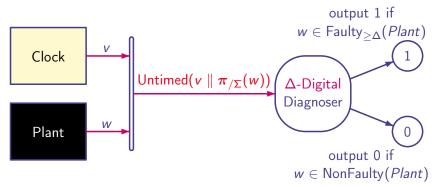
- ▶ $\rho = \rho_1.f.\rho_2$ is Δ -faulty if $f \notin \rho_1$ and $Duration(\rho_2) \ge \Delta$ If $f \notin \rho$ then ρ is non faulty
- A Diagnoser *D* does not change its mind: $D(\rho) = 1 \implies D(\rho.\rho') = 1.$

Δ -Diagnosers & Digital Clocks



- Plant: ε and f unobservable
- ► $\rho = \rho_1.f.\rho_2$ is Δ -faulty if $f \notin \rho_1$ and $\text{Duration}(\rho_2) \ge \Delta$ If $f \notin \rho$ then ρ is non faulty
- ► A Diagnoser *D* does not change its mind: $D(\rho) = 1 \implies D(\rho.\rho') = 1.$

Δ -Diagnosers & Digital Clocks



- Plant: ε and f unobservable
- ► $\rho = \rho_1.f.\rho_2$ is Δ -faulty if $f \notin \rho_1$ and $\text{Duration}(\rho_2) \ge \Delta$ If $f \notin \rho$ then ρ is non faulty
- A Diagnoser *D* does not change its mind: $D(\rho) = 1 \implies D(\rho.\rho') = 1.$

Definition (($Clock, \Delta$)-Diagnosability)

 $D: (\Sigma \cup \{tick\})^* \to \{0,1\}$ is a (*Clock*, Δ)-diagnoser for *Plant* if for any runs $\rho \in \mathcal{L}(Plant)$ and $\rho' \in \mathcal{L}(Clock)$ with $Duration(\rho) = Duration(\rho')$

- if $\rho \in \text{NonFaulty}(Plant)$ then $D(\text{Untimed}(\rho \parallel \rho')) = 0$
- if $\rho \in \text{Faulty}_{\geq \Delta}(Plant)$ then $D(\text{Untimed}(\rho \parallel \rho')) = 1$

Plant is (*Clock*, Δ)-Diagnosable if \exists a (*Clock*, Δ)-diagnoser *D*.

Definition (($Clock, \Delta$)-Diagnosability)

 $D: (\Sigma \cup \{tick\})^* \to \{0,1\}$ is a (*Clock*, Δ)-diagnoser for *Plant* if for any runs $\rho \in \mathcal{L}(Plant)$ and $\rho' \in \mathcal{L}(Clock)$ with $Duration(\rho) = Duration(\rho')$

- if $\rho \in \text{NonFaulty}(Plant)$ then $D(\text{Untimed}(\rho \parallel \rho')) = 0$
- if $\rho \in \mathsf{Faulty}_{\geq \Delta}(\mathsf{Plant})$ then $D(\mathsf{Untimed}(\rho \parallel \rho')) = 1$

Plant is (*Clock*, Δ)-Diagnosable if \exists a (*Clock*, Δ)-diagnoser *D*.

Property 3 (Better Clocks ...)

For any timed automata A, $Clock_1$ and $Clock_2$, for any $\Delta_1, \Delta_2 \in \mathbb{N}$, if D is a $(Clock_1, \Delta_1)$ -diagnoser for A and $L(Clock_2) \subseteq L(Clock_1)$ and $\Delta_2 \ge \Delta_1$, then D is also a $(Clock_2, \Delta_2)$ -diagnoser for A.

Problem 2: (*Clock*, Δ)-Diagnosability

Inputs: Two timed automata *Plant* and *Clock* and $\Delta \in \mathbb{N}$. Problem: Check whether *Plant* is (*Clock*, Δ)-diagnosable.

Problem 2: (*Clock*, Δ)-Diagnosability

Inputs: Two timed automata *Plant* and *Clock* and $\Delta \in \mathbb{N}$. Problem: Check whether *Plant* is (*Clock*, Δ)-diagnosable.

Problem 3: Clock-Diagnosability

Inputs: Two timed automata *Plant* and *Clock*. Problem: Check whether $\exists \Delta \in \mathbb{N}$ s.t. *Plant* is (*Clock*, Δ)-diagnosable.

