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Context
Timed Automata

`0 `1

[y = 0]

`2

`3

Goal

a2

a3

x ≥ 2; a4x ≤ 2 ; a1

y := 0

x ≥ 2 ; a5

¥ Timed Automata + Reachability [AD94]
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Context
Timed Game Automata

`0 `1

[y = 0]

`2

`3

Goal

u

u

x ≥ 2; c2x ≤ 2 ; c1

y := 0

x ≥ 2 ; c2

¥ Timed Automata + Reachability [AD94]

¥ Timed Game Automata: Control [MPS95, AMPS98]
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Context
As soon As Possible in Timed Automata

`0 `1

[y = 0]

`2

`3

Goal

u

u

x ≥ 2; a41 ≤ x ≤ 2 ; a1

y := 0

x ≥ 2 ; a5

¥ Timed Automata + Reachability [AD94]

¥ Timed Game Automata: Control [MPS95, AMPS98]

¥ Time Optimal Control (Reachability) [AM99]
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Context
Reachability in Priced Timed Automata

`0 `1

[y = 0]

`2

`3

Goal

a2

a3

x ≥ 2; a4

cost = 1x ≤ 2 ; a1

y := 0

x ≥ 2 ; a5

cost = 7

cost(`2) = 10

cost(`0) = 5

cost(`3) = 1

¥ Timed Automata + Reachability [AD94]

¥ Timed Game Automata: Control [MPS95, AMPS98]

¥ Time Optimal Control (Reachability) [AM99]

¥ Priced (or Weighted) Timed Automata [LBB+01, ALTP01]
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Context
Priced Timed Game Automata

`0 `1

[y = 0]

`2

`3

Goal

u

u

x ≥ 2; c2

cost = 1x ≤ 2 ; c1

y := 0

x ≥ 2 ; c2

cost = 7

cost(`2) = 10

cost(`0) = 5

cost(`3) = 1

¥ Timed Automata + Reachability [AD94]

¥ Timed Game Automata: Control [MPS95, AMPS98]

¥ Time Optimal Control (Reachability) [AM99]

¥ Priced (or Weighted) Timed Automata [LBB+01, ALTP01]
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A Simple Example

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

¥ Model = Game = Controller vs. Environment

¥ What is the best cost whatever the environment does ?
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A Simple Example

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

¥ What is the best cost whatever the environment does ?

inf
0≤t≤2

max{5t + 10(2 − t) + 1, 5t + (2 − t) + 7}
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A Simple Example

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

¥ What is the best cost whatever the environment does ?

inf
0≤t≤2

max{5t+10(2−t)+1, 5t+(2−t)+7} at t =
4

3
inf = 14

1

3
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A Simple Example

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

¥ What is the best cost whatever the environment does ?
=⇒ 141

3 at t = 4
3
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A Simple Example

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

¥ What is the best cost whatever the environment does ?
=⇒ 141

3 at t = 4
3

¥ Is there a strategy to achieve this optimal cost ?
Yes: because see later
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A Simple Example

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

¥ What is the best cost whatever the environment does ?
=⇒ 141

3 at t = 4
3

¥ Is there a strategy to achieve this optimal cost ?
Yes: because see later

¥ Can we compute such a strategy ?
Yes: in `0, x < 4

3 wait then do c1; in `2,3 do c2 when x ≥ 2
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Optimal Control Problems

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

¥ Can we find algorithms for these problems on PTGA:
1. Compute the optimal cost
2. Decide if there is an optimal strategy
3. Compute an optimal strategy (if ∃)

Synthesis of Optimal Strategies Using HYTECH page 4-g/35



c©IRCCyN/CNRS

Related Work

¥ La Torre et al. [LTMM02] (IFIP TCS’02)
• Acyclic Priced Timed Game Automata
• Recursive definition of optimal cost [=⇒ La Torre et al. Def.]

