Synthesis Of Optimal-Cost Dynamic Observers for Fault Diagnosis of Discrete-Event Systems

Franck Cassez

CNRS/IRCCyN Nantes, France Stavros Tripakis

Cadence Research Berkeley, USA and CNRS/VERIMAG Grenoble, France Karine Altisen

INPG/VERIMAG Grenoble, France

(日) (四) (문) (문) (문)

1st IEEE & IFIP International Symposium on Theoretical Aspects of Software Engineering Shanghai, China

June 7th, 2007

Fault Diagnosis for Finite State Systems

- Fault Diagnosis Problem
- Sensor Minimization Problems

Fault Diagnosis with Dynamic Observers

- Dynamic Observers
- Cost of an Observer
- Synthesis of Optimal Dynamic Observers

Fault Diagnosis for Finite State Systems

- Fault Diagnosis Problem
- Sensor Minimization Problems

Fault Diagnosis with Dynamic Observers

- Dynamic Observers
- Cost of an Observer
- Synthesis of Optimal Dynamic Observers

Fault Diagnosis for Finite State Systems

- Fault Diagnosis Problem
- Sensor Minimization Problems

▶ Fault Diagnosis with Dynamic Observers

- A 🖓

Fault Diagnosis

- A finite automaton \mathcal{A} over $\Sigma^{\epsilon,f} = \Sigma \cup \{\epsilon,f\}$
- f is the fault action, Σ is the set of observable events
- ▶ k-faulty run contain f followed by more than k actions Faulty_{≥k}(A)</sub>
- Non faulty run: contains no f

NonFaulty(\mathcal{A})

Fault Diagnosis

- A finite automaton $\mathcal A$ over $\Sigma^{\epsilon,f}=\Sigma\cup\{\epsilon,f\}$
- f is the fault action, Σ is the set of observable events
- ▶ k-faulty run contain f followed by more than k actions Faulty_{≥k}(A)</sub>
- Non faulty run: contains no f

Aim: observe Σ^* sequences and detect k-faulty runs

NonFaulty(\mathcal{A})

Fault Diagnosis

- A finite automaton $\mathcal A$ over $\Sigma^{\epsilon,f}=\Sigma\cup\{\epsilon,f\}$
- f is the fault action, Σ is the set of observable events
- ▶ k-faulty run contain f followed by more than k actions Faulty_{≥k}(A)</sub>
- Non faulty run: contains no f

Role of an observer:

- never raise an alarm on non-faulty runs
- must raise an alarm on k-faulty runs

NonFaulty(\mathcal{A})

Diagnosis Problem

 $tr(\rho) = trace of the run \rho$ (it is a word in $(\Sigma \cup \{f\})^*$) $\pi_{/\Sigma}(tr(\rho)) = projection of the trace of the run on observable events$

Definition (k-diagnoser)

A mapping $D:\Sigma^* \to \{0,1\}$ is a k-diagnoser for A if:

- for each run $\rho \in \text{NonFaulty}(A)$, $D(\pi_{\Sigma}(tr(\rho))) = 0$;
- for each run $\rho \in \mathbf{Faulty}_{k}(A)$, $D(\pi_{\Sigma}(tr(\rho))) = 1$.

(Σ, k)-Diagnosability Problem

Given A, Σ , $k \in \mathbb{N}$, is there a k-diagnoser for A?

Diagnosis Problem

 $tr(\rho) = trace of the run \rho$ (it is a word in $(\Sigma \cup \{f\})^*$) $\pi_{/\Sigma}(tr(\rho)) = projection of the trace of the run on observable events$

Definition (k-diagnoser)

A mapping $D: \Sigma^* \to \{0, 1\}$ is a k-diagnoser for A if:

- for each run $\rho \in \text{NonFaulty}(A)$, $D(\pi_{\Sigma}(tr(\rho))) = 0$;
- for each run $\rho \in \mathbf{Faulty}_{\geq k}(A)$, $\mathsf{D}(\pi_{\Sigma}(tr(\rho))) = 1$.

(Σ, k) -Diagnosability Problem

Given A, Σ , $k \in \mathbb{N}$, is there a k-diagnoser for A?