Diagnosers & Diagnosability Problems

Problem 2: (*Clock*, Δ)-Diagnosability

Inputs: Two timed automata *Plant* and *Clock* and $\Delta \in \mathbb{N}$. Problem: Check whether *Plant* is (*Clock*, Δ)-diagnosable.

Problem 3: Clock-Diagnosability

Inputs: Two timed automata *Plant* and *Clock*. Problem: Check whether $\exists \Delta \in \mathbb{N}$ s.t. *Plant* is (*Clock*, Δ)-diagnosable.

Problem 4: Diagnosability

Inputs: A timed automaton *Plant*. Problem: Check whether ∃ a TA *Clock* s.t. *Plant* is *Clock*-diagnosable.

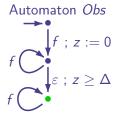
Solution to Problem 2

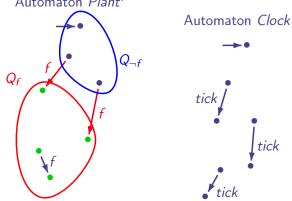
 C_1 : Necess. and Suffi. Condition for $(Clock, \Delta)$ -diagnosability

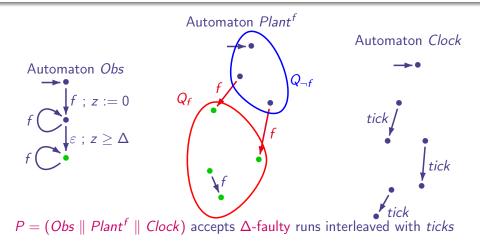
Plant is (*Clock*, Δ)-diagnosable iff $\forall \rho, \rho' \in \mathcal{L}(Plant), \sigma, \sigma' \in \mathcal{L}(Clock)$

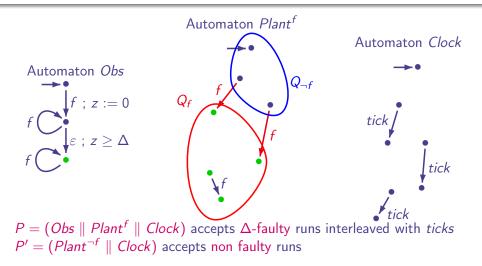
 $\rho \in \mathsf{Faulty}_{\geq \Delta}(Plant)$ $\rho' \in \mathsf{NonFaulty}(Plant)$ $\mathsf{Duration}(\rho) = \mathsf{Duration}(\sigma)$ $\mathsf{Duration}(\rho') = \mathsf{Duration}(\sigma')$

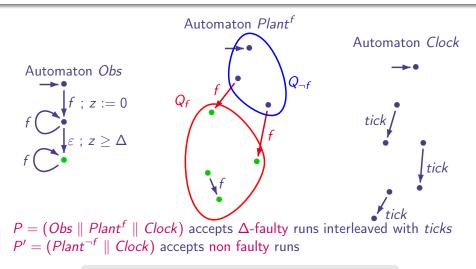
 $\Rightarrow \hspace{0.1cm} \mathsf{Untimed}(\rho \parallel \sigma) \cap \mathsf{Untimed}(\rho' \parallel \sigma') = \emptyset$











 $C_1 \iff \mathsf{Untimed}(\mathcal{L}(P)) \cap \mathsf{Untimed}(\mathcal{L}(P')) = \emptyset$

June 2006 (ACSD'06, Turku)

Diagnosis with Digital Clocks

《曰》 《聞》 《臣》 《臣》

Solution to Problem 3

Problem 3: Diagnosability

Inputs: Two timed automata *Plant* and *Clock*. Problem: Check whether *Plant* is *Clock*-diagnosable for some TA *Clock*.

