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Outline of the talk

◮ Fault Diagnosis for Finite State Systems
• Fault Diagnosis Problem
• Minimization of a Static Observer
• Minimization of Masks

◮ Fault Diagnosis with Dynamic Observers
• Dynamic Observers
• Diagnosability with Dynamic Observers
• Synthesis of Dynamic Observers

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 2 / 34



Outline of the talk

◮ Fault Diagnosis for Finite State Systems
• Fault Diagnosis Problem
• Minimization of a Static Observer
• Minimization of Masks

◮ Fault Diagnosis with Dynamic Observers
• Dynamic Observers
• Diagnosability with Dynamic Observers
• Synthesis of Dynamic Observers

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 2 / 34



Diagnosis for finite state Systems

Outline

◮ Fault Diagnosis for Finite State Systems
• Fault Diagnosis Problem
• Minimization of a Static Observer
• Minimization of Masks

◮ Fault Diagnosis with Dynamic Observers
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Diagnosis for finite state Systems Fault Diagnosis Problem

Fault Diagnosis

•

• • •

•

ε

ε

f
a b

a

b

◮ A finite automaton A over Σε,f
= Σ ∪ {ε, f}

◮ f is the fault action, Σ is the set of observable events

◮ k-faulty run contain f followed by more than k actions
Faulty≥k(A)

◮ Non faulty run: contains no f
NonFaulty(A)
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◮ f is the fault action, Σ is the set of observable events

◮ k-faulty run contain f followed by more than k actions
Faulty≥k(A)

◮ Non faulty run: contains no f
NonFaulty(A)

Aim: observe Σ∗ sequences and detect k-faulty runs
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Fault Diagnosis
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◮ A finite automaton A over Σε,f
= Σ ∪ {ε, f}

◮ f is the fault action, Σ is the set of observable events

◮ k-faulty run contain f followed by more than k actions
Faulty≥k(A)

◮ Non faulty run: contains no f
NonFaulty(A)

Role of an observer:
◮ never raise an alarm on non-faulty runs

◮ must raise an alarm on k-faulty runs
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Diagnosis for finite state Systems Fault Diagnosis Problem

Diagnosis Problem

•

• • •
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tr(ρ) = trace of the run ρ (it is a word in (Σ ∪ {f})∗)
π/Σ(tr(ρ)) = projection of the trace of the run on observable events

Definition (k-diagnoser)

A mapping D : Σ∗ → {0, 1} is a k-diagnoser for A if:
◮ for each run ρ ∈ NonFaulty(A), D(π/Σ(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(π/Σ(tr(ρ))) = 1.

(Σ, k)-Diagnosability Problem

Given A, Σ, k ∈ N, is there a k-diagnoser for A?
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Diagnosis for finite state Systems Fault Diagnosis Problem

Example

•

• • •

•
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◮ Σ = {a, b}. Is the plant 1, 2-diagnosable?
◮ Σ = {b}. Is the plant 1, 2, k-diagnosable?

k-Diagnosability ⇐⇒ tr(Faulty≥k(A)) ∩ tr(NonFaulty(A)) = ∅
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◮ Σ = {a, b}. Is the plant 1, 2-diagnosable? Yes
◮ Σ = {b}. Is the plant 1, 2, k-diagnosable?

k-Diagnosability ⇐⇒ tr(Faulty≥k(A)) ∩ tr(NonFaulty(A)) = ∅
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◮ Σ = {b}. Is the plant 1, 2, k-diagnosable? No
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◮ Σ = {a}. Is the plant 1, 2-diagnosable? . . . 3-diagnosable

k-Diagnosability ⇐⇒ tr(Faulty≥k(A)) ∩ tr(NonFaulty(A)) = ∅
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Diagnosis for finite state Systems Fault Diagnosis Problem

Results for the Diagnosis Problem

[Sampath et al., IEEE TAC 1995, Jiang et al., IEEE TAC 2001]

A is (Σ, k)-diagnosable if there is a k-diagnoser for A.

