Dynamic Observers for the Synthesis of Opaque Systems

Franck Cassez¹, Jérémy Dubreil² and Hervé Marchand²

¹ NICTA & CNRS Sydney Australia ² INRIA/IRISA Rennes Bretagne Atlantique France

ATVA'09, Macau SAR October 13–16, 2009

Context

Need for Security in Transactional Systems

- Web-services: e-banking, online transactions
- Id documents: biometric passport, Medicare Card
- E-voting systems
- Different Types of Security
 - Integrity: illegal actions cannot be performed by an unauthorized user

Bank account management cannot be managed by a third party

- Availability: some actions must be available Withdrawing money from your bank account
- Privacy: information should remain hidden from some users PIN code

Opacity was introduced in [Mazaré, 2004, Bryans et al., 2008]

F. Cassez, J. Dubreil, H. Marchand

Context

Need for Security in Transactional Systems

- Web-services: e-banking, online transactions
- Id documents: biometric passport, Medicare Card
- E-voting systems
- Different Types of Security
 - Integrity: illegal actions cannot be performed by an unauthorized user

Bank account management cannot be managed by a third party

- Availability: some actions must be available Withdrawing money from your bank account
- Privacy: information should remain hidden from some users PIN code

In this paper we consider opacity (privacy)

Opacity was introduced in [Mazaré, 2004, Bryans et al., 2008]

F. Cassez, J. Dubreil, H. Marchand

Outline of the Talk

Opacity for Finite State Systems

- What is Opacity?
- Opacity for Non-Deterministic Automata
- Algorithms for Checking Opacity

Minimization Problem with Static Filters

Minimization Problem with Dynamic Filters

- Opacity with Dynamic Filters
- Checking Opacity with Dynamic Filters
- Cost of a Dynamic Filter
- Computing the Cost of a Given Filter
- Minimization Problem
- Computation of the Most Permissive Filter
- Computing an Optimal Dynamic Filter

Summary & Future Work

Outline

Opacity for Finite State Systems

- What is Opacity?
- Opacity for Non-Deterministic Automata
- Algorithms for Checking Opacity

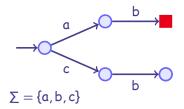
2 Minimization Problem with Static Filters

Minimization Problem with Dynamic Filters

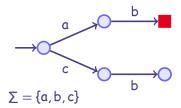
- Opacity with Dynamic Filters
- Checking Opacity with Dynamic Filters
- Cost of a Dynamic Filter
- Computing the Cost of a Given Filter
- Minimization Problem
- Computation of the Most Permissive Filter
- Computing an Optimal Dynamic Filter

Summary & Future Work

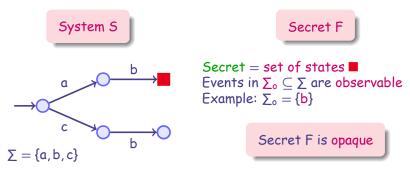
System S

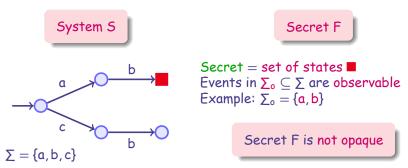


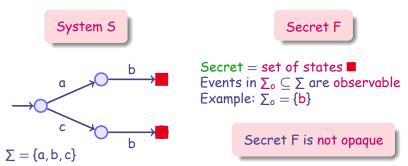
Secret = set of states Events in $\sum_{o} \subseteq \sum$ are observable Example: $\sum_{o} = \{b\}$

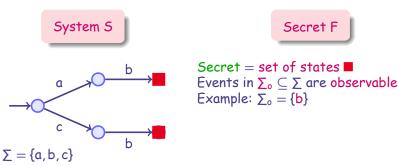


Secret = set of states Events in $\sum_{o} \subseteq \sum$ are observable Example: $\sum_{o} = \{b\}$

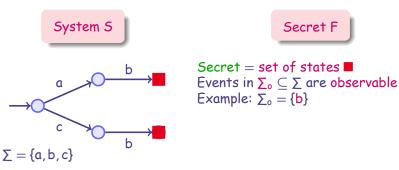








Opacity Verification Problem: Is F opaque w.r.t. (S, Σ_0) ?



Opacity Verification Problem: Is F opaque w.r.t. (S, Σ_0) ?

To check opacity: use your favorite Formal Method:

- Model-checking
- Theorem proving
- Tools to support automatic analysis of systems

Opacity for Non-Deterministic Automata

$\begin{array}{l} A = (Q, q_0, \Sigma, \delta, F) \text{ a NDA} \\ \Sigma_0 \subseteq \Sigma \text{ set of observable events} \end{array}$

F set of secret states

$$\begin{array}{c|c} \mathsf{NDA} & \mathsf{A} \end{array} \xrightarrow{\mathsf{u} \in \Sigma^*} \end{array} \xrightarrow{\mathsf{Projection P}} \overset{\mathsf{v} = \mathsf{P}(\mathsf{u}) \in \Sigma^*_{\mathsf{o}}} \end{array} \xrightarrow{\mathsf{Attacker U}}$$

Assumptions

- Attacker knows A and the projection P/alphabet Σ_{\circ}
- $K_{\Sigma_o}(v)$: knowledge set (of states) of the attacker after observing v

Definition (Opacity)

 $\mathsf{F} \text{ is opaque w.r.t. } (\mathsf{A}, \Sigma_{\circ}) \text{ if } \forall \mathsf{v} \in \mathsf{P}(\mathsf{Tr}(\mathsf{A})), \mathsf{K}_{\Sigma_{\circ}}(\mathsf{v}) \not\subseteq \mathsf{F} (\mathsf{K}_{\Sigma_{\circ}}(\mathsf{v}) \cap (\mathsf{Q} \setminus \mathsf{F}) \neq \varnothing).$

Opacity Problem

Input: A NDA A, F secret set of states, \sum_{o} set of observable events. Problem: Is F opaque w.r.t. (A, \sum_{o}) ?

