
Introduction
Definitions

Results
Conclusion

Synthesis of non-interferent systems

Gilles Benattar† Franck Cassez‡ Didier Lime†

Olivier H.Roux†

†IRCCyN/CNRS UMR 6597, Nantes, France

‡CNRS and National ICT Australia, Sydney, Australia

Formal Modelling and Analysis of Timed Systems 2009
(FORMATS09)

1



Introduction
Definitions

Results
Conclusion

Introduction

1 Studies of information flow security properties has been a very
active domain.

2 Information flow analysis defines secrecy as: “high level
information never flows into low level channels”
i.e., non-interference.

3 There are many results on model checking of non-interference
properties.

4 We consider the problem of the synthesis of non-interferent
systems for timed and untimed automata.

2



Introduction
Definitions

Results
Conclusion

1 Introduction

2 Definitions
Preliminaries
Non-interference
Control problem

3 Results
SNNI verification problem
SNNI control problem
SNNI control synthesis problem

4 Conclusion

3



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Restriction definition

0 1 2

3 4 5

h1 l1

l1
h2

l2

Figure: B

4



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Restriction definition

0 1 2

3 4 5

h1 l1

l1
h2

l2

(a) Automaton B

0 1 2

3

h1 l1

l1

(b) B\{h2}

4



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Abstraction (hiding) definition

0 1 2

3 4 5

h1 l1

l1
h2

l2

Figure: B

5



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Abstraction (hiding) definition

0 1 2

3 4 5

h1 l1

l1
h2

l2

(a) Automaton B

0 1 2

3 4 5

h1 l1

l1
ε

l2

(b) B/{h2}

5



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Strong Non-deterministic Non-Interference (SNNI) 1/4

1 The systems is defined by an automaton A over an alphabet
Σ divided into two sub-alphabets : Σh the high level actions

and Σl the low level actions

2 A system defined by an automaton A is non-interferent if the
low level user cannot distinguish A/Σh from A\Σh.

Definition (SNNI)

A TA A has the strong non-deterministic non-interference property
(in short “A is SNNI”) if A/Σh ≈L A\Σh, where A1 ≈L A2 mean
that A1 and A2 are language equivalent.

6



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI finite automata example 1/2

0 1 2

3 4 5

h1 l1

l1
h2

l2

Figure: B that is not SNNI

L(B/{h1, h2}) = {l1, l2}

L(B\{h1, h2}) = {l1}

7



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI finite automata example 2/2

0 1 2

3 4

h1 l1

l1
h2

Figure: C that is SNNI

L(C/{h1, h2}) = {l1}

L(C\{h1, h2}) = {l1}

8



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI timed automata example

A0

A1

A2

A3

[x1 ≤ 4]

l , x1 ≥ 2

h, x1 ≥ 1

l

Figure: Timed Automaton A

9



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI timed automata example

A0

A1

A2

A3

l

h

l

Figure: Finite Automaton A′ = untimed(A)

L(A′/{h}) = {l}

L(A′\{h}) = {l}

9



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI timed automata example

A0

A1

A2

A3

[x1 ≤ 4]

l , x1 ≥ 2

h, x1 ≥ 1

l

Figure: Timed Automaton A

ρ = (A0, 0)
1.1
−−→ (A0, 1.1)

h
−→ (A2, 0)

0.5
−−→ (A2, 1.6)

l
−→(A3, 1.6) ∈

Runs(A)

9



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI timed automata example

A0

A1

A2

A3

[x1 ≤ 4]

l , x1 ≥ 2

h, x1 ≥ 1

l

Figure: Timed Automaton A

ρ = (A0, 0)
1.1
−−→ (A0, 1.1)

h
−→ (A2, 0)

0.5
−−→ (A2, 1.6)

l
−→(A3, 1.6) ∈

Runs(A)
(1.1, h).(0.5, l) ∈ L(A)

9



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI timed automata example

A0

A1

A2

A3

[x1 ≤ 4]

l , x1 ≥ 2

h, x1 ≥ 1

l

Figure: Timed Automaton A

ρ = (A0, 0)
1.1
−−→ (A0, 1.1)

h
−→ (A2, 0)