A is Σ-diagnosable if ∃k ∈ N s.t. A is (Σ, k)-diagnosable.

Diagnosis Problems

◮ (A) Is A Σ-diagnosable ?
◮ (B) If “yes” to (A), compute the minimum k and

◮ (C) Compute a witness diagnoser.

Results for Diagnosis Problem
◮ (A) is in PTIME

◮ (B) is in PTIME

◮ (C) is in EXPTIME
A witness diagnoser is an automaton with at most 2O(A) states
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Diagnosis for finite state Systems Minimization with Static Observer

Minimization of the set of Observable Events
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◮ Aim: find Σo ⊆ Σ s.t. A is Σo-diagnosable and minimize |Σo|
◮ minimum Σo = {a, b} and (Σo, 2)-diagnosable
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Diagnosis for finite state Systems Minimization with Static Observer

Minimum Number of Observable Events

Problem 1: Minimum Number of Observable Events

Input: A, n ∈ N∗ s.t. n ≤ |Σ|.
Problem: Is there any Σo ⊆ Σ, |Σo| ≤ n, s.t. A is Σo-diagnosable ?

Theorem
Problem 1 is NP-complete.

◮ membership in NP: checking Σ-diagnosability is in P
◮ NP hardness: reduction of the n-clique problem to Problem 1.
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Diagnosis for finite state Systems Minimization with Static Observer

Reduction of n-clique Problem to Problem 1

◮ G = (V, E) an undirected graph

◮ V′ ⊆ V is a clique of G iff ∀v, v′ ∈ V′, (v, v′) ∈ E
◮ n-clique: a clique V′ with |V′| = n.

there is a n-clique in G ⇐⇒ AG is (Σo, 2)-diagnosable, |Σ \Σo| = n
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Diagnosis for finite state Systems Diagnosis with Masks

Variant: Renaming Observable Events

Definition (Mask)

A mask (M, n) over Σ is a mapping M : Σ → {1, · · · , n} ∪ {ε}.
M induces a mapping M∗ : Σ∗ → {1, · · · , n}∗.

Definition (k-diagnoser for a Mask)

Let (M, n) be a mask over Σ. A mapping D : {1, · · · , n}∗ → {0, 1} is a
k-diagnoser for A if:

◮ for each ρ ∈ NonFaulty(A), D(M∗(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(M

∗(tr(ρ))) = 1.

A is ((M, n), k)-diagnosable if there is a k-diagnoser.
A is (M, n)-diagnosable if ∃k ∈ N s.t. A is ((M, n), k)-diagnosable.

Mask Diagnosability: Given (M, n), is A (M, n)-diagnosable ?

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 11 / 34



Diagnosis for finite state Systems Diagnosis with Masks

Variant: Renaming Observable Events

Definition (Mask)

A mask (M, n) over Σ is a mapping M : Σ → {1, · · · , n} ∪ {ε}.
M induces a mapping M∗ : Σ∗ → {1, · · · , n}∗.

Definition (k-diagnoser for a Mask)

Let (M, n) be a mask over Σ. A mapping D : {1, · · · , n}∗ → {0, 1} is a
k-diagnoser for A if:

◮ for each ρ ∈ NonFaulty(A), D(M∗(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(M

∗(tr(ρ))) = 1.

A is ((M, n), k)-diagnosable if there is a k-diagnoser.
A is (M, n)-diagnosable if ∃k ∈ N s.t. A is ((M, n), k)-diagnosable.

Mask Diagnosability: Given (M, n), is A (M, n)-diagnosable ?

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 11 / 34



Diagnosis for finite state Systems Diagnosis with Masks

Variant: Renaming Observable Events

Definition (Mask)

A mask (M, n) over Σ is a mapping M : Σ → {1, · · · , n} ∪ {ε}.
M induces a mapping M∗ : Σ∗ → {1, · · · , n}∗.