F. Cassez, J. Dubreil, H. Marchand

Opacity for Non-Deterministic Automata

$\begin{array}{l} A = (Q, q_0, \Sigma, \delta, F) \text{ a NDA} \\ \Sigma_0 \subseteq \Sigma \text{ set of observable events} \end{array}$

F set of secret states

$$\begin{array}{c|c} \mathsf{NDA} & \mathsf{A} & \overset{\mathsf{u} \in \Sigma^*}{\longrightarrow} \end{array} \end{array} \xrightarrow{\mathsf{Projection P}} \overset{\mathsf{v} = \mathsf{P}(\mathsf{u}) \in \Sigma^*_{\mathsf{o}} } \\ \end{array} \xrightarrow{\mathsf{Attacker U}}$$

Assumptions

- Attacker knows A and the projection P/alphabet Σ_{\circ}
- $K_{\Sigma_o}(v)$: knowledge set (of states) of the attacker after observing v

Definition (Opacity)

 $\mathsf{F} \text{ is opaque w.r.t. } (\mathsf{A}, \Sigma_{\circ}) \text{ if } \forall \mathsf{v} \in \mathsf{P}(\mathsf{Tr}(\mathsf{A})), \mathsf{K}_{\Sigma_{\circ}}(\mathsf{v}) \not\subseteq \mathsf{F} (\mathsf{K}_{\Sigma_{\circ}}(\mathsf{v}) \cap (\mathsf{Q} \setminus \mathsf{F}) \neq \varnothing).$

Opacity Problem

Input: A NDA A, F secret set of states, \sum_{\circ} set of observable events. Problem: Is F opaque w.r.t. (A, \sum_{\circ}) ?

Opacity for Non-Deterministic Automata

$\begin{array}{l} A = (Q, q_0, \Sigma, \delta, F) \text{ a NDA} \\ \Sigma_0 \subseteq \Sigma \text{ set of observable events} \end{array}$

F set of secret states

$$\begin{array}{c|c} \mathsf{NDA} & \mathsf{A} \end{array} \xrightarrow{\mathsf{u} \in \Sigma^*} \end{array} \xrightarrow{\mathsf{Projection P}} \overset{\mathsf{v} = \mathsf{P}(\mathsf{u}) \in \Sigma^*_{\mathsf{o}}} \end{array} \xrightarrow{\mathsf{Attacker U}}$$

Assumptions

- Attacker knows A and the projection P/alphabet Σ_{\circ}
- $K_{\Sigma_o}(v)$: knowledge set (of states) of the attacker after observing v

Definition (Opacity)

 $\mathsf{F} \text{ is opaque w.r.t. } (\mathsf{A}, \Sigma_{\circ}) \text{ if } \forall \mathsf{v} \in \mathsf{P}(\mathsf{Tr}(\mathsf{A})), \mathsf{K}_{\Sigma_{\circ}}(\mathsf{v}) \not\subseteq \mathsf{F} (\mathsf{K}_{\Sigma_{\circ}}(\mathsf{v}) \cap (\mathsf{Q} \setminus \mathsf{F}) \neq \varnothing).$

Opacity Problem

Input: A NDA A, F secret set of states, \sum_{0} set of observable events. Problem: Is F opaque w.r.t. (A, \sum_{0}) ?

Knowledge Set of the Attacker

- Tr(A) = set of words generated by A
- \bullet P is the projection over $\Sigma_{\circ} \subseteq \Sigma$
- P⁻¹(w) = set of words which project onto w
- $Pre(\epsilon) = \{\epsilon\}$ and $Pre(u.\Lambda) = P^{-1}(u).\Lambda \cap Tr(A)$
- Knowledge set of U: $K_{\Sigma_o}(u) = \delta(q_0, Pre(u))$

 $P^{-1}: \Sigma_o^* \longrightarrow 2^{\Sigma^*}$

Consider knowledge set right after each observation of the attacker

Knowledge Set of the Attacker

- Tr(A) = set of words generated by A
- \bullet P is the projection over $\Sigma_{\circ} \subseteq \Sigma$
- P⁻¹(w) = set of words which project onto w
- $Pre(\varepsilon) = \{\varepsilon\}$ and $Pre(u.\Lambda) = P^{-1}(u).\Lambda \cap Tr(A)$
- Knowledge set of U: $K_{\Sigma_o}(u) = \delta(q_0, Pre(u))$

Example $\sum_{o} = \{b\}$ P(b.b.a.b.a) = b.b.b $P^{-1}(b) = a^{*}.b.a^{*}$ $Pre(b) = \{b, a.b\}$ $K_{\Sigma_{o}}(b) = \{q_{0}, q_{5}, q_{2}\}$ $\downarrow q_{0}$ $\downarrow q_{1}$ $\downarrow q_{2}$ $\downarrow q_{3}$ $\downarrow a, b$

Knowledge Set of the Attacker

- Tr(A) = set of words generated by A
- \bullet P is the projection over $\Sigma_{\circ} \subseteq \Sigma$
- P⁻¹(w) = set of words which project onto w
- $Pre(\varepsilon) = \{\varepsilon\}$ and $Pre(u.\Lambda) = P^{-1}(u).\Lambda \cap Tr(A)$
- Knowledge set of U: $K_{\Sigma_0}(u) = \delta(q_0, Pre(u))$

Problem 1: Checking opacity with Static Filters Input: a NDA A, F secret set of states, Σ_0 set of observable events. Problem: Is F opaque w.r.t. (A, Σ_0) ?

Theorem Problem 1 is PSPACE-complete. $P^{-1}: \Sigma_{o}^{*} \rightarrow 2^{\Sigma^{*}}$

Algorithms for Checking Opacity

Proof.

Reduction of universality problem for non-deterministic automaton. Given A over Σ with accepting states F, the universality problem is:

decide whether $L_F(A) = \Sigma^*$.

Assume A is complete i.e. $Tr(A) = \Sigma^*$. Reduction:

A is universal iff $Q \setminus F$ is opaque for (A, Σ) .

Algorithm to Check Opacity

- Subset construction
- \bigcirc check whether a subset S \subseteq F is reachable

What if the system is NOT opaque?

Algorithms for Checking Opacity

Proof.

Reduction of universality problem for non-deterministic automaton. Given A over Σ with accepting states F, the universality problem is:

decide whether $L_F(A) = \Sigma^*$.

Assume A is complete i.e. $Tr(A) = \Sigma^*$. Reduction:

A is universal iff $Q \setminus F$ is opaque for (A, Σ) .

Algorithm to Check Opacity

- Subset construction
- ${f O}$ check whether a subset S \subseteq F is reachable

What if the system is NOT opaque?

Algorithms for Checking Opacity

Proof.

Reduction of universality problem for non-deterministic automaton. Given A over Σ with accepting states F, the universality problem is:

decide whether $L_F(A) = \Sigma^*$.

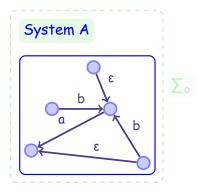
Assume A is complete i.e. $Tr(A) = \Sigma^*$. Reduction:

A is universal iff $Q \setminus F$ is opaque for (A, Σ) .