Diagnosis Problem

 $tr(\rho) = trace of the run \rho$ (it is a word in $(\Sigma \cup \{f\})^*$) $\pi_{/\Sigma}(tr(\rho)) = projection of the trace of the run on observable events$

Definition (k-diagnoser)

A mapping $D: \Sigma^* \rightarrow \{0,1\}$ is a k-diagnoser for A if:

- for each run $\rho \in \text{NonFaulty}(A)$, $D(\pi_{\Sigma}(tr(\rho))) = 0$;
- for each run $\rho \in \mathbf{Faulty}_{\geq k}(A)$, $\mathsf{D}(\pi_{\Sigma}(tr(\rho))) = 1$.

(Σ, k) -Diagnosability Problem

Given A, Σ , $k \in \mathbb{N}$, is there a k-diagnoser for A?

- $\Sigma = \{a, b\}$. Is the plant 1, 2-diagnosable?
- $\Sigma = \{b\}$. Is the plant 1, 2, k-diagnosable?

A ID IN A (P) IN A (P)

글 🕨 🖌 글 🕨

- $\Sigma = \{a, b\}$. Is the plant 1, 2-diagnosable?
- $\Sigma = \{b\}$. Is the plant 1, 2, k-diagnosable?

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃▶ ∢ ∃▶

- $\Sigma = \{a, b\}$. Is the plant 1, 2-diagnosable? Yes
- $\Sigma = \{b\}$. Is the plant 1, 2, k-diagnosable?

< <p>A < </p>

• $\Sigma = \{a\}$. Is the plant 1, 2-diagnosable?

< □ ▶ < 🗇

• $\Sigma = \{a\}$. Is the plant 1, 2-diagnosable?

• $\Sigma = \{a\}$. Is the plant 1, 2-diagnosable? 3-diagnosable

< □ ▶ < 🗇

Results for the Diagnosis Problem

[Sampath et al., IEEE TAC 1995, Jiang et al., IEEE TAC 2001]

- A is (Σ, k) -diagnosable if there is a k-diagnoser for A.
- A is Σ -diagnosable if $\exists k \in \mathbb{N}$ s.t. A is (Σ, k) -diagnosable.

Diagnosis Problems

- (A) Is A Σ-diagnosable ?
- (B) If "yes" to (A), compute the minimum k and
- ▶ (C) Compute a witness diagnoser.

Results for Diagnosis Problem

- ► (A) is in PTIME
- ► (B) is in PTIME
- ► (C) is in EXPTIME

A witness diagnoser is an automaton with at most 2^{0(A)} states

Results for the Diagnosis Problem

[Sampath et al., IEEE TAC 1995, Jiang et al., IEEE TAC 2001]

- A is (Σ, k) -diagnosable if there is a k-diagnoser for A.
- A is Σ -diagnosable if $\exists k \in \mathbb{N}$ s.t. A is (Σ, k) -diagnosable.

Diagnosis Problems

- (A) Is A Σ-diagnosable ?
- ► (B) If "yes" to (A), compute the minimum k and
- ► (C) Compute a witness diagnoser.
- **Results for Diagnosis Problem**
 - ► (A) is in PTIME
 - ► (B) is in PTIME
 - ► (C) is in EXPTIME

A witness diagnoser is an automaton with at most 2^{0(A)} states

Results for the Diagnosis Problem

[Sampath et al., IEEE TAC 1995, Jiang et al., IEEE TAC 2001]

- A is (Σ, k) -diagnosable if there is a k-diagnoser for A.
- A is Σ -diagnosable if $\exists k \in \mathbb{N}$ s.t. A is (Σ, k) -diagnosable.

Diagnosis Problems

- (A) Is A Σ-diagnosable ?
- ► (B) If "yes" to (A), compute the minimum k and
- ► (C) Compute a witness diagnoser.
- **Results for Diagnosis Problem**
 - (A) is in PTIME
 - ► (B) is in PTIME
 - (C) is in EXPTIME

A witness diagnoser is an automaton with at most $2^{O(A)}$ states

- ロ ト - (理 ト - 三 ト - 三 ト - -

- ► Aim: find $\Sigma_{\circ} \subseteq \Sigma$ s.t. A is Σ_{\circ} -diagnosable and minimize $|\Sigma_{\circ}|$
- minimum $\Sigma_o = \{a, b\}$ and $(\Sigma_o, 2)$ -diagnosable