For DES: amounts to checking (Büchi) emptyness Assumption: *Plant* is non zeno Algorithm for DES

 C_2 : Necess. and Suffi. Condition for *Clock*-diagnosability

Plant is **NOT** *Clock*-diagnosable iff $\exists \rho, \rho' \in \mathcal{L}^{\omega}(Plant)$, $\sigma, \sigma' \in \mathcal{L}^{\omega}(Clock)$

 $\left. \begin{array}{l} \rho \in \mathsf{Faulty}_{\geq \Delta}(\textit{Plant}) \\ \rho' \in \mathsf{NonFaulty}(\textit{Plant}) \end{array} \right\} \implies \mathsf{Untimed}(\rho \parallel \sigma) \cap \mathsf{Untimed}(\rho' \parallel \sigma') \neq \emptyset$

 $\mathcal{C}_2 \iff \mathsf{Untimed}(\mathcal{L}^\omega(P)) \cap \mathsf{Untimed}(\mathcal{L}^\omega(P')) \neq \emptyset$

ELE NOR

/lonitoring

Diagnosis with Digital Clocks

・ロト ・聞ト ・ヨト ・ヨト

Solution to Problem 3

Problem 3: Diagnosability

Inputs: Two timed automata *Plant* and *Clock*. Problem: Check whether *Plant* is *Clock*-diagnosable for some TA *Clock*.

For DES: amounts to checking (Büchi) emptyness Assumption: *Plant* is non zeno ▶ Algorithm for DES

 C_2 : Necess. and Suffi. Condition for *Clock*-diagnosability

Plant is **NOT** *Clock*-diagnosable iff $\exists \rho, \rho' \in \mathcal{L}^{\omega}(Plant), \sigma, \sigma' \in \mathcal{L}^{\omega}(Clock)$

 $\begin{array}{c} \rho \in \mathsf{Faulty}_{\geq \Delta}(\textit{Plant}) \\ \rho' \in \mathsf{NonFaulty}(\textit{Plant}) \end{array} \end{array} \implies \mathsf{Untimed}(\rho \parallel \sigma) \cap \mathsf{Untimed}(\rho' \parallel \sigma') \neq \emptyset$

 $\mathcal{C}_2 \iff \mathsf{Untimed}(\mathcal{L}^\omega(\mathcal{P})) \cap \mathsf{Untimed}(\mathcal{L}^\omega(\mathcal{P}')) \neq \emptyset$

ELE NOR

・ロト ・聞ト ・ヨト ・ヨト

Solution to Problem 3

Problem 3: Diagnosability

Inputs: Two timed automata *Plant* and *Clock*. Problem: Check whether *Plant* is *Clock*-diagnosable for some TA *Clock*.

For DES: amounts to checking (Büchi) emptyness Assumption: *Plant* is non zeno

• Algorithm for DES

C₂: Necess. and Suffi. Condition for *Clock*-diagnosability

Plant is **NOT** *Clock*-diagnosable iff $\exists \rho, \rho' \in \mathcal{L}^{\omega}(Plant)$, $\sigma, \sigma' \in \mathcal{L}^{\omega}(Clock)$

 $\begin{array}{c} \rho \in \mathsf{Faulty}_{\geq \Delta}(\textit{Plant}) \\ \rho' \in \mathsf{NonFaulty}(\textit{Plant}) \end{array} \end{array} \implies \mathsf{Untimed}(\rho \parallel \sigma) \cap \mathsf{Untimed}(\rho' \parallel \sigma') \neq \emptyset$

 $C_2 \iff \mathsf{Untimed}(\mathcal{L}^\omega(P)) \cap \mathsf{Untimed}(\mathcal{L}^\omega(P')) \neq \emptyset$

ELE NOR

Solution to Problem 3

Problem 3: Diagnosability

Inputs: Two timed automata *Plant* and *Clock*. Problem: Check whether *Plant* is *Clock*-diagnosable for some TA *Clock*.

For DES: amounts to checking (Büchi) emptyness Assumption: *Plant* is non zeno

• Algorithm for DES

●●● 単則 ▲田▼ ▲田▼ ▲田▼

C2: Necess. and Suffi. Condition for Clock-diagnosability

Plant is **NOT** *Clock*-diagnosable iff $\exists \rho, \rho' \in \mathcal{L}^{\omega}(Plant)$, $\sigma, \sigma' \in \mathcal{L}^{\omega}(Clock)$

 $\begin{array}{l} \rho \in \mathsf{Faulty}_{\geq \Delta}(\textit{Plant}) \\ \rho' \in \mathsf{NonFaulty}(\textit{Plant}) \end{array} \end{array} \} \implies \mathsf{Untimed}(\rho \parallel \sigma) \cap \mathsf{Untimed}(\rho' \parallel \sigma') \neq \emptyset$

 $\mathcal{C}_2 \iff \mathsf{Untimed}(\mathcal{L}^\omega(P)) \cap \mathsf{Untimed}(\mathcal{L}^\omega(P')) \neq \emptyset$

Solution to Problem 3

Problem 3: Diagnosability

Inputs: Two timed automata *Plant* and *Clock*. Problem: Check whether *Plant* is *Clock*-diagnosable for some TA *Clock*.