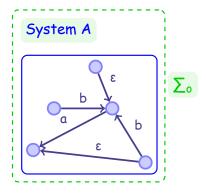
Algorithm to Check Opacity

- Subset construction
- ${f O}$ check whether a subset S \subseteq F is reachable

What if the system is **NOT** opaque?



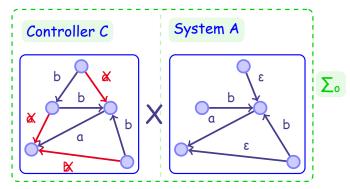
- Either restrict set of behaviours: add a controller C [Dubreil et al., 2008]
- Or modify the set of observable events to $\sum_{0}^{\prime} \neq \sum_{0}$



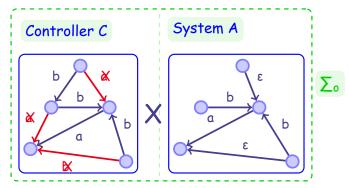
- Either restrict set of behaviours: add a controller C [Dubreil e]
- Or modify the set of observable events to $\sum_{o}' \neq \sum_{o}$

(A, \sum_{o}) is NOT opaque

F. Cassez, J. Dubreil, H. Marchand



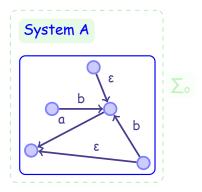
- Either restrict set of behaviours: add a controller C [Dubreil et al., 2008]
- Or modify the set of observable events to $\Sigma'_{o} \neq \Sigma_{o}$



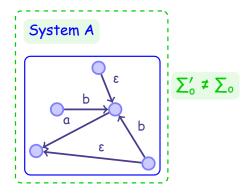
- Either restrict set of behaviours: add a controller C [Dubreil et al., 2008]
- Or modify the set of observable events to ∑₀' ≠ ∑₀

Ensure $(C \times A, \sum_{\circ})$ is opaque

F. Cassez, J. Dubreil, H. Marchand



- Either restrict set of behaviours: add a controller C [Dubreil et al., 2008]
- Or modify the set of observable events to $\sum_{0}^{\prime} \neq \sum_{0}$



• Either restrict set of behaviours: add a controller C

[Dubreil et al., 2008]

• Or modify the set of observable events to $\sum_{o}' \neq \sum_{o}$

Ensure (G, Σ'_{o}) is opaque

Outline

Opacity for Finite State Systems

- What is Opacity?
- Opacity for Non-Deterministic Automata
- Algorithms for Checking Opacity

Minimization Problem with Static Filters

- Minimization Problem with Dynamic Filters
 - Opacity with Dynamic Filters
 - Checking Opacity with Dynamic Filters
 - Cost of a Dynamic Filter
 - Computing the Cost of a Given Filter
 - Minimization Problem
 - Computation of the Most Permissive Filter
 - Computing an Optimal Dynamic Filter
- Summary & Future Work

- Events = services provided to (external) users
- Hiding events = restricting services

Goal: ensure opacity while preserving services

Problem 2: Static Minimization Problem

Input: $A = (Q, q_0, \Sigma, \delta, F)$ a NDA, F secret set of states and $n \in \mathbb{N}$. Problem: Is there any $\Sigma_0 \subseteq \Sigma$ with $|\Sigma_0| \ge n$ s.t. F is opaque w.r.t. (A, Σ_0) ?

Theorem

Problem 2 is PSPACE-complete.

Computing the maximum n is also PSPACE-complete.

- Events = services provided to (external) users
- Hiding events = restricting services

Goal: ensure opacity while preserving services

Problem 2: Static Minimization Problem

Input: $A = (Q, q_0, \Sigma, \delta, F)$ a NDA, F secret set of states and $n \in \mathbb{N}$. Problem: Is there any $\Sigma_0 \subseteq \Sigma$ with $|\Sigma_0| \ge n$ s.t. F is opaque w.r.t. (A, Σ_0) ?

Theorem

Problem 2 is PSPACE-complete.

Computing the maximum n is also PSPACE-complete.

- Events = services provided to (external) users
- Hiding events = restricting services

Goal: ensure opacity while preserving services

Problem 2: Static Minimization Problem

Input: $A = (Q, q_0, \Sigma, \delta, F)$ a NDA, F secret set of states and $n \in \mathbb{N}$. Problem: Is there any $\Sigma_0 \subseteq \Sigma$ with $|\Sigma_0| \ge n$ s.t. F is opaque w.r.t. (A, Σ_0) ?

Theorem

Problem 2 is PSPACE-complete.

Computing the maximum n is also PSPACE-complete.

- Events = services provided to (external) users
- Hiding events = restricting services

Goal: ensure opacity while preserving services

Problem 2: Static Minimization Problem

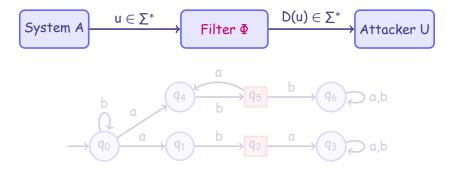
Input: $A = (Q, q_0, \Sigma, \delta, F)$ a NDA, F secret set of states and $n \in \mathbb{N}$. Problem: Is there any $\Sigma_0 \subseteq \Sigma$ with $|\Sigma_0| \ge n$ s.t. F is opaque w.r.t. (A, Σ_0) ?

Theorem

Problem 2 is PSPACE-complete.

Computing the maximum n is also PSPACE-complete.

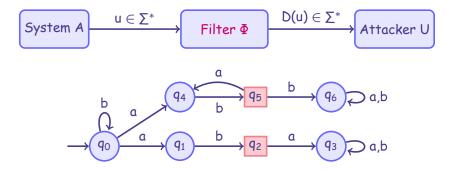
Using Dynamic Filters



- Static Filter: ∑₀ = {a} or ∑₀ = {b} ⇒ F is opaque Must hide at least one event
- Dynamic Filter: Hide b after the observation of an a and let everything be observable after the observation of a second a

Result: Events are more often visible

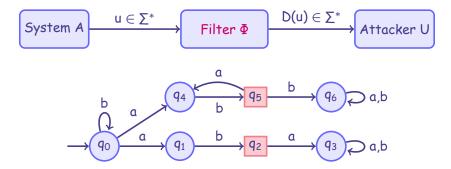
Using Dynamic Filters



- Static Filter: ∑₀ = {a} or ∑₀ = {b} ⇒ F is opaque Must hide at least one event
- Dynamic Filter: Hide b after the observation of an a and let everything be observable after the observation of a second a

Result: Events are more often visible

Using Dynamic Filters



- Static Filter: ∑₀ = {a} or ∑₀ = {b} ⇒ F is opaque Must hide at least one event
- Dynamic Filter: Hide b after the observation of an a and let everything be observable after the observation of a second a