• Computation of the infimum of the optimal cost
OptCost = 2 could be 2 or 2 + ε

• No strategy synthesis
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Related Work

¥ La Torre et al. [LTMM02] (IFIP TCS’02)
Acyclic Games, infimum, no strategy synthesis

¥ Alur et al. [ABM04] (ICALP’04)

• bounded optimality: optimal cost within k steps
• complexity bound: exponential in k and #states of the

PTGA
• no bound for the more general optimal problem
• Computation of the infimum of the optimal cost
• no strategy synthesis
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Related Work

¥ La Torre et al. [LTMM02] (IFIP TCS’02)
Acyclic Games, infimum, no strategy synthesis

¥ Alur et al. [ABM04] (ICALP’04)
bounded optimality, complexity bound, infimum, no
strategy synthesis

¥ Our work [BCFL04]:
• Run-based definition of optimal cost
• We can decide whether ∃ an optimal strategy
• We can synthesize an optimal strategy (if ∃)
• We can prove structural properties of optimal strategies
• Applies to Linear Hybrid Game (Automata)
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Contents

1. Context & Related Work

2. Priced Timed Game Automata

3. From Optimal Control to Control
¥ Computing The Optimal Cost
¥ Computing Optimal Strategies

4. Implementation using HYTECH
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Priced Timed Game Automata

A Timed Game Automaton (PTGA) G is a tuple (L, `0, Act, X,

E, inv, cost) where:

¥ L is a finite set of locations;

¥ `0 ∈ L is the initial location;

¥ Act = Actc ∪ Actu is the set of actions (partitioned into
controllable and uncontrollable actions);

¥ X is a finite set of real-valued clocks;

¥ E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions;

¥ inv : L −→ B(X) associates to each location its invariant;
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Priced Timed Game Automata

A Priced Timed Game Automaton (PTGA) G is a tuple
(L, `0, Act, X, E, inv, cost) where:

¥ L is a finite set of locations;

¥ E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions;

¥ Priced Version: cost : L ∪ E −→ N associates to each
location a cost rate and to each discrete transition a cost
value. [=⇒ Example]
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Priced Timed Game Automata

A Priced Timed Game Automaton (PTGA) G is a tuple
(L, `0, Act, X, E, inv, cost) where:

¥ L is a finite set of locations;

¥ E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions;

¥ Priced Version: cost : L ∪ E −→ N associates to each
location a cost rate and to each discrete transition a cost
value. [=⇒ Example]

¥ we assume that PTGA are deterministic w.r.t. controllable
actions (+ time-deterministic)

¥ A reachability PTGA (RPTGA) = PTGA with distinguished
set of states Goal ⊆ L.
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Configurations, Runs, Costs

¥ configuration: (`, v) in L × R
X
≥0

¥ step: ti = (`i, vi)
αi−→ (`i+1, vi+1)

{

αi ∈ R>0 =⇒ `i+1 = `i ∧ vi+1 = vi + αi

αi ∈ Act =⇒ ∃(`i, g, αi, Y, `i+1) ∈ E ∧ vi |= g ∧ vi+1 = vi[Y ]

¥ run ρ = t0t1t2 · · · tn−1 · · · finite or infinite sequence of ti

¥ cost of a transition:
{

Cost(ti) = αi.cost(`i) if αi ∈ R>0

Cost(ti) = cost((`i, g, αi, Y, `i+1)) if αi ∈ Act

¥ if ρ finite Cost(ρ) =
∑

0≤i≤n−1 Cost(ti)

¥ winning run if States(ρ) ∩ Goal 6= ∅
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Strategies

¥ strategy f over G = partial function from Runs(G) to
Actc ∪ {λ}.

¥ Outcome((`, v), f) (outcomes) of f from configuration (`, v)
= a subset of Runs((`, v), G) [=⇒ Formal Definition of Outcome]
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Strategies

`0 `1

[y = 0]

`2

`3

Goal

x ≤ 2; c1

y := 0
u

u

x ≥ 2; c2

x ≥ 2; c2

Example:



















f(`0, x < 4
3) = λ f(`0,

4
3 ≤ x ≤ 2) = c1

f(`1,−) undefined
f(`2, x < 2) = λ f(`2, x ≥ 2) = c2

f(`3, x < 2) = λ f(`3, x ≥ 2) = c2
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Strategies

¥ strategy f over G = partial function from Runs(G) to
Actc ∪ {λ}.