For DES: amounts to checking (Büchi) emptyness Assumption: *Plant* is non zeno

► Algorithm for DES

C2: Necess. and Suffi. Condition for Clock-diagnosability

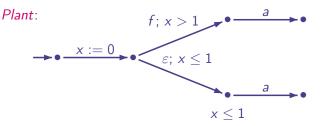
Plant is **NOT** *Clock*-diagnosable iff $\exists \rho, \rho' \in \mathcal{L}^{\omega}(Plant)$, $\sigma, \sigma' \in \mathcal{L}^{\omega}(Clock)$

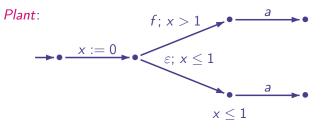
 $\left. \begin{array}{l} \rho \in \mathsf{Faulty}_{\geq \Delta}(\textit{Plant}) \\ \rho' \in \mathsf{NonFaulty}(\textit{Plant}) \end{array} \right\} \implies \mathsf{Untimed}(\rho \parallel \sigma) \cap \mathsf{Untimed}(\rho' \parallel \sigma') \neq \emptyset$

 $\mathcal{C}_2 \iff \mathsf{Untimed}(\mathcal{L}^\omega(P)) \cap \mathsf{Untimed}(\mathcal{L}^\omega(P')) \neq \emptyset$

June 2006 (ACSD'06, Turku)

ELE NOR



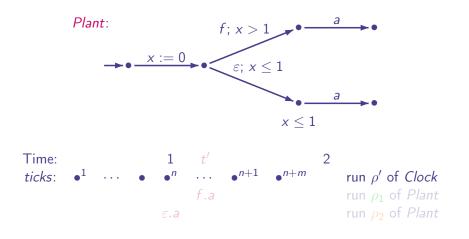


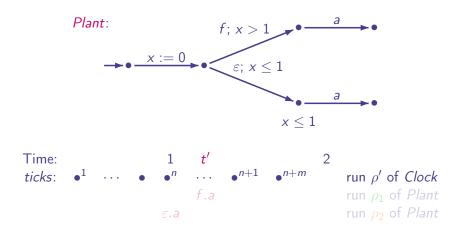
Plant is **NOT** *Clock*-diagnosable for any TA *Clock*.

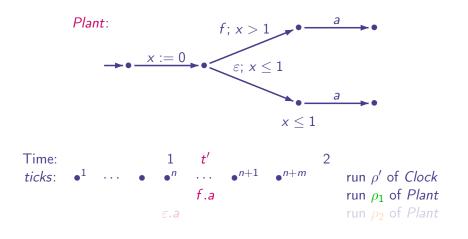
June 2006 (ACSD'06, Turku)