Definition (k-diagnoser for a Mask)

Let (M, n) be a mask over Σ. A mapping D : {1, · · · , n}∗ → {0, 1} is a
k-diagnoser for A if:

◮ for each ρ ∈ NonFaulty(A), D(M∗(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(M

∗(tr(ρ))) = 1.

A is ((M, n), k)-diagnosable if there is a k-diagnoser.
A is (M, n)-diagnosable if ∃k ∈ N s.t. A is ((M, n), k)-diagnosable.

Mask Diagnosability: Given (M, n), is A (M, n)-diagnosable ?

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 11 / 34



Diagnosis for finite state Systems Diagnosis with Masks

Variant: Renaming Observable Events

Definition (Mask)

A mask (M, n) over Σ is a mapping M : Σ → {1, · · · , n} ∪ {ε}.
M induces a mapping M∗ : Σ∗ → {1, · · · , n}∗.

Definition (k-diagnoser for a Mask)

Let (M, n) be a mask over Σ. A mapping D : {1, · · · , n}∗ → {0, 1} is a
k-diagnoser for A if:

◮ for each ρ ∈ NonFaulty(A), D(M∗(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(M

∗(tr(ρ))) = 1.

A is ((M, n), k)-diagnosable if there is a k-diagnoser.
A is (M, n)-diagnosable if ∃k ∈ N s.t. A is ((M, n), k)-diagnosable.

Mask Diagnosability: Given (M, n), is A (M, n)-diagnosable ?

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 11 / 34



Diagnosis for finite state Systems Diagnosis with Masks

Variant: Renaming Observable Events

Definition (Mask)

A mask (M, n) over Σ is a mapping M : Σ → {1, · · · , n} ∪ {ε}.
M induces a mapping M∗ : Σ∗ → {1, · · · , n}∗.

Definition (k-diagnoser for a Mask)

Let (M, n) be a mask over Σ. A mapping D : {1, · · · , n}∗ → {0, 1} is a
k-diagnoser for A if:

◮ for each ρ ∈ NonFaulty(A), D(M∗(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(M

∗(tr(ρ))) = 1.

A is ((M, n), k)-diagnosable if there is a k-diagnoser.
A is (M, n)-diagnosable if ∃k ∈ N s.t. A is ((M, n), k)-diagnosable.

Mask Diagnosability: Given (M, n), is A (M, n)-diagnosable ?

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 11 / 34



Diagnosis for finite state Systems Diagnosis with Masks

Variant: Renaming Observable Events

Definition (Mask)

A mask (M, n) over Σ is a mapping M : Σ → {1, · · · , n} ∪ {ε}.
M induces a mapping M∗ : Σ∗ → {1, · · · , n}∗.

Definition (k-diagnoser for a Mask)

Let (M, n) be a mask over Σ. A mapping D : {1, · · · , n}∗ → {0, 1} is a
k-diagnoser for A if:

◮ for each ρ ∈ NonFaulty(A), D(M∗(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(M

∗(tr(ρ))) = 1.

A is ((M, n), k)-diagnosable if there is a k-diagnoser.
A is (M, n)-diagnosable if ∃k ∈ N s.t. A is ((M, n), k)-diagnosable.

Mask Diagnosability: Given (M, n), is A (M, n)-diagnosable ?

July 2007 (ACSD’07, Bratislava, Slovak Republic) Sensor Minimization & Dynamic Diagnosers 11 / 34



Diagnosis for finite state Systems Diagnosis with Masks

Variant: Renaming Observable Events

Definition (Mask)

A mask (M, n) over Σ is a mapping M : Σ → {1, · · · , n} ∪ {ε}.
M induces a mapping M∗ : Σ∗ → {1, · · · , n}∗.

Definition (k-diagnoser for a Mask)
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Diagnosis for finite state Systems Diagnosis with Masks

Diagnosability Problem for Masks

Mask diagnosability

◮ given (M, n), rename every action a ∈ Σ by M(a)
◮ obtain an a new automaton AM with ΣM = {1, · · · , n}
◮ reduce to diagnosis problem: Is AM ΣM-diagnosable ?