0.5
−−→ (A2, 1.6)

l
−→(A3, 1.6) ∈

Runs(A)
(1.1, h).(0.5, l) ∈ L(A) ⇒ (1.6, l) ∈ L(A/{h})

9



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

SNNI timed automata example

A0

A1

A2

A3

[x1 ≤ 4]

l , x1 ≥ 2

h, x1 ≥ 1

l

Figure: Timed Automaton A

ρ = (A0, 0)
1.1
−−→ (A0, 1.1)

h
−→ (A2, 0)

0.5
−−→ (A2, 1.6)

l
−→(A3, 1.6) ∈

Runs(A)
(1.1, h).(0.5, l) ∈ L(A) ⇒ (1.6, l) ∈ L(A/{h}) ⇒ A is not SNNI

9



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Control problem 1/2

The SNNI Verification Problem (SNNI-VP) for a system S

asks the following: is S SNNI ?

The Control Problem (SNNI-CP) for a system S asks the
following: Is there a controller C s.t. C (S) is SNNI ?

The Controller Synthesis Problem (SNNI-CSP) asks to
compute a witness controller C .

10



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Control problem 2/2

Let Σc ⊆ Σ = Σh ∪ Σl a set of controllable actions, let λ *∈ Σ the
waiting action.

Definition (Controller)

A controller C for A is a partial mapping C : Runs(A) → 2Σc∪{λ}.

After each run ρ ∈ Runs(A), the controller chose a set C (ρ)
of actions that are not disabled.

11



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

Control problem 2/2

Let Σc ⊆ Σ = Σh ∪ Σl a set of controllable actions, let λ *∈ Σ the
waiting action.

Definition (Controller)

A controller C for A is a partial mapping C : Runs(A) → 2Σc∪{λ}.

After each run ρ ∈ Runs(A), the controller chose a set C (ρ)
of actions that are not disabled.

If λ ∈ C (ρ), the system may wait, otherwise, a controllable
action must be done by one of the users.

11



Introduction
Definitions

Results
Conclusion

Preliminaries
Non-interference
Control Problem

1 Introduction

2 Definitions
Preliminaries
Non-interference
Control problem

3 Results
SNNI verification problem
SNNI control problem
SNNI control synthesis problem

4 Conclusion

12



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Verification Problem (SNNI-VP)

Untimed Automata Timed Automata

Deterministic A\Σh PTIME PSPACE-Complete
Non-deterministic A\Σh PSPACE-Complete Undecidable [1]

Table: Results for the SNNI-VP

13



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Control Problem (SNNI-CP) for finite automata 1/2

Theorem

For finite automata, the SNNI-CP is PSPACE-Complete.

14



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Control Problem (SNNI-CP) for finite automata 2/2

For finite automata, we can easily check if SNNI is controllable by
cutting all the controllable actions and checking if the obtained
system is SNNI.

0

123

4 5

l1

h2

l2

h1 l1

Figure: Automaton D

Σc = {l1}

15



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Control Problem (SNNI-CP) for finite automata 2/2

For finite automata, we can easily check if SNNI is controllable by
cutting all the controllable actions and checking if the obtained
system is SNNI.

0 4
h1

Figure: Automaton D\Σc

Σc = {l1}

15



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Control Problem (SNNI-CP) for timed automata

This does not work in the timed case :

0

1

2

3

a, x1 > 1

h, x1 ≥ 5

b

Figure: Timed Automaton E

Σc = {a}

16



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Control Problem (SNNI-CP) for timed automata

This does not work in the timed case :

0

1

2

3

a, x1 > 1

h, x1 ≥ 5

b

(a) Timed Automaton E

0 2

3

h, x1 ≥ 5

b

(b) Timed Automaton E\Σc

Σc = {a}

16



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Control Problem (SNNI-CP) for timed automata

This does not work in the timed case :

0

1

2

3

a, x1 > 1

h, x1 ≥ 5

b

(c) Automaton E

0

1

[x1 ≤ 4]

a, x1 > 1

(d) Timed Automaton C(E)

Σc = {a}

16



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP)

Theorem

If A is a finite automaton, we can compute the most permissive

controller C s.t. C(A) is SNNI.

Theorem

If A is a timed automaton and A\Σh is deterministic, we can

compute the most permissive controller C s.t. C(A) is SNNI.