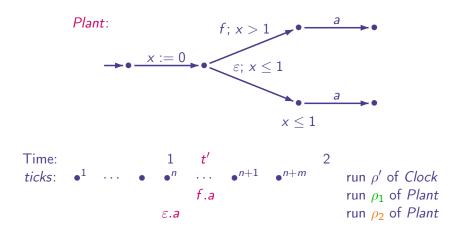
Diagnosis with Digital Clocks

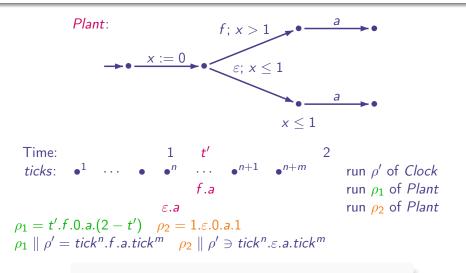
19 / 29



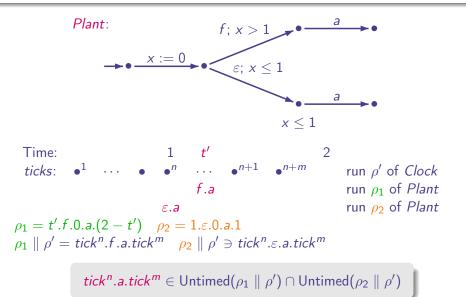








tickⁿ.a.tick^m \in Untimed $(\rho_1 \parallel \rho') \cap$ Untimed $(\rho_2 \parallel \rho')$



- Models for Timed Systems & Digital Clocks
- Monitoring with Digital Clocks
- Diagnosis with Digital Clocks
- Conclusion & Open Problem

Conclusion & Open Problem

- Monitoring with digital clocks: region graph
- $(\Delta, Clock)$ and Clock-diagnosability decidable
- Diagnosability (existence of a digital clock): Open
- Recent Related Work: [Jiang, Kumar, ACC'06]
 - Digital Clocks and Fault-Diagnosis
 - Periodic clock: ticks every $\Delta \pm \epsilon$
 - Problem 4 not considered

Conclusion & Open Problem

- Monitoring with digital clocks: region graph
- $(\Delta, Clock)$ and Clock-diagnosability decidable
- Diagnosability (existence of a digital clock): Open
- Recent Related Work: [Jiang, Kumar, ACC'06]
 - Digital Clocks and Fault-Diagnosis
 - Periodic clock: ticks every $\Delta \pm \epsilon$
 - Problem 4 not considered

・ロト ・聞ト ・ヨト ・ヨト

References

[Alur & Dill, TCS'94]	R. Alur and D. Dill. A theory of timed automata. <i>Theoretical Computer Science</i> , 126:183–235, 1994.
[Bouyer et al., FoSSaCS'05]	P. Bouyer, F. Chevalier, and D. D'Souza. Fault diagnosis using timed automata. In <i>FoSSaCS'05</i> , volume 3441 of <i>LNCS</i> , pages 219–233. Springer, 2005.
[Jiang, Kumar, ACC'06]	S. Jiang and R. Kumar. Diagnosis of dense-time systems using digital clocks. In <i>American Control Conference'06</i> , 2006. To appear.
[Krichen, Tripakis, SPIN'04]	M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In 11th International SPIN Workshop on Model Checking of Software (SPIN'04) volume 2989 of LNCS. Springer, 2004.
[Krichen, Tripakis, FORMATS'04]	M. Krichen and S. Tripakis. Real-time testing with timed automata testers and coverage criteria. In Formal Techniques, Modelling and Analysis of Timed and Fault Tolerant Systems (FORMATS-FTRTFT'04), volume 3253 of LNCS. Springer, 2004.
[Sampath et al., IEEE'95]	M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 40(9), Sept. 1995.

Monitoring

Diagnosis with Digital Cl

References (cont.)

[Tripakis,	FTRTFT'02]
------------	------------

S. Tripakis.

Fault diagnosis for timed automata. In Formal Techniques in Real Time and Fault Tolerant Systems (FTRTFT'02), volume 2469 of LNCS. Springer, 2002.

Acknowledgements: ACI-CORTOS

June 2006 (ACSD'06, Turku)

- (E

Timed Automata

A Timed Automaton \mathcal{A} is a tuple $(L, \ell_0, \operatorname{Act}, X, \operatorname{inv}, \longrightarrow)$ where:

- *L* is a finite set of locations
- $\blacktriangleright \ \ell_0$ is the initial location
- ► X is a finite set of clocks
- Act is a finite set of actions

▶ \longrightarrow is a set of transitions of the form $\ell \xrightarrow{g, a, R} \ell'$ with:

- ▶ $\ell, \ell' \in L$,
- ► a ∈ Act
- ► a guard g which is a clock constraint over X
- a reset set R which is the set of clocks to be reset to 0

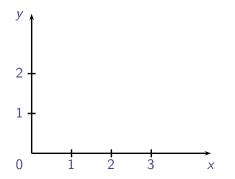
Clock constraints are boolean combinations of $x \sim k$ with $x \in C$ and $k \in \mathbb{Z}$ and $\sim \in \{\leq, <\}$.