Result: Events are more often visible

F. Cassez, J. Dubreil, H. Marchand

Outline

Opacity for Finite State Systems

- What is Opacity?
- Opacity for Non-Deterministic Automata
- Algorithms for Checking Opacity

Minimization Problem with Static Filters

Minimization Problem with Dynamic Filters

- Opacity with Dynamic Filters
- Checking Opacity with Dynamic Filters
- Cost of a Dynamic Filter
- Computing the Cost of a Given Filter
- Minimization Problem
- Computation of the Most Permissive Filter
- Computing an Optimal Dynamic Filter

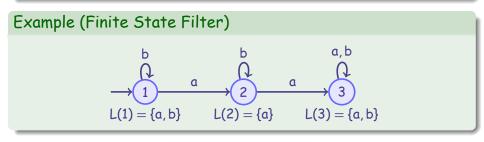
Summary & Future Work

Dynamic Filters

Definition (Dynamic Filter)

A dynamic filter is a complete (infinite) deterministic labeled transition system $\Phi = (X, x_0, \Sigma, \delta_0, L)$ where

- $L:X\to 2^\Sigma$ is a labeling function that specifies the set of events that are observable at state x;
- For all $x \in X$ and for all $h \in \Sigma$, if $h \notin L(x)$, then $\delta_o(x, h) = x$.



Φ is also a transducer

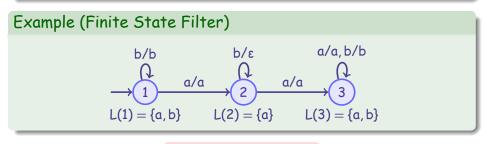
F. Cassez, J. Dubreil, H. Marchand

Dynamic Filters

Definition (Dynamic Filter)

A dynamic filter is a complete (infinite) deterministic labeled transition system $\Phi = (X, x_0, \Sigma, \delta_0, L)$ where

- $L:X\to 2^\Sigma$ is a labeling function that specifies the set of events that are observable at state x;
- For all $x \in X$ and for all $h \in \Sigma$, if $h \notin L(x)$, then $\delta_o(x, h) = x$.



Φ is also a transducer

F. Cassez, J. Dubreil, H. Marchand

- $\Phi^{-1}(w) = set$ of words u that filter onto w
- $Pre(\epsilon) = \{\epsilon\}$ and $Pre(u.\Lambda) = \Phi^{-1}(u).\Lambda \cap Tr(A)$
- Knowledge set of attacker: $K_{\Phi}(u) = \delta(q_0, Pre(u))$

Definition (Opacity)

F is opaque w.r.t. (A, Φ) if $\forall u \in \Phi(Tr(A)), K_{\Phi}(u) \not\subseteq F$.

Problem 3: Opacity Problem with Dynamic Filters

Input: A a NDA, F secret set of states, Φ a filter. Problem: Is F opaque w.r.t. (A, Φ) ?

- How to check opacity with a dynamic filter?
- How to compare dynamic filters?
- How to synthesize optimal dynamic filters?

- $\Phi^{-1}(w) = set$ of words u that filter onto w
- $Pre(\epsilon) = \{\epsilon\}$ and $Pre(u.\Lambda) = \Phi^{-1}(u).\Lambda \cap Tr(A)$
- Knowledge set of attacker: $K_{\Phi}(u) = \delta(q_0, Pre(u))$

Definition (Opacity)

F is opaque w.r.t. (A, Φ) if $\forall u \in \Phi(Tr(A)), K_{\Phi}(u) \not\subseteq F$.

Problem 3: Opacity Problem with Dynamic Filters

Input: A a NDA, F secret set of states, Φ a filter. Problem: Is F opaque w.r.t. (A, Φ) ?

- How to check opacity with a dynamic filter?
- How to compare dynamic filters?
- How to synthesize optimal dynamic filters?

- $\Phi^{-1}(w) = set$ of words u that filter onto w
- $Pre(\epsilon) = \{\epsilon\}$ and $Pre(u.\Lambda) = \Phi^{-1}(u).\Lambda \cap Tr(A)$
- Knowledge set of attacker: $K_{\Phi}(u) = \delta(q_0, Pre(u))$

Definition (Opacity)

F is opaque w.r.t. (A, Φ) if $\forall u \in \Phi(Tr(A)), K_{\Phi}(u) \not\subseteq F$.

Problem 3: Opacity Problem with Dynamic Filters

Input: A a NDA, F secret set of states, Φ a filter. **Problem:** Is F opaque w.r.t. (A, Φ) ?

- How to check opacity with a dynamic filter?
- How to compare dynamic filters?
- How to synthesize optimal dynamic filters?

- $\Phi^{-1}(w) = set$ of words u that filter onto w
- $Pre(\epsilon) = \{\epsilon\}$ and $Pre(u.\Lambda) = \Phi^{-1}(u).\Lambda \cap Tr(A)$
- Knowledge set of attacker: $K_{\Phi}(u) = \delta(q_0, Pre(u))$

Definition (Opacity)

F is opaque w.r.t. (A, Φ) if $\forall u \in \Phi(Tr(A)), K_{\Phi}(u) \not\subseteq F$.

Problem 3: Opacity Problem with Dynamic Filters

Input: A a NDA, F secret set of states, Φ a filter. **Problem:** Is F opaque w.r.t. (A, Φ) ?

- How to check opacity with a dynamic filter?
- How to compare dynamic filters?
- How to synthesize optimal dynamic filters?

Opacity for Finite State Filters

Input: A, F, Φ a finite state filter. **Problem:** Is F opaque w.r.t. (A, Φ) ?

To check opacity, build a product A $\otimes \Phi$

initial state (q₀, x₀)

$$(q, x) \xrightarrow{h} (q', x') \text{ iff } q \xrightarrow{h}_{A} q', x \xrightarrow{h}_{\Phi} x' \text{ and } h \in L(x);$$

$$(q, x) \xrightarrow{\epsilon} (q', x) \text{ iff } q \xrightarrow{\Lambda} q' \text{ and } \Lambda \not\in L(x).$$

Theorem

F is opaque w.r.t. (A, Φ) iff $F \times X$ is opaque w.r.t. to $(A \otimes \Phi, \Sigma)$.

Consequence: Problem 3 is PSPACE-complete.

How to compare dynamic filters?

Opacity for Finite State Filters

Input: A, F, Φ a finite state filter. Problem: Is F opaque w.r.t. (A, Φ) ?

