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Context
Need for Security in Transactional Systems

Web-services: e-banking, online transactions
Id documents: biometric passport, Medicare Card
E-voting systems

Different Types of Security
Integrity: illegal actions cannot be performed by an unauthorized
user
Bank account management cannot be managed by a third party
Availability: some actions must be available
Withdrawing money from your bank account
Privacy: information should remain hidden from some users
PIN code

In this paper we consider opacity (privacy)

Opacity was introduced in [Mazaré, 2004, Bryans et al., 2008]
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Outline of the Talk

1 Opacity for Finite State Systems
What is Opacity?
Opacity for Non-Deterministic Automata
Algorithms for Checking Opacity

2 Minimization Problem with Static Filters

3 Minimization Problem with Dynamic Filters
Opacity with Dynamic Filters
Checking Opacity with Dynamic Filters
Cost of a Dynamic Filter
Computing the Cost of a Given Filter
Minimization Problem
Computation of the Most Permissive Filter
Computing an Optimal Dynamic Filter

4 Summary & Future Work
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What is Opacity?

System S

Σ = {a, b, c}

a

c

b

b

Secret F

Secret = set of states
Events in Σo ⊆ Σ are observable
Example: Σo = {b}

To check opacity: use your favorite Formal Method:
Model-checking
Theorem proving
Tools to support automatic analysis of systems
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Opacity for Non-Deterministic Automata
A = (Q, q0, Σ, δ, F) a NDA F set of secret states
Σo ⊆ Σ set of observable events

NDA A Projection P Attacker U
u ∈ Σ∗ v = P(u) ∈ Σ∗

o

Assumptions
Attacker knows A and the projection P/alphabet Σo

KΣo(v): knowledge set (of states) of the attacker after observing v

Definition (Opacity)
F is opaque w.r.t. (A,Σo) if ∀v ∈ P(Tr(A)), KΣo(v) 6⊆ F (KΣo(v) ∩ (Q \ F) ≠ ∅).

Opacity Problem
Input: A NDA A, F secret set of states, Σo set of observable events.
Problem: Is F opaque w.r.t. (A,Σo) ?
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Knowledge Set of the Attacker
Tr(A) = set of words generated by A
P is the projection over Σo ⊆ Σ
P–1(w) = set of words which project onto w P–1 : Σ∗

o → 2Σ∗

Pre(ε) = {ε} and Pre(u.λ) = P–1(u).λ ∩ Tr(A)
Knowledge set of U: KΣo(u) = δ(q0, Pre(u))

Consider knowledge set right after each observation of the attacker
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Example

Σo = {b}
P(b.b.a.b.a) = b.b.b
P–1(b) = a∗.b.a∗

Pre(b) = {b, a.b}
KΣo(b) = {q0, q5, q2} q0 q1 q2 q3

q4 q5 q6
b

a

a

b a
a,b

b

a
b

a,b
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Problem 1: Checking opacity with Static Filters
Input: a NDA A, F secret set of states, Σo set of observable events.
Problem: Is F opaque w.r.t. (A,Σo) ?

Theorem
Problem 1 is PSPACE-complete.
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Algorithms for Checking Opacity

Proof.
Reduction of universality problem for non-deterministic automaton.
Given A over Σ with accepting states F, the universality problem is:

decide whether LF(A) = Σ∗.

Assume A is complete i.e. Tr(A) = Σ∗.
Reduction:

A is universal iff Q \ F is opaque for (A,Σ).

Algorithm to Check Opacity
1 Subset construction
2 check whether a subset S ⊆ F is reachable

What if the system is NOT opaque ?
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Enforcing Opacity

ε

ε

b
a b

System A

Σo

aXb
b

aX
a

b

bX

Controller C

X
ΣoΣ′

o ≠ Σo

Either restrict set of behaviours: add a controller C
[Dubreil et al., 2008]

Or modify the set of observable events to Σ′
o ≠ Σo
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Minimization of the Set of Hidden Events
Events = services provided to (external) users
Hiding events = restricting services

Goal: ensure opacity while preserving services

Problem 2: Static Minimization Problem
Input: A = (Q, q0, Σ, δ, F) a NDA, F secret set of states and n ∈ N.
Problem: Is there any Σo ⊆ Σ with |Σo| ≥ n s.t. F is opaque w.r.t. (A,Σo) ?