▲ Back

Semantics of Timed Automata
Let
$$\mathcal{A} = (L, \ell_0, \operatorname{Act}, X, \operatorname{inv}, \longrightarrow)$$
 be a Timed Automaton.
A state (ℓ, v) of \mathcal{A} is in $L \times \mathbb{R}_{\geq 0}^X$
The semantics of \mathcal{A} is a Timed Transition System
 $S_{\mathcal{A}} = (Q, q_0, \operatorname{Act} \cup \mathbb{R}_{\geq 0}, \longrightarrow)$ with:
 $\triangleright Q = L \times \mathbb{R}_{\geq 0}^X$
 $\triangleright q_0 = (\ell_0, \overline{0})$
 $\triangleright \longrightarrow$ consists in:
discrete transition: $(\ell, v) \xrightarrow{a} (\ell', v') \iff \begin{cases} \exists \ell \xrightarrow{g, a, r} \ell' \in \mathcal{A} \\ v \models g \\ v' = v[r \leftarrow 0] \\ v' \models \operatorname{inv}(\ell') \end{cases}$
delay transition: $(\ell, v) \xrightarrow{d} (\ell, v + d) \iff d \in \mathbb{R}_{\geq 0} \land v + d \models \operatorname{inv}(\ell)$

▲口> ▲圖> ▲国> ▲国>

[Alur & Dill, TCS'94]

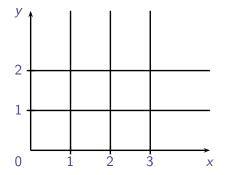


June 2006 (ACSD'06, Turku)

Diagnosis with Digital Clocks

26 / 29

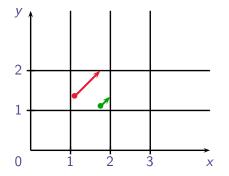
-



Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \land g)$ $r, r' \in R \implies \forall$ constraints $g, \quad r \models g \iff r' \models g$

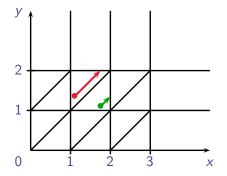
June 2006 (ACSD'06, Turku)

26 / 29



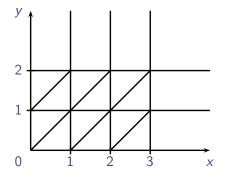
Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \land g)$ $r, r' \in R \implies \forall$ constraints $g, \quad r \models g \iff r' \models g$

"compatible" with time elapsing



Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \land g)$ $r, r' \in R \implies \forall$ constraints $g, \quad r \models g \iff r' \models g$

"compatible" with time elapsing



Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \land g)$ $r, r' \in R \implies \forall$ constraints $g, \quad r \models g \iff r' \models g$

"compatible" with time elapsing

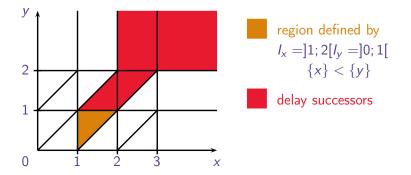


region defined by $I_x =]1; 2[I_y =]0; 1[$ $\{x\} < \{y\}$

Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \land g)$ $r, r' \in R \implies \forall$ constraints $g, \quad r \models g \iff r' \models g$

"compatible" with time elapsing

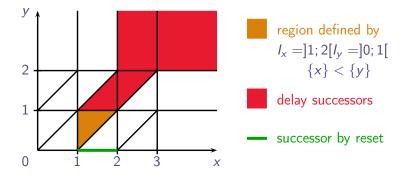
[Alur & Dill, TCS'94]



Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \land g)$ $r, r' \in R \implies \forall$ constraints $g, \quad r \models g \iff r' \models g$

- "compatible" with time elapsing
 - $r, r' \in R \implies$ same delay successor regions

[Alur & Dill, TCS'94]



Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \wedge g)$ $r, r' \in R \implies \forall$ constraints $g, \quad r \models g \iff r' \models g$

- "compatible" with time elapsing
 - $r, r' \in R \implies$ same delay successor regions

▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA

▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:

- there exists R'' a delay successor of R s.t.
- R'' satisfies the guard g $(R'' \subseteq \llbracket g \rrbracket)$
- $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA

▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:

- there exists R'' a delay successor of R s.t.
- R'' satisfies the guard g $(R'' \subseteq \llbracket g \rrbracket)$
- $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA

▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:

- there exists R'' a delay successor of R s.t.
- R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
- $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R'' a delay successor of R s.t.
 - R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
 - $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R'' a delay successor of R s.t.
 - R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
 - $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R'' a delay successor of R s.t.
 - R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
 - $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R'' a delay successor of R s.t.
 - R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
 - $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R'' a delay successor of R s.t.
 - R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
 - $R''[C \leftarrow 0]$ is included in R'

a TA and its region automaton RA are time-abstract bisimilar

The region automaton is finite

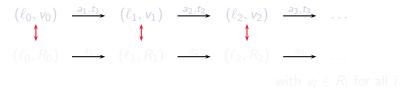
- Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R'' a delay successor of R s.t.
 - R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
 - $R''[C \leftarrow 0]$ is included in R'

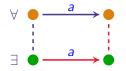
- The region automaton is finite
- ► Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

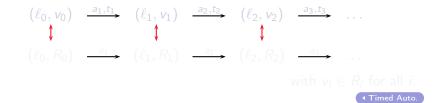
- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R'' a delay successor of R s.t.
 - R'' satisfies the guard g ($R'' \subseteq \llbracket g \rrbracket$)
 - $R''[C \leftarrow 0]$ is included in R'

- The region automaton is finite
- ► Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba
- Language Emptyness can be decided on the RA

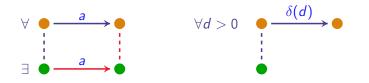


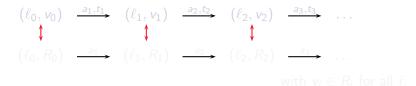
Timed Auto.



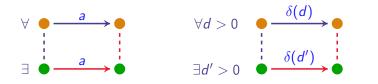


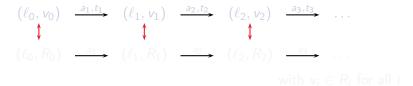
- 4月 1 4日 1 4日 1 日日 うくや



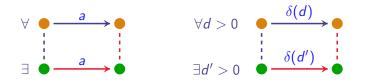


Timed Auto.



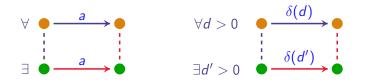


Timed Auto.

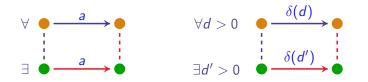


June 2006 (ACSD'06, Turku)

Diagnosis with Digital Clocks



28 / 29



Necessary and Sufficient Condition for Diagnosability:

$$\begin{array}{ll} A \text{ is not } \Sigma \text{-diagnosable} & \Longleftrightarrow & \forall k \in \mathbb{N}^*, A \text{ is not } (\Sigma, k) \text{-diagnosable} \\ & \Longleftrightarrow & \forall k \in \mathbb{N}^*, \begin{cases} \exists \rho \in \text{NonFaulty}(A) \\ \exists \rho' \in \text{Faulty}_{\geq k}(A) \\ & \pi_{/\Sigma}(\rho) = \pi_{/\Sigma}(\rho') \end{cases} \end{array}$$

Necessary and Sufficient Condition for Diagnosability:

A is not Σ -diagnosable $\iff \forall k \in \mathbb{N}^*, A \text{ is not } (\Sigma, k)$ -diagnosable

$$\iff \quad \forall k \in \mathbb{N}^*, \begin{cases} \exists \rho \in \mathsf{NonFaulty}(A) \\ \exists \rho' \in \mathsf{Faulty}_{\geq k}(A) \\ \pi_{/\Sigma}(\rho) = \pi_{/\Sigma}(\rho') \end{cases}$$

Let $A_1 = (Q \times \{0,1\}, (q_0,0), \Sigma^{\varepsilon}, \to_1)$ s.t.