To check opacity, build a product $A\otimes \Phi$

initial state (q₀, x₀)

$$(q, x) \xrightarrow{\Lambda} (q', x') \text{ iff } q \xrightarrow{\Lambda}_{A} q', x \xrightarrow{\Lambda}_{\Phi} x' \text{ and } \lambda \in L(x);$$

$$(q, x) \xrightarrow{\epsilon} (q', x) \text{ iff } q \xrightarrow{\Lambda} q' \text{ and } \Lambda \not\in L(x).$$

Theorem

F is opaque w.r.t. (A, Φ) iff $F \times X$ is opaque w.r.t. to $(A \otimes \Phi, \Sigma)$.

Consequence: Problem 3 is PSPACE-complete.

How to compare dynamic filters?

Opacity for Finite State Filters

Input: A, F, Φ a finite state filter. Problem: Is F opaque w.r.t. (A, Φ) ?

To check opacity, build a product $A\otimes \Phi$

initial state (q₀, x₀)

$$(q, x) \xrightarrow{h} (q', x') \text{ iff } q \xrightarrow{h} q', x \xrightarrow{h} \Phi x' \text{ and } h \in L(x);$$

$$(q, x) \xrightarrow{\epsilon} (q', x) \text{ iff } q \xrightarrow{\Lambda} q' \text{ and } \Lambda \not\in L(x).$$

Theorem

F is opaque w.r.t. (A, Φ) iff $F \times X$ is opaque w.r.t. to $(A \otimes \Phi, \Sigma)$.

Consequence: Problem 3 is PSPACE-complete.

How to compare dynamic filters ?

F. Cassez, J. Dubreil, H. Marchand

Opacity for Finite State Filters

Input: A, F, Φ a finite state filter. Problem: Is F opaque w.r.t. (A, Φ) ?

To check opacity, build a product $A\otimes \Phi$

initial state (q₀, x₀)

$$(q, x) \xrightarrow{h} (q', x') \text{ iff } q \xrightarrow{h} q', x \xrightarrow{h} \Phi x' \text{ and } h \in L(x);$$

$$(q, x) \xrightarrow{\epsilon} (q', x) \text{ iff } q \xrightarrow{\Lambda} q' \text{ and } \Lambda \not\in L(x).$$

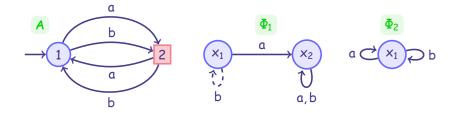
Theorem

F is opaque w.r.t. (A, Φ) iff $F \times X$ is opaque w.r.t. to $(A \otimes \Phi, \Sigma)$.

Consequence: Problem 3 is PSPACE-complete.

How to compare dynamic filters?

Comparison of Dynamic Filters

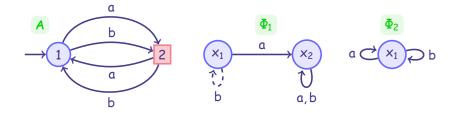


Disabling/Hiding an action costs 1 per time unit (1 t.u. = step of A)

- On input word bⁿ
 - cost of Φ_1 is n
 - ► cost of Φ₂ is 0
- Φ_2 is better than Φ_1

Need to define a cost measure for dynamic filters

Comparison of Dynamic Filters



Disabling/Hiding an action costs 1 per time unit (1 t.u. = step of A)

- On input word bⁿ
 - cost of Φ_1 is n
 - ► cost of Φ₂ is 0
- Φ_2 is better than Φ_1

Need to define a cost measure for dynamic filters

A run of A: $\rho = q_0 \xrightarrow{\Lambda_1} q_1 \cdots q_{n-1} \xrightarrow{\Lambda_n} q_n$ $\Phi = (X, x_0, \Sigma, \delta_o, L)$ a filter, and $x_i = \delta_o(x_0, w_i)$ with $w_i = \Lambda_1 \cdots \Lambda_i$ $C : 2^{\Sigma} \rightarrow \mathbb{N}$: Cost of hiding a subset of Σ

Average Cost on a run p

$$Cost(\rho, \Phi) = \frac{Cost(\rho)}{|\rho|+1} = \frac{\sum_{i=0..n} C(\sum \setminus L(x_i))}{n+1}$$

Maximal Cost on runs of A of length n

 $Cost(n, A, \Phi) = max\{ Cost(\rho, \Phi) \text{ for } \rho \in Runs^{n}(A) \}.$

Cost of a pair (A, Φ)

$$Cost(A, \Phi) = \limsup_{n \to \infty} Cost(n, A, \Phi)$$

Theorem

For finite state filters, $Cost(A, \Phi)$ can be computed in PTIME.

Use Karp's Maximum Mean-weight Cycle Algorithm [Karp, 1978]

F. Cassez, J. Dubreil, H. Marchand

A run of A: $\rho = q_0 \xrightarrow{\Lambda_1} q_1 \cdots q_{n-1} \xrightarrow{\Lambda_n} q_n$ $\Phi = (X, x_0, \Sigma, \delta_o, L)$ a filter, and $x_i = \delta_o(x_0, w_i)$ with $w_i = \lambda_1 \cdots \lambda_i$ $C: 2^{\Sigma} \rightarrow \mathbb{N}$: Cost of hiding a subset of Σ

Average Cost on a run p

$$Cost(\rho, \Phi) = \frac{Cost(\rho)}{|\rho|+1} = \frac{\sum_{i=0.n} C(\sum \setminus L(x_i))}{n+1}.$$

Maximal Cost on runs of A of length n

 $Cost(n, A, \Phi) = max\{ Cost(\rho, \Phi) \text{ for } \rho \in Runs^{n}(A) \}.$

Cost of a pair (A, Φ)

$$Cost(A, \Phi) = \limsup_{n \to \infty} Cost(n, A, \Phi)$$

Theorem

For finite state filters, $Cost(A, \Phi)$ can be computed in PTIME.

Use Karp's Maximum Mean-weight Cycle Algorithm [Karp, 1978]

F. Cassez, J. Dubreil, H. Marchand

A run of A: $\rho = q_0 \xrightarrow{\Lambda_1} q_1 \cdots q_{n-1} \xrightarrow{\Lambda_n} q_n$ $\Phi = (X, x_0, \Sigma, \delta_o, L)$ a filter, and $x_i = \delta_o(x_0, w_i)$ with $w_i = \lambda_1 \cdots \lambda_i$ $C : 2^{\Sigma} \rightarrow \mathbb{N}$: Cost of hiding a subset of Σ

Average Cost on a run p

$$Cost(\rho, \Phi) = \frac{Cost(\rho)}{|\rho|+1} = \frac{\sum_{i=0..n} C(\sum \setminus L(x_i))}{n+1}.$$

Maximal Cost on runs of A of length n

 $Cost(n, A, \Phi) = max\{ Cost(\rho, \Phi) \text{ for } \rho \in Runs^{n}(A) \}.$

Cost of a pair (A, Φ)

$$Cost(A, \Phi) = \limsup_{n \to \infty} Cost(n, A, \Phi)$$

Theorem

For finite state filters, $Cost(A, \Phi)$ can be computed in PTIME.