Theorem
Problem 2 is PSPACE-complete.

Computing the maximum n is also PSPACE-complete.

Can we do any better ?
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Using Dynamic Filters

System A Filter Φ Attacker U
u ∈ Σ∗ D(u) ∈ Σ∗

q0 q1 q2 q3

q4 q5 q6b

a

a

b a
a,b

b

a
b

a,b

Static Filter: Σo = {a} or Σo = {b} ⇒ F is opaque
Must hide at least one event
Dynamic Filter: Hide b after the observation of an a and let
everything be observable after the observation of a second a

Result: Events are more often visible
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Dynamic Filters
Definition (Dynamic Filter)
A dynamic filter is a complete (infinite) deterministic labeled transition
system Φ = (X, x0, Σ, δo, L) where

L : X → 2Σ is a labeling function that specifies the set of events that
are observable at state x;
For all x ∈ X and for all λ ∈ Σ, if λ /∈ L(x), then δo(x, λ) = x.

Example (Finite State Filter)

1 2 3
L(1) = {a, b} L(2) = {a} L(3) = {a, b}

b b a, b

a a

Φ is also a transducer

F. Cassez, J. Dubreil, H. Marchand Dynamic Observers for the Synthesis of Opaque Systems 14 / 27



Dynamic Filters
Definition (Dynamic Filter)
A dynamic filter is a complete (infinite) deterministic labeled transition
system Φ = (X, x0, Σ, δo, L) where

L : X → 2Σ is a labeling function that specifies the set of events that
are observable at state x;
For all x ∈ X and for all λ ∈ Σ, if λ /∈ L(x), then δo(x, λ) = x.

Example (Finite State Filter)

1 2 3
L(1) = {a, b} L(2) = {a} L(3) = {a, b}

b/b b/ε a/a, b/b

a/a a/a

Φ is also a transducer
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Opacity with Dynamic Filters
Φ–1(w) = set of words u that filter onto w (s.t. Φ(u) = w)
Pre(ε) = {ε} and Pre(u.λ) = Φ–1(u).λ ∩ Tr(A)
Knowledge set of attacker: KΦ(u) = δ(q0, Pre(u))

Definition (Opacity)
F is opaque w.r.t. (A,Φ) if ∀u ∈ Φ(Tr(A)), KΦ(u) 6⊆ F.

Problem 3: Opacity Problem with Dynamic Filters
Input: A a NDA, F secret set of states, Φ a filter.
Problem: Is F opaque w.r.t. (A,Φ) ?

Issues
How to check opacity with a dynamic filter?
How to compare dynamic filters?
How to synthesize optimal dynamic filters?
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Checking Opacity for Finite State Filters

Opacity for Finite State Filters
Input: A, F, Φ a finite state filter.
Problem: Is F opaque w.r.t. (A,Φ) ?

To check opacity, build a product A ⊗ Φ
1 initial state (q0, x0)
2 (q, x) λ

––→ (q′, x′) iff q λ
––→A q′, x λ

––→Φ x′ and λ ∈ L(x);
3 (q, x) ε

––→ (q′, x) iff q λ
––→A q′ and λ 6∈ L(x).

Theorem
F is opaque w.r.t. (A,Φ) iff F × X is opaque w.r.t. to (A ⊗ Φ,Σ).

Consequence: Problem 3 is PSPACE-complete.

How to compare dynamic filters ?
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Comparison of Dynamic Filters

21
b

a

a

b

x1 x2

b

a

a, b

x1 ba

A Φ1 Φ2

Disabling/Hiding an action costs 1 per time unit (1 t.u. = step of A)
On input word bn

I cost of Φ1 is n
I cost of Φ2 is 0

Φ2 is better than Φ1

Need to define a cost measure for dynamic filters
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Computing the Cost of a Given Filter
A run of A: ρ = q0

λ1
–––→ q1 · · · qn–1

λn
–––→ qn

Φ = (X, x0, Σ, δo, L) a filter, and xi = δo(x0, wi) with wi = λ1 · · · λi
C : 2Σ → N: Cost of hiding a subset of Σ
Average Cost on a run ρ

Cost(ρ, Φ) =
Cost(ρ)
|ρ| + 1

=
Σi=0..n C(Σ \ L(xi))

n + 1 .