- $(q,k) \stackrel{l}{\rightarrow}_1 (q',k')$ iff $q \stackrel{l}{\rightarrow} q'$ and $l \in \Sigma$ and k = k';
- $(q,k) \xrightarrow{\varepsilon}_1 (q',1)$ iff $q \xrightarrow{f} q'$, (k is set to 1 after a fault occurs and will remain 1 once it has been set to 1);

►
$$(q,k) \xrightarrow{\varepsilon} 1 (q',k)$$
 iff $q \xrightarrow{\varepsilon} q'$.

Necessary and Sufficient Condition for Diagnosability:

 $A \text{ is not } \Sigma \text{-diagnosable} \quad \Longleftrightarrow \quad \forall k \in \mathbb{N}^*, A \text{ is not } (\Sigma, k) \text{-diagnosable}$

$$\iff \quad \forall k \in \mathbb{N}^*, \begin{cases} \exists \rho \in \mathsf{NonFaulty}(A) \\ \exists \rho' \in \mathsf{Faulty}_{\geq k}(A) \\ \pi_{/\Sigma}(\rho) = \pi_{/\Sigma}(\rho') \end{cases}$$

Define $A_2 = (Q, q_0, \Sigma^{\varepsilon}, \rightarrow_2)$ with $P q \xrightarrow{l}{\rightarrow}_2 q'$ if $q \xrightarrow{l}{\rightarrow} q'$ and $l \in \Sigma$; $P q \xrightarrow{\varepsilon}_2 q'$ if $q \xrightarrow{\varepsilon}_{\rightarrow} q'$.

Necessary and Sufficient Condition for Diagnosability:

 $\begin{array}{ll} A \text{ is not } \Sigma \text{-diagnosable} & \Longleftrightarrow & \forall k \in \mathbb{N}^*, A \text{ is not } (\Sigma, k) \text{-diagnosable} \\ & \Longleftrightarrow & \forall k \in \mathbb{N}^*, \begin{cases} \exists \rho \in \text{NonFaulty}(A) \\ \exists \rho' \in \text{Faulty}_{\geq k}(A) \\ & \pi_{/\Sigma}(\rho) = \pi_{/\Sigma}(\rho') \end{cases}$

Let $\mathcal{B} = A_1 \times A_2$ Büchi acceptance condition: infinitely many faulty states and A_1 -actions

Necessary and Sufficient Condition for Diagnosability:

 $\begin{array}{ll} A \text{ is not } \Sigma \text{-diagnosable} & \Longleftrightarrow & \forall k \in \mathbb{N}^*, A \text{ is not } (\Sigma, k) \text{-diagnosable} \\ & \Longleftrightarrow & \forall k \in \mathbb{N}^*, \begin{cases} \exists \rho \in \operatorname{NonFaulty}(A) \\ \exists \rho' \in \operatorname{Faulty}_{\geq k}(A) \\ & \pi_{/\Sigma}(\rho) = \pi_{/\Sigma}(\rho') \end{cases} \end{array}$

Let $\mathcal{B} = A_1 \times A_2$ Büchi acceptance condition: infinitely many faulty states and A_1 -actions

Theorem

 $Lang^{\omega}(\mathcal{B}) \neq \emptyset \iff A \text{ is not } \Sigma\text{-diagnosable.}$

Necessary and Sufficient Condition for Diagnosability:

 $\begin{array}{ll} A \text{ is not } \Sigma \text{-diagnosable} & \Longleftrightarrow & \forall k \in \mathbb{N}^*, A \text{ is not } (\Sigma, k) \text{-diagnosable} \\ & \longleftrightarrow & \forall k \in \mathbb{N}^*, \begin{cases} \exists \rho \in \operatorname{NonFaulty}(A) \\ \exists \rho' \in \operatorname{Faulty}_{\geq k}(A) \\ & \pi_{/\Sigma}(\rho) = \pi_{/\Sigma}(\rho') \end{cases}$

Let $\mathcal{B} = A_1 \times A_2$ Büchi acceptance condition: infinitely many faulty states and A_1 -actions

Theorem

 $Lang^{\omega}(\mathcal{B}) \neq \emptyset \iff A \text{ is not } \Sigma\text{-diagnosable.}$

Theorem

The minimum k s.t. A is (Σ, k) -diagnosable can be computed in PTIME.

June 2006 (ACSD'06, Turku)