Problem 2: Minimum Mask

Input: A, n ∈ N∗ s.t. n ≤ |Σ|.
Problem: Is there any mask (M, n) s.t. A is (M, n)-diagnosable ?

A solution to Problem 1 provides a solution to Problem 2.

◮ if A is Σo-diagnosable,

◮ let M : Σo → {1, · · · , |Σo|}, injective and M(Σ \Σo) = ε
◮ then A is (M, |Σo|)-diagnosable.
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Diagnosis for finite state Systems Diagnosis with Masks

From Problem 2 to Problem 1 ?

•

• • •

•

ε

ε

f
a b

a

b

◮ A is ((M, 1), 2)-diagnosable with M(a) = M(b) = 1.
define D(ε) = 0,D(1) = 0,D(12.ρ) = 1.

◮ However A is not diagnosable for any Σo ⊆ Σ s.t. |Σo| = 1.
Neither Σo = {a} nor Σo = {b} can diagnose a fault.
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Diagnosis for finite state Systems Diagnosis with Masks

Minimum Mask

Problem 2: Minimum Mask

Input: A, n ∈ N∗ s.t. n ≤ |Σ|.
Problem: Is there any mask (M, n) s.t. A is (M, n)-diagnosable ?

Theorem
Problem 2 is NP-complete.

◮ membership in NP: checking (M, n)-diagnosability is in P
◮ NP hardness: reduction of the n-coloring problem to Problem 2.
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Diagnosis for finite state Systems Diagnosis with Masks

Reduction of n-Coloring Problem to Problem 2

◮ G = (V, E) an undirected graph

◮ C : V → {1, · · · , k} is a proper coloring mapping if (v, v′) ∈ E implies
C(v) ≠ C(v′).

◮ n-coloring problem for G: is there any PCM C : V → {1, · · · , n}?

G is n-colorizable ⇐⇒ AG is ((M, n), 1)-diagnosable
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◮ n-coloring problem for G: is there any PCM C : V → {1, · · · , n}?

G is n-colorizable ⇐⇒ AG is ((M, n), 1)-diagnosable
Let Σ = V and assume E = {e1, · · · , ej} with ej = (uj, vj).

Widget for e2

i

• • •

• • •

• • •

• • • •

• • •

• • •

u1
f v1

u2
f v2

uj f vj
v1 ε u1

v2 ε u2
vj ε uj

· · ·

ε

ε

ε
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C(v) = M(v)
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Dynamic Observers

Outline

◮ Fault Diagnosis for Finite State Systems

◮ Fault Diagnosis with Dynamic Observers
• Dynamic Observers
• Diagnosability with Dynamic Observers
• Synthesis of Dynamic Observers
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Dynamic Observers Dynamic Observers

Why Dynamic Observations ?

•

• • •

•• ε

εf
a b

b
a

◮ Static observer: fixed set of observable events

◮ Static observation: |Σo| ≥ 2, Σo = {a, b}; ({a, b}, 1)-diagnosable
◮ Dynamic observer: choose dynamically the set of observable

events
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• • •

•• ε

εf
a b

b
a

◮ Static observer: fixed set of observable events

◮ Static observation: |Σo| ≥ 2, Σo = {a, b}; ({a, b}, 1)-diagnosable
◮ Dynamic observer: choose dynamically the set of observable

events

Assume you can choose Σo dynamically:

Is the plant diagnosable observing only one event at a time ?
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εf
a b

b
a

◮ Static observer: fixed set of observable events
◮ Static observation: |Σo| ≥ 2, Σo = {a, b}; ({a, b}, 1)-diagnosable
◮ Dynamic observer: choose dynamically the set of observable

events

1 observe only a
2 once an a has been observed, observe only b
3 if a.b occurs diagnose a fault

The plant is “dynamically” 2-diagnosable
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Dynamic Observers Dynamic Observers

Dynamic Observers

Definition (Dynamic Observer)

A dynamic observer Obs is a complete and deterministic labeled
automaton (S, s0, Σ, δ, L) s.t. ∀s ∈ S, ∀a ∈ Σ, if a 6∈ L(s) then
δ(s, a) = s.