¥ Outcome((`, v), f) = outcomes of f from configuration (`, v);
[=⇒ Formal Definition of Outcome]

¥ a strategy f is winning from (`, v) if

Outcome((`, v), f) ⊆ WinRuns((`, v), G)

¥ The cost of f from (`, v) is

Cost((`, v), f) = sup{Cost(ρ) | ρ ∈ Outcome((`, v), f)}
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(Formal) Optimal Control Problems

Optimal Cost Computation Problem: compute the optimal cost
one can expect from s0 = (`0,~0)

OptCost(s0, G) = inf{Cost(s0, f) | f ∈ WinStrat(s0, G)}

Optimal Strategy Existence Problem: determine whether the
optimal cost can actually be reached

∃?f ∈ WinStrat(s0, G) s.t. Cost(s0, f) = OptCost(s0, G)

Optimal Strategy Synthesis Problem: in case an optimal strategy
exists, compute a witness.

Synthesis of Optimal Strategies Using HYTECH page 10-a/35



c©IRCCyN/CNRS

(Formal) Optimal Control Problems

Optimal Cost Computation Problem: compute the optimal cost
one can expect from s0 = (`0,~0)

OptCost(s0, G) = inf{Cost(s0, f) | f ∈ WinStrat(s0, G)}

Optimal Strategy Existence Problem: determine whether the
optimal cost can actually be reached

∃?f ∈ WinStrat(s0, G) s.t. Cost(s0, f) = OptCost(s0, G)

Optimal Strategy Synthesis Problem: in case an optimal strategy
exists, compute a witness.

Relation to La Torre et al. work [LTMM02] (acyclic game):

Theorem 1: OptCost(s0, G) = O(s0) [=⇒ Definition of O(q)]

Synthesis of Optimal Strategies Using HYTECH page 10-b/35



c©IRCCyN/CNRS

Example: No Optimal Strategy

`0

cost(`0) = 1

`1

cost(`1) = 2

Goal
x < 1; c x = 1; c

x < 1 x ≤ 1

¥ define fε with 0 < ε < 1 by:
in `0: f(`0, x < 1 − ε) = λ, f(`0, 1 − ε ≤ x < 1) = c

in `1: f(`1, x ≤ 1) = c

Cost(fε) = 1 + ε.

¥ there are RPTGA for which no optimal strategy exists

¥ In this case there is a family of strategies fε such that

|Cost((`0,~0), fε) − OptCost((`0,~0), G)| < ε

¥ new problem: given ε, compute such an fε strategy.

Synthesis of Optimal Strategies Using HYTECH page 11/35



c©IRCCyN/CNRS

Contents

1. Context & Related Work

2. Priced Timed Game Automata

3. From Optimal Control to Control

¥ Computing The Optimal Cost
¥ Computing Optimal Strategies

4. Implementation using HYTECH
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From Optimal Control to Control

`0 `1

[y = 0]

`2

Goal

`3

x ≤ 2; c1

y := 0
u

u
cost(`2) = 10

cost(`0) = 5

cost(`3) = 1

cost(`2) = 10

x ≥ 2; c2

cost = 1

x ≥ 2; c2

cost = 7

A RPTGA A
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From Optimal Control to Control

`0 `1

[y = 0]

`2

Goal

`3

x ≤ 2; c1

y := 0
u

u
dCost

dt
= −5

dCost

dt
= −10

dCost

dt
= −1

x ≥ 2; c2

Cost′ = Cost − 1

x ≥ 2; c2

Cost′ = Cost − 7

¥ A Linear Hybrid Game Automaton H

¥ Reachability Game for H with goal = Goal ∧ Cost ≥ 0

Optimal Cost for RPTGA ⇐⇒ Reachability Control on LHA
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From Optimal Control to Control

`0 `1

[y = 0]

`2

Goal

`3

x ≤ 2; c1

y := 0
u

u
dCost

dt
= −5

dCost

dt
= −10

dCost

dt
= −1

x ≥ 2; c2

Cost′ = Cost − 1

x ≥ 2; c2

Cost′ = Cost − 7

Assume ∃ semi-algorithm CompWin s.t. WH = CompWin(H)
and WH = largest set of winning states
Theorem 2: If CompWin terminates for H then:

¥ it terminates for A and WA
def
= CompWin(A) = ∃Cost.WH

¥ (q, c) ∈ WH ⇐⇒ ∃f ∈ WinStrat(q,WA) with Cost(q, f) ≤ c
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Known Results for Reachability Games