17



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 1/5

Let D be an automaton. In order to solve the SNNI-CSP, we
calculate iteratively the most permissive controller of safety games
calculated from D and D\Σh.

0

123

4 5

l1

h2

l2

h1 l1

Figure: Timed Automaton D = D0

Σc = {l1, h1}

18



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 2/5

We define D2 as the complete version of D\Σh.

0

1bad

l1

l1, l2

l2

Figure: Automaton D0
2

19



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 3/5

We compute D0 ⊗D0
2, and define a controller C⊗

1 that solves the
safety game.

00

11213bad

40 51

l1

h2

l2

h1 l1

Figure: Automaton D0 ⊗D0
2

Σc = {l1, h1}

20



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 3/5

We compute D0 ⊗D0
2, and define a controller C⊗

1 that solves the
safety game.

00

11213bad

40 51

l1

h2

l2

h1 l1

Figure: Timed Automaton D0
p = D0 ⊗D0

2

Σc = {l1, h1}

20



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 3/5

We compute D0 ⊗D0
2, and define a controller C⊗

1 that solves the
safety game.

00 40 51
h1 l1

Figure: Timed Automaton C⊗

1 (D ⊗D2)

Σc = {l1, h1}

20



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 4/5

We compute C 1 from C⊗
1 and if L(C 1(D0)\Σh) *= L(D0)\Σh), we

iterate process.

0 4 5
h1 l1

Figure: Timed Automaton C 1(D)

21



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 5/5

We reach a fix point C ∗

0 1
h1

Figure: Timed Automaton C∗(D) that is SNNI

22



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for timed
automata

We proved that the same algorithm works for a timed automaton
A if A\Σh is deterministic.

A0

A1

A2

A3

[x1 ≤ 4]

l , x1 ≥ 2

h, x1 ≥ 1

l

Figure: Timed Automaton A

Σc = {l}23



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

SNNI Controller Synthesis Problem (SNNI-CSP) for timed
automata

We proved that the same algorithm works for a timed automaton
A if A\Σh is deterministic.

A0

A1

A2

A3

[x1 ≤ 4]

l , x1 ≥ 2

h, x1 ≥ 1

l , 2 ≤ x1 ≤ 4

Figure: Timed Automaton C∗(A)

23



Introduction
Definitions

Results
Conclusion

SNNI-VP
SNNI-CP
SNNI-CSP

1 Introduction

2 Definitions
Preliminaries
Non-interference
Control problem

3 Results
SNNI verification problem
SNNI control problem
SNNI control synthesis problem

4 Conclusion

24



Introduction
Definitions

Results
Conclusion

Conclusion

A Timed Automaton A Finite Automaton
A\Σh Non-Det. A\Σh Det. A\Σh Non-Det. A\Σh Det.

SNNI-VP undecidable [1] PSPACE-C PSPACE-C PTIME
SNNI-CP undecidable [1] EXPTIME-C PSPACE-C PTIME
SNNI-CSP undecidable [1] EXPTIME-C EXPTIME [2] PSPACE-C

Table: Summary of the Results

25



Introduction
Definitions

Results
Conclusion

Future works

1 Extend the results on other form of non-interference (CSNNI
and BSNNI) for untimed and timed automata.

2 Determine conditions under which a most permissive
controller exists for the BSNNI-CSP and CSNNI-CSP

26



Introduction
Definitions

Results
Conclusion

Thanks

Thank you for your attention

27



Introduction
Definitions

Results
Conclusion

Bibliography

Gardey, G., Mullins, J., Roux, O.H.:
Non-interference control synthesis for security timed automata.

Elec. Notes in Theo. Comp. Science 180(1) (2005) 35–53.
Proceedings of the 3rd International Workshop on Security
Issues in Concurrency (SecCo’05).

Cassez, F., Mullins, J., Roux, O.H.:
Synthesis of non-interferent systems.
In: Proceedings of the 4th Int. Conf. on Mathematical
Methods, Models and Architectures for Computer Network
Security (MMM-ACNS’07). Volume 1 of Communications in
Computer and Inform. Science, Springer (2007) 307–321.

28


	Introduction
	Definitions
	Preliminaries
	Non-interference
	Control problem

	Results
	SNNI verification problem
	SNNI control problem
	SNNI control synthesis problem

	Conclusion

