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Introduction

1 Studies of information flow security properties has been a very
active domain.

2 Information flow analysis defines secrecy as: “high level
information never flows into low level channels”
i.e., non-interference.

3 There are many results on model checking of non-interference
properties.

4 We consider the problem of the synthesis of non-interferent
systems for timed and untimed automata.
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Strong Non-deterministic Non-Interference (SNNI) 1/4

1 The systems is defined by an automaton A over an alphabet
Σ divided into two sub-alphabets : Σh the high level actions

and Σl the low level actions

2 A system defined by an automaton A is non-interferent if the
low level user cannot distinguish A/Σh from A\Σh.

Definition (SNNI)

A TA A has the strong non-deterministic non-interference property
(in short “A is SNNI”) if A/Σh ≈L A\Σh, where A1 ≈L A2 mean
that A1 and A2 are language equivalent.
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SNNI finite automata example 1/2
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L(B/{h1, h2}) = {l1, l2}

L(B\{h1, h2}) = {l1}
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SNNI finite automata example 2/2
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L(A′/{h}) = {l}

L(A′\{h}) = {l}
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−→(A3, 1.6) ∈

Runs(A)
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ρ = (A0, 0)
1.1
−−→ (A0, 1.1)

h
−→ (A2, 0)

0.5
−−→ (A2, 1.6)

l
−→(A3, 1.6) ∈

Runs(A)
(1.1, h).(0.5, l) ∈ L(A)
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ρ = (A0, 0)
1.1
−−→ (A0, 1.1)

h
−→ (A2, 0)

0.5
−−→ (A2, 1.6)

l
−→(A3, 1.6) ∈

Runs(A)
(1.1, h).(0.5, l) ∈ L(A) ⇒ (1.6, l) ∈ L(A/{h}) ⇒ A is not SNNI
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Control problem 1/2

The SNNI Verification Problem (SNNI-VP) for a system S

asks the following: is S SNNI ?

The Control Problem (SNNI-CP) for a system S asks the
following: Is there a controller C s.t. C (S) is SNNI ?

The Controller Synthesis Problem (SNNI-CSP) asks to
compute a witness controller C .
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Control problem 2/2

Let Σc ⊆ Σ = Σh ∪ Σl a set of controllable actions, let λ *∈ Σ the
waiting action.

Definition (Controller)

A controller C for A is a partial mapping C : Runs(A) → 2Σc∪{λ}.

After each run ρ ∈ Runs(A), the controller chose a set C (ρ)
of actions that are not disabled.
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Control problem 2/2

Let Σc ⊆ Σ = Σh ∪ Σl a set of controllable actions, let λ *∈ Σ the
waiting action.

Definition (Controller)

A controller C for A is a partial mapping C : Runs(A) → 2Σc∪{λ}.

After each run ρ ∈ Runs(A), the controller chose a set C (ρ)
of actions that are not disabled.

If λ ∈ C (ρ), the system may wait, otherwise, a controllable
action must be done by one of the users.
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SNNI Verification Problem (SNNI-VP)

Untimed Automata Timed Automata

Deterministic A\Σh PTIME PSPACE-Complete
Non-deterministic A\Σh PSPACE-Complete Undecidable [1]

Table: Results for the SNNI-VP
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SNNI Control Problem (SNNI-CP) for finite automata 1/2

Theorem

For finite automata, the SNNI-CP is PSPACE-Complete.
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SNNI Control Problem (SNNI-CP) for finite automata 2/2

For finite automata, we can easily check if SNNI is controllable by
cutting all the controllable actions and checking if the obtained
system is SNNI.
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Figure: Automaton D

Σc = {l1}
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SNNI Control Problem (SNNI-CP) for finite automata 2/2

For finite automata, we can easily check if SNNI is controllable by
cutting all the controllable actions and checking if the obtained
system is SNNI.
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Figure: Automaton D\Σc

Σc = {l1}
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SNNI Control Problem (SNNI-CP) for timed automata

This does not work in the timed case :
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Figure: Timed Automaton E

Σc = {a}
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SNNI Control Problem (SNNI-CP) for timed automata

This does not work in the timed case :
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SNNI Controller Synthesis Problem (SNNI-CSP)

Theorem

If A is a finite automaton, we can compute the most permissive

controller C s.t. C(A) is SNNI.

Theorem

If A is a timed automaton and A\Σh is deterministic, we can

compute the most permissive controller C s.t. C(A) is SNNI.
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SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 1/5

Let D be an automaton. In order to solve the SNNI-CSP, we
calculate iteratively the most permissive controller of safety games
calculated from D and D\Σh.
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Figure: Timed Automaton D = D0

Σc = {l1, h1}
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SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 2/5

We define D2 as the complete version of D\Σh.
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Figure: Automaton D0
2
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SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 3/5

We compute D0 ⊗D0
2, and define a controller C⊗

1 that solves the
safety game.
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Figure: Automaton D0 ⊗D0
2

Σc = {l1, h1}
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SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 3/5

We compute D0 ⊗D0
2, and define a controller C⊗

1 that solves the
safety game.
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Figure: Timed Automaton C⊗

1 (D ⊗D2)

Σc = {l1, h1}
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SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 4/5

We compute C 1 from C⊗
1 and if L(C 1(D0)\Σh) *= L(D0)\Σh), we

iterate process.
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Figure: Timed Automaton C 1(D)
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SNNI Controller Synthesis Problem (SNNI-CSP) for finite
automata 5/5

We reach a fix point C ∗

0 1
h1

Figure: Timed Automaton C∗(D) that is SNNI
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SNNI Controller Synthesis Problem (SNNI-CSP) for timed
automata

We proved that the same algorithm works for a timed automaton
A if A\Σh is deterministic.
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Figure: Timed Automaton A

Σc = {l}23
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We proved that the same algorithm works for a timed automaton
A if A\Σh is deterministic.
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Figure: Timed Automaton C∗(A)
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Conclusion

A Timed Automaton A Finite Automaton
A\Σh Non-Det. A\Σh Det. A\Σh Non-Det. A\Σh Det.

SNNI-VP undecidable [1] PSPACE-C PSPACE-C PTIME
SNNI-CP undecidable [1] EXPTIME-C PSPACE-C PTIME
SNNI-CSP undecidable [1] EXPTIME-C EXPTIME [2] PSPACE-C

Table: Summary of the Results
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Future works

1 Extend the results on other form of non-interference (CSNNI
and BSNNI) for untimed and timed automata.

2 Determine conditions under which a most permissive
controller exists for the BSNNI-CSP and CSNNI-CSP
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Thanks

Thank you for your attention
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