¥ Controllable Predecessors [MPS95, DAHM01]

π(X) = Predt

(

X ∪ cPred(X), uPred(X)
)

[=⇒ Formal Def. of π]

¥ W (largest) set of winning states, goal = X0

W = µX.X0 ∪ π(X)
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Known Results for Reachability Games

¥ Controllable Predecessors [MPS95, DAHM01]

π(X) = Predt

(

X ∪ cPred(X), uPred(X)
)

[=⇒ Formal Def. of π]

¥ W (largest) set of winning states, goal = X0

W = µX.X0 ∪ π(X)

¥ π preserves Cost upward-closed sets

π(R ∧ Cost Â h) = R′ ∧ Cost Â′ h′

¥ semi-algorithm CompWin (preserves upwards closure)

¥ result of CompWin of the form ∪n∈N((`n, Rn ∧ Cost Ân hn))
where hn is a piece-wise affine function
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Contents

1. Context & Related Work

2. Priced Timed Game Automata

3. From Optimal Control to Control

¥ Computing The Optimal Cost

¥ Computing Optimal Strategies

4. Implementation using HYTECH
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Computing the Optimal Cost for PTGA

1. ∃ semi-algorithm CompWin for LHG

2. W = CompWin(H, Goal ∧ Cost ≥ 0)

3. W0 = W ∩ (`0,~0)

4. projection on Cost: ∃(All \ {Cost}).W0

¥ if Cost ≥ k, OptCost = k and ∃ an optimal strategy
¥ if Cost > k, OptCost = k and ∃ a family of sub-optimal

strategies

Semi-algorithm for Priced Timed Hybrid Automata

Termination ???
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Termination for RPTGA

¥ A a RPTGA s.t. non-zeno cost: ∃κ s.t. every cycle in the
region automaton has cost at least κ

¥ A is bounded i.e. all clocks in A are bounded

Theorem 4 CompWin terminates for H, where H is the LHG
associated with A [=⇒ Sketch of the Proof]
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Termination for RPTGA

¥ A a RPTGA s.t. non-zeno cost: ∃κ s.t. every cycle in the
region automaton has cost at least κ

¥ A is bounded i.e. all clocks in A are bounded

Theorem 4 CompWin terminates for H, where H is the LHG
associated with A [=⇒ Sketch of the Proof]

¥ Non zeno cost really needed ?

¥ Complexity ???
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Contents

1. Context & Related Work

2. Priced Timed Game Automata

3. From Optimal Control to Control
¥ Computing The Optimal Cost

¥ Computing Optimal Strategies

4. Implementation using HYTECH
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Optimal Strategy Synthesis
¥ S algorithm for synthetizing strategies for reachability

timed games ? see [BCFL04] . . .

¥ use S on the LHG H: strategies are cost-dependent

Theorem 5 If S terminates and ∃ an optimal strategy we can
compute a witness (cost-dependent)
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Optimal Strategy Synthesis
¥ S algorithm for synthetizing strategies for reachability

timed games ? see [BCFL04] . . .

¥ use S on the LHG H: strategies are cost-dependent

Theorem 5 If S terminates and ∃ an optimal strategy we can
compute a witness (cost-dependent)

¥ assume a RPTGA A is bounded, non zeno cost

¥ W is the set of winning states in the LHG H

¥ W = ∪n∈N((`n, Rn ∧ Cost ≥ hn)) (hn piece-wise lin. aff.)

Theorem 6 [State-based Strategies] Let WA = CompWin(A).

∃f state-based s.t. ∀(`, v) ∈ WA Cost((`, v), f) = OptCost(`, v)
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Synthesis of Cost-Dependent Strategies
¥ for LHG winning states = fixed point of π operator

¥ W0 = Goal and Wi+1 = Predt

(

Wi ∪ cPred(Wi), uPred(Wi)
)
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Synthesis of Cost-Dependent Strategies
¥ for LHG winning states = fixed point of π operator

¥ W0 = Goal and Wi+1 = Predt

(

Wi ∪ cPred(Wi), uPred(Wi)
)

¥ synthesis of cost-dependent (state-based on LHG)
strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi
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Synthesis of Cost-Dependent Strategies
¥ for LHG winning states = fixed point of π operator