Definition ((Obs, k)-diagnoser)

D : Σ∗ → {0, 1} is an (Obs, k)-diagnoser for A if
◮ for each run ρ ∈ NonFaulty(A), D(Obs(π/Σ(tr(ρ)))) = 0 and

◮ for each run ρ ∈ Faulty≥k(A), D(Obs(π/Σ(tr(ρ)))) = 1.
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Dynamic Observers Diagnosability with Dynamic Observers

Dynamic Observer and Diagnosability

Obs: 0 1 2
a/a

b/ε

b/b

a/ε a/ε

b/ε

B is (Obs, 2)-diagnosable.
Define D(a.b.ρ) = 1 and D(ρ) = 0 otherwise. D is 2-diagnoser.

Obs observes only one event in each state.
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Dynamic Observers Diagnosability with Dynamic Observers

Checking Obs-diagnosability

(Obs, k)-diagnosability: A is (Obs, k)-diagnosable if there is an
(Obs, k)-diagnoser for A

Obs-diagnosability: A is Obs-diagnosable if ∃k ∈ N s.t.
A is (Obs, k)-diagnosable

Problem 3: Finite Obs-diagnosability Problem

Input: A, a finite state observer Obs.
Problem: Is A Obs-diagnosable ?

To check Obs-diagnosability, build a product A ⊗ Obs:
◮ initial state: (q0, s0)

◮ (q, s)
β

–→ (q′, s′) iff q
λ
–→ q′, s

λ/β
––––→ s′ for λ ∈ Σ,

◮ (q, s)
λ

–→ (q′, s) iff q
λ
–→ q′, and λ ∈ {ε, f}

A is Obs-diagnosable iff A ⊗ Obs is Σ-diagnosable
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A is (Obs, k)-diagnosable

Problem 3: Finite Obs-diagnosability Problem

Input: A, a finite state observer Obs.
Problem: Is A Obs-diagnosable ?

To check Obs-diagnosability, build a product A ⊗ Obs:
◮ initial state: (q0, s0)

◮ (q, s)
β

–→ (q′, s′) iff q
λ
–→ q′, s

λ/β
––––→ s′ for λ ∈ Σ,

◮ (q, s)
λ

–→ (q′, s) iff q
λ
–→ q′, and λ ∈ {ε, f}

A is Obs-diagnosable iff A ⊗ Obs is Σ-diagnosable
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Dynamic Observers Synthesis of Dynamic Observers

Most Permissive Observer

Problem 4: Dynamic Diagnosability Problem

Input: A.
Problem: Compute the set of all observers s.t. A is Obs-diagnosable.

Too Hard . . .

Problem 5: Dynamic k-Diagnosability Problem

Input: A, k ∈ N.
Problem: Compute the set of all observers s.t. A is
(Obs, k)-diagnosable.
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Dynamic Observers Synthesis of Dynamic Observers

Problem 5 as a Game Problem

◮ Reduce Problem 5 to a safety 2-player game

◮ Player 1 chooses what to observe
◮ Player 2 tries to produce a bad sequence of events

i.e. traces that are in NonFaulty(A) ∩ Faulty≥k(A)
behaves like a synchronized product of two automata
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Dynamic Observers Synthesis of Dynamic Observers

Problem 5 as a Game Problem

◮ Reduce Problem 5 to a safety 2-player game

◮ Player 1 chooses what to observe
◮ Player 2 tries to produce a bad sequence of events

i.e. traces that are in NonFaulty(A) ∩ Faulty≥k(A)
behaves like a synchronized product of two automata

(q1, q2) (q1, q2) · · ·

(q, q′)

· · ·

(q′
1, q

′
2)

(q′′
1 , q

′′
2)

Player 1 chooses X λ1 6∈ X

σ1 ∈ X

λ2 6∈ X

λ3 6∈ X
σ2 ∈ X

λ4 6∈ X
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Dynamic Observers Synthesis of Dynamic Observers

Results:

Theorem
O an observer s.t. A is (O, k)-diagnosable =⇒ there is a
corresponding winning strategy in G.