 \blacktriangleright Aim: find $\Sigma_{o}\subseteq\Sigma$ s.t. A is $\Sigma_{o}\text{-diagnosable}$ and minimize $|\Sigma_{o}|$

• minimum $\Sigma_{\circ} = \{a, b\}$ and $(\Sigma_{\circ}, 2)$ -diagnosable

- ► Aim: find $\Sigma_{\circ} \subseteq \Sigma$ s.t. A is Σ_{\circ} -diagnosable and minimize $|\Sigma_{\circ}|$
- minimum $\Sigma_o = \{a, b\}$ and $(\Sigma_o, 2)$ -diagnosable

- ► Aim: find $\Sigma_{\circ} \subseteq \Sigma$ s.t. A is Σ_{\circ} -diagnosable and minimize $|\Sigma_{\circ}|$
- minimum $\Sigma_o = \{a, b\}$ and $(\Sigma_o, 2)$ -diagnosable

• $\Sigma_{\circ} = \{a\}$ is minimal and $(\Sigma_{\circ}, 3)$ -diagnosable

- ► Aim: find $\Sigma_{\circ} \subseteq \Sigma$ s.t. A is Σ_{\circ} -diagnosable and minimize $|\Sigma_{\circ}|$
- minimum $\Sigma_o = \{a, b\}$ and $(\Sigma_o, 2)$ -diagnosable

• $\Sigma_o = \{a\}$ is minimal and $(\Sigma_o, 3)$ -diagnosable

(Static Minimization Problem)

Input: A, $n \in \mathbb{N}^*$ s.t. $n \leq |\Sigma|$. Problem: Is there any $\Sigma_0 \subseteq \Sigma$, $|\Sigma_0| \leq n$, s.t. A is Σ_0 -diagnosable ?

Results:

- Static Minimization Problem is NP-complete [Yoo et al., ACC 2001, C. Tripakis Altisen, ACSD 2007]
- Mask Version of Static Minimization Problem is also NP-complete [C. Tripakis Altisen, ACSD 2007]

Previous work: Static Observers

(Static Minimization Problem)

Input: A, $n \in \mathbb{N}^*$ s.t. $n \leq |\Sigma|$. Problem: Is there any $\Sigma_o \subseteq \Sigma$, $|\Sigma_o| \leq n$, s.t. A is Σ_o -diagnosable ?

Results:

- Static Minimization Problem is NP-complete [Yoo et al., ACC 2001, C. Tripakis Altisen, ACSD 2007]
- Mask Version of Static Minimization Problem is also NP-complete [C. Tripakis Altisen, ACSD 2007]

Previous work: Static Observers

(Static Minimization Problem)

Input: A, $n \in \mathbb{N}^*$ s.t. $n \leq |\Sigma|$. Problem: Is there any $\Sigma_o \subseteq \Sigma$, $|\Sigma_o| \leq n$, s.t. A is Σ_o -diagnosable ?

Results:

- Static Minimization Problem is NP-complete [Yoo et al., ACC 2001, C. Tripakis Altisen, ACSD 2007]
- Mask Version of Static Minimization Problem is also NP-complete [C. Tripakis Altisen, ACSD 2007]

Previous work: Static Observers

(Static Minimization Problem)

Input: A, $n \in \mathbb{N}^*$ s.t. $n \leq |\Sigma|$. Problem: Is there any $\Sigma_o \subseteq \Sigma$, $|\Sigma_o| \leq n$, s.t. A is Σ_o -diagnosable ?

Results:

- Static Minimization Problem is NP-complete [Yoo et al., ACC 2001, C. Tripakis Altisen, ACSD 2007]
- Mask Version of Static Minimization Problem is also NP-complete [C. Tripakis Altisen, ACSD 2007]

Previous work: Static Observers

(Static Minimization Problem)

Input: A, $n \in \mathbb{N}^*$ s.t. $n \leq |\Sigma|$. Problem: Is there any $\Sigma_o \subseteq \Sigma$, $|\Sigma_o| \leq n$, s.t. A is Σ_o -diagnosable ?