¥ W0 = Goal and Wi+1 = Predt

(

Wi ∪ cPred(Wi), uPred(Wi)
)

¥ synthesis of cost-dependent (state-based on LHG)
strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• on Wi define fi+1 = fi
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Synthesis of Cost-Dependent Strategies
¥ for LHG winning states = fixed point of π operator

¥ W0 = Goal and Wi+1 = Predt

(

Wi ∪ cPred(Wi), uPred(Wi)
)

¥ synthesis of cost-dependent (state-based on LHG)
strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• on Wi define fi+1 = fi

• on Yc = cPred(Wi) ∩ Y define fi+1 = {some c action}
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Synthesis of Cost-Dependent Strategies
¥ for LHG winning states = fixed point of π operator

¥ W0 = Goal and Wi+1 = Predt

(

Wi ∪ cPred(Wi), uPred(Wi)
)

¥ synthesis of cost-dependent (state-based on LHG)
strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• on Wi define fi+1 = fi

• on Yc = cPred(Wi) ∩ Y define fi+1 = {some c action}
• on Yt = Y \ Yc define fi+1 = {λ}
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Synthesis of Cost-Dependent Strategies
¥ synthesis of cost-dependent (state-based on LHG)

strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• on Wi define fi+1 = fi

• on Yc = cPred(Wi) ∩ Y define fi+1 = {some c action}
• on Yt = Y \ Yc define fi+1 = {λ}

¥ Problem ?

`0 Goal
0 < x < 1; c1
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Synthesis of Cost-Dependent Strategies
¥ synthesis of cost-dependent (state-based on LHG)

strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• on Wi define fi+1 = fi

• on Yc = cPred(Wi) ∩ Y define fi+1 = {some c action}
• on Yt = Y \ Yc define fi+1 = {λ}

¥ Problem ?

`0 Goal
0 < x < 1; c1

• W1 = {Goal} ∪ {(`0, 0 ≤ x < 1)} and Y = (`0, 0 ≤ x < 1)

• f1(`0, 0 < x < 1) = {c1} and f1(`0, x = 0) = {λ}

• blocking strategy
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Synthesis of Cost-Dependent Strategies
¥ synthesis of cost-dependent (state-based on LHG)

strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• on Wi define fi+1 = fi

• on Yc = cPred(Wi) ∩ Y define fi+1 = {some c action}
• on Yt = Y \ Yc define fi+1 = {λ}

¥ Problem ?

`0 Goal
0 < x < 1; c1

• Choose ε > 0

• f1(`0, ε ≤ x < 1) = {c1} and f1(`0, 0 ≤ x < ε) = {λ}

• new winning, state-based strategy
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Synthesis of Cost-Dependent Strategies
¥ synthesis of cost-dependent (state-based on LHG)

strategy:
• assume fi is a winning, state-based strategy on Wi

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• on Wi define fi+1 = fi

• on Yc = cPred(Wi) ∩ Y define fi+1 = {some c action}
• on Yt = Y \ Yc define fi+1 = {λ}

¥ Computation of a winning state-based strategy:
• if guards of u actions are strict and guards on c actions

are large then fi+1 is winning (Yt is future-open)
• otherwise fi+1 can be altered to be made winning
• consequence: if π∗(W0) = Wk for some k ∈ N there is a

winning state-based (cost-dependent) strategy
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Optimal Cost-Independent Strategy

¥ compute a cost-dependent winning strategy f ;
f(q, cost) ∈ Actc ∪ {λ}

¥ Optimal cost-independent winning strategy f∗:
• take the best action in each state: f∗(q) = e if

1. e = f(q, cost)
2. ∀e′ 6= e, f(q, cost′) = e′ =⇒ cost′ ≥ cost

¥ result: under strictness assumptions, we can build a
uniform optimal strategy i.e. optimal in each state
(non blocking) [=⇒ Algorithm & HYTECH ]
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No Optimal Cost-Independent Strategy

`0

cost(`0) = 2

x < 1

`1

cost(`1) = 1

Goal
x < 1;u

y := x := 0

y > 0; c2

¥ Optimal cost is 2

¥ An optimal winning cost-dependent strategy f :
f(`1,−, cost < 2) = λ and f(`1,−, cost = 2) = c2

assume u taken at time (1 − δ0):