Use Karp's Maximum Mean-weight Cycle Algorithm [Karp, 1978]

F. Cassez, J. Dubreil, H. Marchand

A run of A: $\rho = q_0 \xrightarrow{\Lambda_1} q_1 \cdots q_{n-1} \xrightarrow{\Lambda_n} q_n$ $\Phi = (X, x_0, \Sigma, \delta_o, L)$ a filter, and $x_i = \delta_o(x_0, w_i)$ with $w_i = \lambda_1 \cdots \lambda_i$ $C : 2^{\Sigma} \rightarrow \mathbb{N}$: Cost of hiding a subset of Σ

Average Cost on a run p

$$Cost(\rho, \Phi) = \frac{Cost(\rho)}{|\rho|+1} = \frac{\sum_{i=0..n} C(\sum \setminus L(x_i))}{n+1}.$$

Maximal Cost on runs of A of length n

 $Cost(n, A, \Phi) = max\{ Cost(\rho, \Phi) \text{ for } \rho \in Runs^{n}(A) \}.$

Cost of a pair (A, Φ)

$$Cost(A, \Phi) = \limsup_{n \to \infty} Cost(n, A, \Phi)$$

Theorem

For finite state filters, $Cost(A, \Phi)$ can be computed in PTIME.

Use Karp's Maximum Mean-weight Cycle Algorithm [Karp, 1978]

F. Cassez, J. Dubreil, H. Marchand

A run of A: $\rho = q_0 \xrightarrow{\Lambda_1} q_1 \cdots q_{n-1} \xrightarrow{\Lambda_n} q_n$ $\Phi = (X, x_0, \Sigma, \delta_o, L)$ a filter, and $x_i = \delta_o(x_0, w_i)$ with $w_i = \lambda_1 \cdots \lambda_i$ $C : 2^{\Sigma} \rightarrow \mathbb{N}$: Cost of hiding a subset of Σ

Average Cost on a run p

$$Cost(\rho, \Phi) = \frac{Cost(\rho)}{|\rho|+1} = \frac{\sum_{i=0..n} C(\sum \setminus L(x_i))}{n+1}.$$

Maximal Cost on runs of A of length n

$$Cost(n, A, \Phi) = max \{ Cost(\rho, \Phi) \text{ for } \rho \in Runs^{n}(A) \}.$$

Cost of a pair (A, Φ)

$$Cost(A, \Phi) = \limsup_{n \to \infty} Cost(n, A, \Phi)$$

Theorem

For finite state filters, $Cost(A, \Phi)$ can be computed in PTIME.

Use Karp's Maximum Mean-weight Cycle Algorithm [Karp, 1978]

F. Cassez, J. Dubreil, H. Marchand

Bounded Cost Filter

Problem 4: Bounded Cost Filter

Inputs: a NDA $A = (Q, q_0, \Sigma, \delta, F)$ and an integer $\mathbf{k} \in \mathbb{N}$. **Problems**: Assume F is opaque w.r.t. (A, \emptyset) .

(A) Is there any Φ s.t. F is opaque w.r.t. (A, Φ) and $Cost(A, \Phi) \leq k$?

(B) If the answer to (A) is "yes", compute a witness filter.

Steps to solve Problem 4

- Step 1: compute the most permissive filter MP Φ see Problem 5 next
- Step 2: check wether some filter in MP Φ costs less than k

Theorem

There is finite state most permissive filter (EXPTIME) for A.

Theorem

Problems 4.(A) and 4.(B) can be solved in EXPTIME.

F. Cassez, J. Dubreil, H. Marchand

Bounded Cost Filter

Problem 4: Bounded Cost Filter

Inputs: a NDA $A = (Q, q_0, \Sigma, \delta, F)$ and an integer $\mathbf{k} \in \mathbb{N}$. Problems: Assume F is opaque w.r.t. (A, \emptyset) .

(A) Is there any Φ s.t. F is opaque w.r.t. (A, Φ) and $Cost(A, \Phi) \leq k$?

(B) If the answer to (A) is "yes", compute a witness filter.

Steps to solve Problem 4

- Step 1: compute the most permissive filter MP Φ see Problem 5 next
- Step 2: check wether some filter in MP Φ costs less than k

Theorem

There is finite state most permissive filter (EXPTIME) for A.

Theorem

Problems 4.(A) and 4.(B) can be solved in EXPTIME.

Bounded Cost Filter

Problem 4: Bounded Cost Filter

Inputs: a NDA $A = (Q, q_0, \Sigma, \delta, F)$ and an integer $\mathbf{k} \in \mathbb{N}$. Problems: Assume F is opaque w.r.t. (A, \emptyset) .

(A) Is there any Φ s.t. F is opaque w.r.t. (A, Φ) and $Cost(A, \Phi) \leq k$?

(B) If the answer to (A) is "yes", compute a witness filter.

Steps to solve Problem 4

- Step 1: compute the most permissive filter MP Φ see Problem 5 next
- Step 2: check wether some filter in MP Φ costs less than k

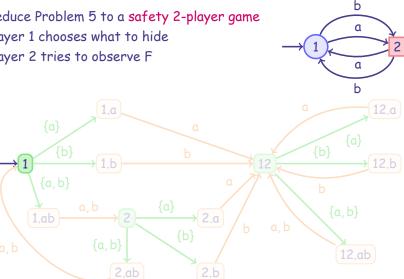
Theorem

There is finite state most permissive filter (EXPTIME) for A.

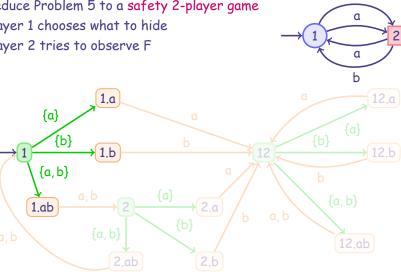
Theorem

Problems 4.(A) and 4.(B) can be solved in EXPTIME.

- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F

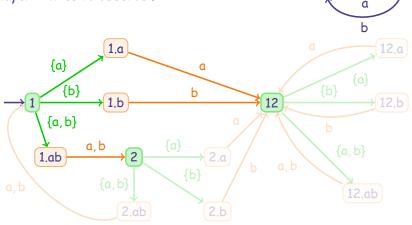


- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F



b

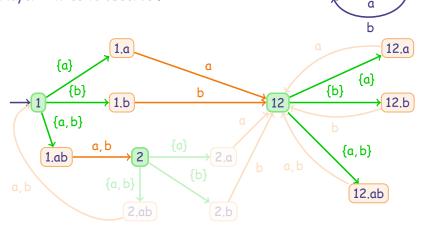
- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F



b

۵

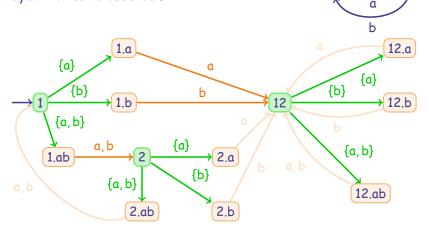
- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F



b

۵

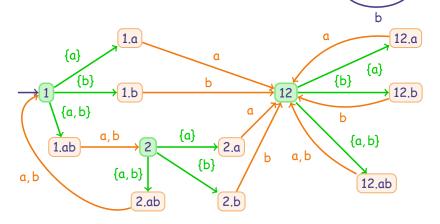
- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F



b

۵

- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F

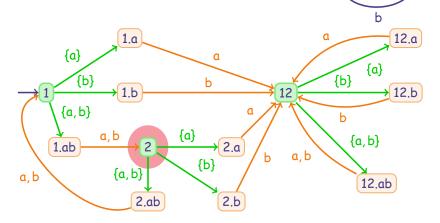


b

۵

a

- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F

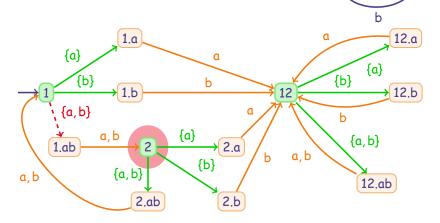


b

۵

a

- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F

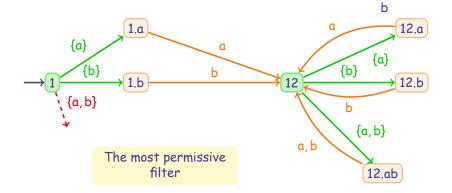


b

۵

a

- Reduce Problem 5 to a safety 2-player game
- Player 1 chooses what to hide
- Player 2 tries to observe F



b

۵

Let $G(A, \Sigma)$ be the game defined previously.

Theorem

- if Φ is a filter s.t. F is opaque w.r.t. (A, Φ) then there is a corresponding winning strategy f(Φ) for Player 1 in G(A, Σ)
- if f is a winning strategy for Player 1 in G(A, Σ), there is a corresponding filter Φ(f) s.t. F is opaque w.r.t. (A, Φ(f))

Known Result:

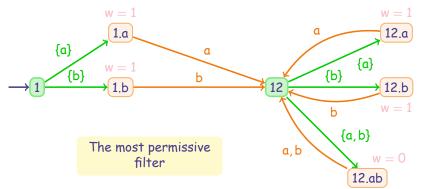
There is a memoryless most permissive strategy for any safety game.

Theorem

There is a finite memory (EXPTIME) most permissive filter MP Φ for A.

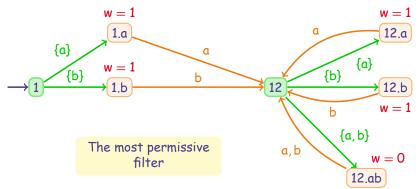
Proof.

 $G(A, \Sigma)$ has size exponential in A, Σ . Solving safety games can be done in linear time.



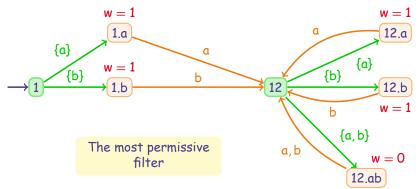
- Player 1 chooses what to hide: strategy f
- Player 2 chooses an action
- Add weight on Player 1's choices
- Player 1 playing f and Player 2 produce weighted runs w(ρ) and

 $\textbf{Cost}(\rho,f) = w(\rho)/(|\rho|+1)$



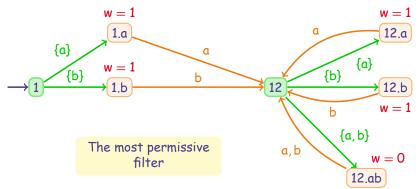
- Player 1 chooses what to hide: strategy f
- Player 2 chooses an action
- Add weight on Player 1's choices
- Player 1 playing f and Player 2 produce weighted runs w(ρ) and

 $\textbf{Cost}(\rho,f) = w(\rho)/(|\rho|+1)$



- Player 1 chooses what to hide: strategy f
- Player 2 chooses an action
- Add weight on Player 1's choices
- Player 1 playing f and Player 2 produce weighted runs w(p) and

 $\textit{Cost}(\rho,f) = w(\rho)/(|\rho|+1)$



- Player 1 chooses what to hide: strategy f
- Player 2 chooses an action
- Add weight on Player 1's choices
- Player 1 playing f and Player 2 produce weighted runs w(ρ) and

 $Cost(\rho, f) = w(\rho)/(|\rho| + 1)$

Mean Payoff Games

Weighted two-player games

- Each state s has a weight w(s) alternatively: weight on edges
- Turn-based game
- Goal of the Players:
 - ► Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - ► Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$

Results for weighted two-player games

[Zwick & Paterson, 1996]

- $\bullet\,$ There is a value $v\in\mathbb{Q}$ s.t. each player has a memoryless strategy to ensure $I_0\leq v$ and $I_1\geq v$
- v can be effectively computed (PTIME)
- Memoryless strategies for both players can be effectively computed

v-Winning Strategy for Player 1 = Optimal filter

[Zwick & Paterson, 1996]

Mean Payoff Games

Weighted two-player games

- Each state s has a weight w(s) alternatively: weight on edges
- Turn-based game
- Goal of the Players:
 - ► Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - ► Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$

Results for weighted two-player games

[Zwick & Paterson, 1996]

- $\bullet~$ There is a value $v\in\mathbb{Q}$ s.t. each player has a memoryless strategy to ensure $I_0\leq v$ and $I_1\geq v$
- v can be effectively computed (PTIME)
- Memoryless strategies for both players can be effectively computed

v-Winning Strategy for Player 1 = Optimal filter

[Zwick & Paterson, 1996]

Mean Payoff Games

Weighted two-player games

- Each state s has a weight w(s) alternatively: weight on edges
- Turn-based game
- Goal of the Players:
 - ► Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - ► Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$

Results for weighted two-player games

[Zwick & Paterson, 1996]

- $\bullet~$ There is a value $v\in \mathbb{Q}$ s.t. each player has a memoryless strategy to ensure $l_0 \leq v$ and $l_1 \geq v$
- v can be effectively computed (PTIME)
- Memoryless strategies for both players can be effectively computed

v-Winning Strategy for Player 1 = Optimal filter

[Zwick & Paterson, 1996]

Problem 4: Bounded Cost Filter

Inputs: a NDA $A = (Q, q_0, \Sigma, \delta, F)$ and an integer $k \in \mathbb{N}$. Problems: Assume F is opaque w.r.t. (A, \emptyset) .