Results:

- Static Minimization Problem is NP-complete [Yoo et al., ACC 2001, C. Tripakis Altisen, ACSD 2007]
- Mask Version of Static Minimization Problem is also NP-complete [C. Tripakis Altisen, ACSD 2007]

Previous work: Static Observers

► Fault Diagnosis for Finite State Systems

- Fault Diagnosis with Dynamic Observers
 - Dynamic Observers
 - Cost of an Observer
 - Synthesis of Optimal Dynamic Observers

- Static observer: fixed set of observable events
- ► Static observation: $|\Sigma_o| \ge 2$, $\Sigma_o = \{a, b\}$; $(\{a, b\}, 1)$ -diagnosable
- > Dynamic observer: choose dynamically the set of observable events

- Static observer: fixed set of observable events
- ► Static observation: $|\Sigma_o| \ge 2$, $\Sigma_o = \{a, b\}$; $(\{a, b\}, 1)$ -diagnosable
- > Dynamic observer: choose dynamically the set of observable events

Assume you can choose Σ_{\circ} dynamically:

Is the plant diagnosable observing only one event at a time?

- Static observer: fixed set of observable events
- ► Static observation: $|\Sigma_o| \ge 2$, $\Sigma_o = \{a, b\}$; $(\{a, b\}, 1)$ -diagnosable
- > Dynamic observer: choose dynamically the set of observable events
- observe only a

- Static observer: fixed set of observable events
- ► Static observation: $|\Sigma_o| \ge 2$, $\Sigma_o = \{a, b\}$; $(\{a, b\}, 1)$ -diagnosable
- > Dynamic observer: choose dynamically the set of observable events
- observe only a
- once an a has been observed, observe only b

- Static observer: fixed set of observable events
- ► Static observation: $|\Sigma_o| \ge 2$, $\Sigma_o = \{a, b\}$; $(\{a, b\}, 1)$ -diagnosable
- > Dynamic observer: choose dynamically the set of observable events
- observe only a
- once an a has been observed, observe only b
- If a.b occurs diagnose a fault

- Static observer: fixed set of observable events
- ► Static observation: $|\Sigma_0| \ge 2$, $\Sigma_0 = \{a, b\}$; ($\{a, b\}, 1$)-diagnosable
- Dynamic observer: choose dynamically the set of observable events
- observe only a
- once an a has been observed, observe only b
- If a.b occurs diagnose a fault

The plant is dynamically 2-diagnosable
Dynamic Observers

Definition (Dynamic Observer)

A dynamic observer Obs is a complete and deterministic labeled automaton $(S, s_0, \Sigma, \delta, L) s.t. \forall s \in S, \forall a \in \Sigma, \text{ if } a \notin L(s) \text{ then } \delta(s, a) = s.$

Definition ((Obs,k)-diagnoser)

 $\mathsf{D}:\Sigma^* \to \{0,1\}$ is an (Obs,k)-diagnoser for A if

- ► for each run $\rho \in NonFaulty(A)$, $D(Obs(\pi_{1\Sigma}(tr(\rho)))) = 0$ and
- for each run $\rho \in \mathbf{Faulty}_{k}(A)$, $D(Obs(\pi_{\Sigma}(tr(\rho)))) = 1$.

イロト イポト イヨト イヨト

Dynamic Observers

Definition (Dynamic Observer)

A dynamic observer Obs is a complete and deterministic labeled automaton $(S, s_0, \Sigma, \delta, L) s.t. \forall s \in S, \forall a \in \Sigma, \text{ if } a \notin L(s) \text{ then } \delta(s, a) = s.$

Definition ((Obs,k)-diagnoser)

 $\mathsf{D}:\Sigma^*\to\{0,1\}$ is an (Obs,k)-diagnoser for A if

- ► for each run $\rho \in \text{NonFaulty}(A)$, $D(Obs(\pi_{\Sigma}(tr(\rho)))) = 0$ and
- for each run $\rho \in \mathbf{Faulty}_{k}(A)$, $D(Obs(\pi_{\Sigma}(tr(\rho)))) = 1$.