Cost(f, (`0, 0)) = 2 · (1 − δ0) + δ1

and according to f we have δ1 = 2 · δ2
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No Optimal Cost-Independent Strategy

`0

cost(`0) = 2

x < 1

`1

cost(`1) = 1

Goal
x < 1;u

y := x := 0

y > 0; c2

¥ Optimal cost is 2

¥ assume ∃ f∗ cost-independent: f∗ must wait in `1 at least ε

assume u taken at time (1 − δ):

Cost(f∗, (`0, 0)) = 2 · (1 − δ) + ε

Take δ = ε
4 : Cost(f∗, (`0, 0)) = 2 + ε

2 and OptCost(f∗) = 2 + ε
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Contents

1. Context & Related Work

2. Priced Timed Game Automata

3. From Optimal Control to Control
¥ Computing The Optimal Cost
¥ Computing Optimal Strategies

4. Implementation using HYTECH
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Experiment

¥ computation of optimal cost and optimal strategies (if ∃)
implemented in HYTECH (Demo ?)

¥ a cyclic example: [=⇒ See the strategy]

Antenna 1

lowx

cost = 1

highx

cost = 10

Goalx

jamx?; x := 0

x ≥ 5; y := 0
x ≥ 10;
cost = 7

jamx?;
x := 0

Antenna 2

lowy

cost = 2

highy

cost = 20

Goaly

jamy?; y := 0

y ≥ 2; x := 0
y ≥ 10;
cost = 1

jamy?;
y := 0

Jammer

X Y

x > 6; jamy!

y > 6; jamx!

x > 6;

jamx!

y > 6;

jamy!

Figure 1: Mobile Phone Example.
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Optimal Strategy for the Mobile Phone

Optimal cost is 109
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Conclusion & Future Work
Current State of Our Work

¥ Semi-algorithm for computing the optimal cost for LHG

¥ in case it terminates:
• decide if ∃ optimal strategy
• compute an optimal strategy

¥ Implementation in HYTECH

Open Problems

¥ Optimal Control – Decidability issues (non zeno cost)

¥ maximal class for which CompWin terminates

Future Work

¥ compute fε strategies

¥ safety games . . .
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Recursive Definition of Optimal Cost

Let G be a RPTG. Let O be the function from Q to R≥0 ∪ {+∞} that is the
least fixed point of the following functional:

O(q)? q
t,p
−−→ q′ max






















































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Recursive Definition of Optimal Cost

Let G be a RPTG. Let O be the function from Q to R≥0 ∪ {+∞} that is the
least fixed point of the following functional:

O(q)? q
t,p
−−→ q′ max























































min





























min

q′
c,p′

−−→q′′

c∈Actc

p + p′ + O(q′′)















, p + O(q′)















¥ Controllable actions in q′
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Recursive Definition of Optimal Cost

Let G be a RPTG. Let O be the function from Q to R≥0 ∪ {+∞} that is the
least fixed point of the following functional:

O(q)? q
t,p
−−→ q′ max























































min





























min

q′
c,p′

−−→q′′

c∈Actc

p + p′ + O(q′′)















, p + O(q′)















sup

q
t′,p′

−−−→q′′

t′≤t

max

q′′
u,p′′

−−−→q′′′

u∈Actu

p′ + p′′ + O(q′′′)

¥ Controllable actions in q′

¥ Uncontrollable actions before q′
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Recursive Definition of Optimal Cost

Let G be a RPTG. Let O be the function from Q to R≥0 ∪ {+∞} that is the
least fixed point of the following functional:

O(q) = inf

q
t,p

−−→q′

t∈R≥0

max























































min





























min

q′
c,p′

−−→q′′

c∈Actc

p + p′ + O(q′′)















, p + O(q′)















sup

q
t′,p′

−−−→q′′

t′≤t

max

q′′
u,p′′

−−−→q′′′

u∈Actu

p′ + p′′ + O(q′′′)

¥ Controllable actions in q′

¥ Uncontrollable actions before q′

¥ Minimize over t
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Outcome
Let G = (L, `0, Act, X, E, inv, cost) be a (R)PTGA and f a strategy over G.