(A) Is there any Φ s.t. F is opaque w.r.t. (A, Φ) and $Cost(A, \Phi) \leq k$?

(B) If the answer to (A) is "yes", compute a witness filter.

Solution for Problem 4

- Compute the most permissive filter MP^A
- Build a weighted graph game: MP × A
- Use Zwick & Paterson's algorithm to compute the value of the game
- Compare k to the value of the game

Theorem

Problem 4 can be solved in EXPTIME. An optimal filter can be computed in EXPTIME.

Problem 4: Bounded Cost Filter

Inputs: a NDA $A = (Q, q_0, \Sigma, \delta, F)$ and an integer $k \in \mathbb{N}$. Problems: Assume F is opaque w.r.t. (A, \emptyset) .

(A) Is there any Φ s.t. F is opaque w.r.t. (A, Φ) and $Cost(A, \Phi) \leq k$?

(B) If the answer to (A) is "yes", compute a witness filter.

Solution for Problem 4

- Compute the most permissive filter $MP\Phi$
- **2** Build a weighted graph game: $MP\Phi \times A$
- Use Zwick & Paterson's algorithm to compute the value of the game
- Compare k to the value of the game

Theorem

Problem 4 can be solved in EXPTIME. An optimal filter can be computed in EXPTIME

Problem 4: Bounded Cost Filter

Inputs: a NDA $A = (Q, q_0, \Sigma, \delta, F)$ and an integer $k \in \mathbb{N}$. Problems: Assume F is opaque w.r.t. (A, \emptyset) .

(A) Is there any Φ s.t. F is opaque w.r.t. (A, Φ) and $Cost(A, \Phi) \leq k$?

(B) If the answer to (A) is "yes", compute a witness filter.

Solution for Problem 4

- **(**) Compute the most permissive filter $MP\Phi$
- **3** Build a weighted graph game: $MP\Phi \times A$
- Use Zwick & Paterson's algorithm to compute the value of the game
- Ompare k to the value of the game

Theorem

Problem 4 can be solved in EXPTIME. An optimal filter can be computed in EXPTIME.

Problem 4: Bounded Cost Filter

Inputs: a NDA $A = (Q, q_0, \Sigma, \delta, F)$ and an integer $k \in \mathbb{N}$. Problems: Assume F is opaque w.r.t. (A, \emptyset) .

- (A) Is there any Φ s.t. F is opaque w.r.t. (A, Φ) and $Cost(A, \Phi) \leq k$?
- (B) If the answer to (A) is "yes", compute a witness filter.

Solution for Problem 4

- Compute the most permissive filter $MP\Phi$
- **3** Build a weighted graph game: $MP\Phi \times A$
- Use Zwick & Paterson's algorithm to compute the value of the game
- Compare k to the value of the game

Theorem

Problem 4 can be solved in EXPTIME. An optimal filter can be computed in EXPTIME.

Outline

Opacity for Finite State Systems

- What is Opacity?
- Opacity for Non-Deterministic Automata
- Algorithms for Checking Opacity

2 Minimization Problem with Static Filters

Minimization Problem with Dynamic Filters

- Opacity with Dynamic Filters
- Checking Opacity with Dynamic Filters
- Cost of a Dynamic Filter
- Computing the Cost of a Given Filter
- Minimization Problem
- Computation of the Most Permissive Filter
- Computing an Optimal Dynamic Filter

Summary & Future Work

Results and Future Work

Summary of the Results

- Opacity with dynamic filters
 Secret can also be given by a regular language
- Cost & computation of the cost of a dynamic filter
- Existence & computation of the most permissive filter
- Existence of a finite optimal dynamic observer
- Effective computation of the optimal dynamic observer
- Extended version in [CDM, Tech. Rep., 2009]

Future Work

- Exact complexity of Problem 4 (EXPTIME-hardness)
- Extend to masks (renaming of events)
- Add new constraints to increase the Quality of Services e.g. availability properties
- Implement the algorithms

Results and Future Work

Summary of the Results

- Opacity with dynamic filters
 Secret can also be given by a regular language
- Cost & computation of the cost of a dynamic filter
- Existence & computation of the most permissive filter
- Existence of a finite optimal dynamic observer
- Effective computation of the optimal dynamic observer
- Extended version in [CDM, Tech. Rep., 2009]

Future Work

- Exact complexity of Problem 4 (EXPTIME-hardness)
- Extend to masks (renaming of events)
- Add new constraints to increase the Quality of Services e.g. availability properties
- Implement the algorithms

Some References

[Bryans et al., 2008]	Bryans, J., Koutny, M., Mazaré, L., & Ryan, P. 2008. Opacity generalised to transition systems. International Journal of Information Security, 7(6), 421–435.
[CDM, Tech. Rep., 2009]	Cassez, Franck, Dubreil, Jérémy, & Marchand, Hervé. 2009 (May). Dynamic Observers for the Synthesis of Opaque Systems. Tech., rept. 1930. IRISA. available at http://www.irisa.fr/prive/hmarchand/rr-observer.pdf.
[Dubreil et al., 2008]	Dubreil, Jérémy, Darondeau, Philippe, & Marchand, Hervé. 2008 (May). Opacity Enforcing Control Synthesis. Pages 28-35 of: Proceedings of the 9th International Workshop on Discrete Event Systems (WODES'08).
[Karp, 1978]	Karp, Richard M. 1978. A characterization of the minimum mean cycle in a digraph. Discrete Mathematics, 23, 309-311.
[Mazaré, 2004]	Mazaré, Laurent. 2004. Using Unification for Opacity Properties. Pages 165-176 of: Proceedings of the 4th IFIP WG1.7 Workshop on Issues in the Theory of Security (WITS'04).
[Zwick & Paterson, 1996]	Zwick, U., & Paterson, M. 1996. The complexity of mean payoff games on graphs. Theoretical Computer Science, 158(1-2), 343-359.