Maximal Cost on runs of A of length n
Cost(n,A, Φ) = max{ Cost(ρ, Φ) for ρ ∈ Runsn(A) }.

Cost of a pair (A,Φ)
Cost(A,Φ) = lim sup

n→∞
Cost(n,A, Φ)

Theorem
For finite state filters, Cost(A,Φ) can be computed in PTIME.

Use Karp’s Maximum Mean-weight Cycle Algorithm [Karp, 1978]
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Bounded Cost Filter
Problem 4: Bounded Cost Filter
Inputs: a NDA A = (Q, q0, Σ, δ, F) and an integer k ∈ N.
Problems: Assume F is opaque w.r.t. (A,∅).
(A) Is there any Φ s.t. F is opaque w.r.t. (A,Φ) and Cost(A,Φ) ≤ k ?
(B) If the answer to (A) is “yes”, compute a witness filter.

Steps to solve Problem 4
Step 1: compute the most permissive filter MPΦ see Problem 5 next
Step 2: check wether some filter in MPΦ costs less than k

Theorem
There is finite state most permissive filter (EXPTIME) for A.

Theorem
Problems 4.(A) and 4.(B) can be solved in EXPTIME.
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Problem 5 as a Game Problem
Reduce Problem 5 to a safety 2-player game
Player 1 chooses what to hide
Player 2 tries to observe F

21
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Results for Problem 5
Let G(A,Σ) be the game defined previously.

Theorem
if Φ is a filter s.t. F is opaque w.r.t. (A,Φ) then there is a
corresponding winning strategy f(Φ) for Player 1 in G(A,Σ)
if f is a winning strategy for Player 1 in G(A,Σ), there is a
corresponding filter Φ(f) s.t. F is opaque w.r.t. (A,Φ(f))

Known Result:
There is a memoryless most permissive strategy for any safety game.

Theorem
There is a finite memory (EXPTIME) most permissive filter MPΦ for A.

Proof.
G(A,Σ) has size exponential in A,Σ.
Solving safety games can be done in linear time.
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Optimal Dynamic Filter

1 1.b

1.a
{a}

{b}
12
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{b}

{a, b}

a

b

a, bThe most permissive
filter

w = 1

w = 1

w = 1

w = 1

w = 0

Player 1 chooses what to hide: strategy f
Player 2 chooses an action
Add weight on Player 1’s choices
Player 1 playing f and Player 2 produce weighted runs w(ρ) and

Cost(ρ, f) = w(ρ)/(|ρ| + 1)
Goal for Player 1: minimize lim supn→∞{ w(ρ)/(|ρ| + 1) |ρ ∈ Runsn(A) }
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Mean Payoff Games [Zwick & Paterson, 1996]

Weighted two-player games
Each state s has a weight w(s)
alternatively: weight on edges
Turn-based game
Goal of the Players:

I Player 1: minimize l0 = lim supw(ρ)/(|ρ| + 1)
I Player 2: maximize l1 = lim infw(ρ)/(|ρ| + 1)

Results for weighted two-player games [Zwick & Paterson, 1996]
There is a value ν ∈ Q s.t. each player has a memoryless strategy to
ensure l0 ≤ ν and l1 ≥ ν
ν can be effectively computed (PTIME)
Memoryless strategies for both players can be effectively computed

v-Winning Strategy for Player 1 = Optimal filter
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Results for Problem 4

Problem 4: Bounded Cost Filter
Inputs: a NDA A = (Q, q0, Σ, δ, F) and an integer k ∈ N.
Problems: Assume F is opaque w.r.t. (A,∅).
(A) Is there any Φ s.t. F is opaque w.r.t. (A,Φ) and Cost(A,Φ) ≤ k ?
(B) If the answer to (A) is “yes”, compute a witness filter.

Solution for Problem 4
1 Compute the most permissive filter MPΦ
2 Build a weighted graph game: MPΦ × A
3 Use Zwick & Paterson’s algorithm to compute the value of the game
4 Compare k to the value of the game

Theorem
Problem 4 can be solved in EXPTIME.
An optimal filter can be computed in EXPTIME.
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