The outcome Outcome((`, v), f) of f from configuration (`, v) in G is the
subset of Runs((`, v), G) defined inductively by:

¥ (`, v) ∈ Outcome((`, v), f),

¥ if ρ ∈ Outcome((`, v), f) then ρ′ = ρ
e

−−→ (`′, v′) ∈ Outcome((`, v), f) if
ρ′ ∈ Runs((`, v), G) and one of the following three conditions hold:

1. e ∈ Actu,

2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e,∃(`′′, v′′) ∈ (L × R
X
≥0

) s.t. last(ρ)
e′

−−→

(`′′, v′′) ∧ f(ρ
e′

−−→ (`′′, v′′)) = λ.

¥ an infinite run ρ is in ∈ Outcome((`, v), f) if all the finite prefixes of ρ are in
Outcome((`, v), f). [=⇒ Back to Strategies]
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A Tricky Example

`0

cost(`0) = 1

x ≤ 1

`1

cost(`1) = 2

x ≤ 1

Goal

y > 0; u ; y := 0

y > 0; c ; y := 0

x = 1; c
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A Tricky Example

`0

cost(`0) = 1

x ≤ 1

`1

cost(`1) = 2

x ≤ 1

Goal

y > 0; u ; y := 0

y > 0; c ; y := 0

x = 1; c

¥ what is the optimal cost?

¥ Is there an optimal strategy?
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A Tricky Example

`0

cost(`0) = 1

x ≤ 1

`1

cost(`1) = 2

x ≤ 1

Goal

y > 0; u ; y := 0

y > 0; c ; y := 0

x = 1; c

¥ what is the optimal cost?

¥ Is there an optimal strategy?

¥ . . . assume you start with 2 . . . start with less than 2 (2 − ε)
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π Operator
¥ (Un)Controllable Predecessors

Preda(X) = {q ∈ Q | q
a

−−→ q′, q′ ∈ X}

cPred(X) =
⋃

c∈Actc
Predc(X) uPred(X) =

⋃

u∈Actu
Predu(X)

¥ Safe Time Predecessors Predt(X,Y )

= {q ∈ Q | ∃δ ∈ R≥0 | q
δ

−→ q′, q′ ∈ X ∧ Post[0,δ](q) ⊆ Y }

Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] | q
t

−→ q′}

¥ π Operator (uncontrollable actions “cannot win”):

π(X) = Predt

(

X ∪ cPred(X), uPred(X)
)
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π Operator
¥ (Un)Controllable Predecessors

Preda(X) = {q ∈ Q | q
a

−−→ q′, q′ ∈ X}

cPred(X) =
⋃

c∈Actc
Predc(X) uPred(X) =

⋃

u∈Actu
Predu(X)

¥ Safe Time Predecessors Predt(X,Y )

= {q ∈ Q | ∃δ ∈ R≥0 | q
δ

−→ q′, q′ ∈ X ∧ Post[0,δ](q) ⊆ Y }

Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] | q
t

−→ q′}

¥ π′: uncontrollable actions sometimes can win:

π′(X) = π(X) ∪ Predt

(

uPred(X) ∩ STOP , uPred(X)
)
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π Operator
¥ (Un)Controllable Predecessors

Preda(X) = {q ∈ Q | q
a

−−→ q′, q′ ∈ X}

cPred(X) =
⋃

c∈Actc
Predc(X) uPred(X) =

⋃

u∈Actu
Predu(X)

¥ Safe Time Predecessors Predt(X,Y )

= {q ∈ Q | ∃δ ∈ R≥0 | q
δ

−→ q′, q′ ∈ X ∧ Post[0,δ](q) ⊆ Y }

Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] | q
t

−→ q′}

¥ π′′: uncontrollable actions bound to happen win:

π′′(X) = π(X)∪Predt

(

Inv ∩ Predt(uPred(X) ∩ Inv), uPred(X)
)
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Termination Criterion for RPTGA

¥ R is a (bounded) region of the region automaton (RA)

¥ every cycle in the RA costs at least κ

m1
`,R

M1
`,R

cost ≥ f1
`,R

=↑f1
`,R

κ

κ

κ

κ

κ

κ

cost

R
[=⇒ Back to Termination]

Synthesis of Optimal Strategies Using HYTECH page 33-a/35



c©IRCCyN/CNRS

Termination Criterion for RPTGA

¥ R is a (bounded) region of the region automaton (RA)