Theorem
There is a winning strategy in G =⇒ there is a corresponding
observer O s.t. A is (O, k)-diagnosable.

Theorem (Memoryless Strategies are Sufficient)

There is a memoryless most permissive strategy for any (safety)
finite game G.

Theorem (Existence of a Most Permissive Observer)

There is a finite-state (2EXP) most permissive observer.
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Dynamic Observers Synthesis of Dynamic Observers

Example: Most Permissive Observer
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Dynamic Observers Synthesis of Dynamic Observers

Conclusion & Future Work

Results:

◮ Dynamic observers for bounded diagnosis (k-diagnosability)
◮ Computation of the most permissive observer

[C. Tripakis Altisen, ACSD 2007]

◮ Cost & computation of the cost of a dynamic observers
◮ Existence of a finite optimal dynamic observer

◮ Effective computation of the optimal dynamic observer
[C. Tripakis Altisen, TASE 2007]

Future Work:

◮ Exact complexity of Problem 2
◮ Implement the algorithm

◮ Extend to control of DES
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Algorithm for Checking Diagnosability

Necessary and Sufficient Condition for Diagnosability:

A is not Σ-diagnosable ⇐⇒ ∀k ∈ N∗, A is not (Σ, k)-diagnosable

⇐⇒ ∀k ∈ N∗,











∃ρ ∈ NonFaulty(A)
∃ρ′ ∈ Faulty≥k(A)

π/Σ(ρ) = π/Σ(ρ
′)
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A is not Σ-diagnosable ⇐⇒ ∀k ∈ N∗, A is not (Σ, k)-diagnosable

⇐⇒ ∀k ∈ N∗,











∃ρ ∈ NonFaulty(A)
∃ρ′ ∈ Faulty≥k(A)

π/Σ(ρ) = π/Σ(ρ
′)

Let A1 = (Q × {0, 1}, (q0, 0), Σε1 ,→1) s.t.

◮ (q, k)
l
–→1 (q′, k′) iff q

l
–→ q′ and l ∈ Σ and k = k′;

◮ (q, k)
ε1
––→1 (q′, 1) iff q

f
–→ q′

k is set to 1 after a fault occurs and will remain 1
◮ (q, k)

ε1
––→1 (q′, k) iff q

ε
–→ q′.
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





∃ρ ∈ NonFaulty(A)
∃ρ′ ∈ Faulty≥k(A)

π/Σ(ρ) = π/Σ(ρ
′)

Define A2 = (Q, q0, Σε2 ,→2) with

◮ q
l
–→2 q′ if q

l
–→ q′ and l ∈ Σ;

◮ q
ε2
––→2 q′ if q

ε
–→ q′.
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Let B = A1 ×A2

Büchi acceptance condition: infinitely many faulty states and
A1-actions
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∃ρ′ ∈ Faulty≥k(A)

π/Σ(ρ) = π/Σ(ρ
′)

Let B = A1 ×A2

Büchi acceptance condition: infinitely many faulty states and
A1-actions

Theorem
Lω(B) ≠ ∅ ⇐⇒ A is not Σ-diagnosable.
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





∃ρ ∈ NonFaulty(A)
∃ρ′ ∈ Faulty≥k(A)

π/Σ(ρ) = π/Σ(ρ
′)

Let B = A1 ×A2

Büchi acceptance condition: infinitely many faulty states and
A1-actions

Theorem
Lω(B) ≠ ∅ ⇐⇒ A is not Σ-diagnosable.