¥ every cycle in the RA costs at least κ

m1
`,R

M1
`,R

cost ≥ f1
`,R

=↑f1
`,R

κ

f2
`,R

m2
`,R

κ

κ

κ

κ

κ

cost

R
[=⇒ Back to Termination]
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Termination Criterion for RPTGA

¥ R is a (bounded) region of the region automaton (RA)

¥ every cycle in the RA costs at least κ

m1
`,R

M1
`,R

cost ≥ f1
`,R

=↑f1
`,R

κ

f2
`,R

m2
`,R

κ

κ

κ

κ

κ
m7

`,R

↑f7
`,R

cost

R
[=⇒ Back to Termination]

Synthesis of Optimal Strategies Using HYTECH page 33-c/35



c©IRCCyN/CNRS

Optimal Cost-Independent Strategy

`0 (5) `1

[y = 0]

`2 (10)

`3 (1)
Goal

x ≤ 2; c1; y := 0 u

u

x ≥ 2; c2 ; (1)

x ≥ 2; c2 ; (7)
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Optimal Cost-Independent Strategy

4
3

141
3

7

x

cost

`0 (5) `1

[y = 0]

`2 (10)

`3 (1)
Goal

x ≤ 2; c1; y := 0 u

u

x ≥ 2; c2 ; (1)

x ≥ 2; c2 ; (7)
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Optimal Cost-Independent Strategy

4
3

141
3

7

x

cost

W
[λ]
4

`0 (5) `1

[y = 0]

`2 (10)

`3 (1)
Goal

x ≤ 2; c1; y := 0 u

u

x ≥ 2; c2 ; (1)

x ≥ 2; c2 ; (7)
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Optimal Cost-Independent Strategy

4
3

141
3

7

x

cost

W
[λ]
4 W

[c1]
4

`0 (5) `1

[y = 0]

`2 (10)

`3 (1)
Goal

x ≤ 2; c1; y := 0 u

u

x ≥ 2; c2 ; (1)

x ≥ 2; c2 ; (7)
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Optimal Cost-Independent Strategy

4
3

141
3

7

x

cost

λ

c1
•

`0 (5) `1

[y = 0]

`2 (10)

`3 (1)
Goal

x ≤ 2; c1; y := 0 u

u

x ≥ 2; c2 ; (1)

x ≥ 2; c2 ; (7)
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Optimal Cost-Independent Strategy

¥ tagged sets: keep information how to win on Wi+1

• compute Wi+1 = π(Wi) and let Y = Wi+1 \ Wi

• W
[c]
i+1 can reach Wi doing a c

• W
[λ]
i+1 can reach Wi or cPred(Wi) by time-elapsing

¥ optimal state-based strategy:

• on W
[c]
i+1 ≤ W

[λ]
i+1 do c

• on W
[λ]
i+1 < W

[c]
i+1 do λ

Synthesis of Optimal Strategies Using HYTECH page 34-f/35



c©IRCCyN/CNRS

How-To Cost-Independent Strategy

`0

cost(`0) = 2

`1

cost(`1) = 1

`2

cost(`2) = 3

Goal

x < 1;u
y := 0

x < 1;u

y > 0; c1

x = 1; c2

¥ Optimal cost is 3
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How-To Cost-Independent Strategy

`0

cost(`0) = 2

`1

cost(`1) = 1

`2

cost(`2) = 3

Goal

x < 1;u
y := 0

x < 1;u

y > 0; c1

x = 1; c2

¥ Optimal cost is 3

¥ Optimal move in (`1, y > 0) = c1, in (`1, 0) = λ
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How-To Cost-Independent Strategy

`0

cost(`0) = 2

`1

cost(`1) = 1

`2

cost(`2) = 3

Goal

x < 1;u
y := 0

x < 1;u

y > 0; c1

x = 1; c2

¥ Optimal cost is 3

¥ Optimal move in (`1, y > 0) = c1, in (`1, 0) = λ

¥ Optimal strategy: f∗(`1, 0 < y < 1
2) = λ, in (`1, y ≥ 1

2) = c1

f∗(`2, x < 1) = λ and f∗(`2, x ≥ 1) = c2
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