Theorem
The minimum k s.t. A is (Σ, k)-diagnosable can be computed in PTIME.
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Comparing Dynamic Observers

0O1:

L(0) = {a}

1

L(1) = {b}

2

L(2) = ∅

a

b

b

a a

b

0O2: L(0) = {a, b}

b

a

◮ O1 observes less events than O2 in the long run
◮ O1 is less expensive than O2

New Problem: compute an optimal observer
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Cost of an Observer

Cost of a run: average number of events observed along a run
Let Obs = (S, s0, Σ, δ, L)

0

L(0) = {a}

1 L(1) = ∅a

b a

b

◮ cost relative to observation of the output w of the plant:

◮ cost relative to the raw output w of the plant:
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0

L(0) = {a}

1 L(1) = ∅a

b a

b

◮ cost relative to observation of the output w of the plant:

Cost1(w) =

Σi=n
i=0|L(δ(s0, Obs(w)(i)))|

n + 1
with n = |Obs(w)|

◮ cost relative to the raw output w of the plant:
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Σi=n
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n + 1
with n = |Obs(w)|
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◮ cost relative to the raw output w of the plant:
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◮ cost relative to the raw output w of the plant:
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Σi=n
i=0|L(δ(s0, w(i)))|

n + 1
with n = |w|

Cost2(bn.a) = (n + 1)/(n + 2)
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Computing the Cost of a Given Observer

ρ = q0
a1
––→ q1 · · ·qn–1

an
––→ qn a run of the plant A

Let Obs be an observer and wi = π/Σ(tr(q0 · · · qi))

Cost2(ρ,Obs) =

1

n + 1
·

n
∑

i=0

|L(δ(s0, wi)|

Maximal Cost of runs of length n:

Cost2(n, A,Obs) = max{Cost2(ρ,Obs) for ρ ∈ Runsn(A)}

The Cost of the pair (Obs,A) is

Cost2(A,Obs) = lim sup
n→∞

Cost2(n, A,Obs)

Theorem
Cost2(A,Obs) can be computed in PTIME.

How to compute the best or optimal observer ?
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Bounded Cost Observer

Problem 2: Bounded Cost Observer
Input: A, k ∈ N and c ∈ N.
Problem:

(A). Is there an observer Obs s.t. A is (Obs,k)-diagnosable and
Cost2(Obs) ≤ c ?

(B). If the answer to (A) is “yes”, compute a witness observer Obs
with Cost2(Obs) ≤ c.

Steps to Solve Problem 2:
◮ Step 1: Compute the most liberal observer O;

i.e. obtain a representation of the set of all observers

◮ Step 2: Compute an optimal cost observer.

Theorem ([C. Tripakis Altisen, ACSD 2007])

There is a finite state most permissive observer for A.
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Optimal Dynamic Observer/Two-Player Game
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◮ Player 1 chooses what to observe: X / Player 2 generates ρ.l,
l ∈ X

◮ Player 1 and 2 produce plays
◮ given a strategy for Player 1 and the moves of Player 2

w(ρ) is the sum of the weights w1w2 · · · wn of the play ρ
Cost2(ρ,Obs) = w(ρ)/(|ρ| + 1)

◮ Goal for Player 1: minimize lim supn→∞
{w(ρ)/(|ρ| + 1) |ρ ∈ Runsn(A)}
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Mean Payoff Games [Zwick & Paterson, TCS 1996]

◮ Weighted two-player games
◮ Each state s has a weight w(s)

can be done with weight on edges
◮ Goal of the Players:

◮ Player 1: minimize l0 = lim supw(ρ)/(|ρ| + 1)
◮ Player 2: maximize l1 = lim infw(ρ)/(|ρ| + 1)

◮ Results for weighted two-player games:
◮ ∃ν ∈ Q s.t. each player has a memoryless strategy to ensure

l0 ≤ ν and l1 ≥ ν
◮ ν can be effectively computed
◮ Memoryless strategies for both players can be effectively

computed
◮ Solution to Optimal Cost Dynamic Observer Problem:

1 Compute the most liberal observer O
2 Build a weighted graph game: O ×A
3 Use Zwick & Paterson’s algorithm

Winning Strategy for Player 1 = Optimal Observer
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