イロト イ理ト イヨト イヨト

Dynamic Observers

Definition (Dynamic Observer)

A dynamic observer Obs is a complete and deterministic labeled automaton $(S, s_0, \Sigma, \delta, L) s.t. \forall s \in S, \forall a \in \Sigma, \text{ if } a \notin L(s) \text{ then } \delta(s, a) = s.$

Definition ((Obs, k)-diagnoser)

 $D:\Sigma^* \to \{0,1\}$ is an (Obs, k)-diagnoser for A if

- ► for each run $\rho \in NonFaulty(A)$, $D(Obs(\pi_{\Sigma}(tr(\rho)))) = 0$ and
- ► for each run $\rho \in \mathbf{Faulty}_{\geq k}(A)$, $D(Obs(\pi_{\Sigma}(tr(\rho)))) = 1$.

B is (Obs, 2)-diagnosable. Define D(a,b,p) = 1 and D(p) = 0 otherwise. D is 2-diagnoser.

B is (Obs, 2)-diagnosable. Define D(a,b,p) = 1 and D(p) = 0 otherwise. D is 2-diagnoser.

 \mathcal{B} is (Obs, 2)-diagnosable. Define D(a.b. ρ) = 1 and D(ρ) = 0 otherwise. D is 2-diagnoser.

 \mathcal{B} is (Obs, 2)-diagnosable. Define D(a.b. ρ) = 1 and D(ρ) = 0 otherwise. D is 2-diagnoser.

[C. Tripakis Altisen, ACSD 2007] (Obs, k)-diagnosability: A is (Obs, k)-diagnosable if there is an (Obs, k)-diagnoser for A Obs-diagnosability: A is Obs-diagnosable if ∃k ∈ N s.t. A is (Obs, k)-diagnosable

Finite Obs-diagnosability Problem

Input: A, a finite state observer Obs. Problem: Is A Obs-diagnosable ?

To check Obs-diagnosability, build a product $A \otimes Obs$:

- ▶ initial state: (q₀, s₀)
- $\blacktriangleright (q,s) \xrightarrow{\beta} (q',s') \text{ iff } q \xrightarrow{\lambda} q', s \xrightarrow{\lambda/\beta} s' \text{ for } \lambda \in \Sigma,$
- ▶ $(q,s) \xrightarrow{\Lambda} (q',s)$ iff $q \xrightarrow{\Lambda} q'$, and $\Lambda \in \{\epsilon, f\}$

A is Obs-diagnosable iff A \otimes Obs is Σ -diagnosable

イロト イロト イヨト イヨト

 [C. Tripakis Altisen, ACSD 2007]
 (Obs, k)-diagnosability: A is (Obs, k)-diagnosable if there is an (Obs, k)-diagnoser for A
 Obs-diagnosability: A is Obs-diagnosable if ∃k ∈ N s.t. A is (Obs, k)-diagnosable

Finite Obs-diagnosability Problem

Input: A, a finite state observer Obs. Problem: Is A Obs-diagnosable ?

To check Obs-diagnosability, build a product $A \otimes Obs$:

- ▶ initial state: (q₀, s₀)
- $(q,s) \xrightarrow{\beta} (q',s')$ iff $q \xrightarrow{\lambda} q', s \xrightarrow{\lambda/\beta} s'$ for $\lambda \in \Sigma$,
- ▶ $(q,s) \xrightarrow{\Lambda} (q',s)$ iff $q \xrightarrow{\Lambda} q'$, and $\Lambda \in \{\epsilon, f\}$

A is Obs-diagnosable iff A \otimes Obs is Σ -diagnosable

・ ロ ト ・ 御 ト ・ 三 ト ・ 三 ト

 [C. Tripakis Altisen, ACSD 2007]
 (Obs, k)-diagnosability: A is (Obs, k)-diagnosable if there is an (Obs, k)-diagnoser for A
 Obs-diagnosability: A is Obs-diagnosable if ∃k ∈ N s.t. A is (Obs, k)-diagnosable

Finite Obs-diagnosability Problem

Input: A, a finite state observer Obs. Problem: Is A Obs-diagnosable ?

To check Obs-diagnosability, build a product $A \otimes Obs$:

- initial state: (q₀, s₀)
- $\blacktriangleright (q,s) \xrightarrow{\beta} (q',s') \text{ iff } q \xrightarrow{\lambda} q', s \xrightarrow{\lambda/\beta} s' \text{ for } \lambda \in \Sigma,$
- ▶ $(q,s) \xrightarrow{\Lambda} (q',s)$ iff $q \xrightarrow{\Lambda} q'$, and $\Lambda \in \{\epsilon, f\}$

A is Obs-diagnosable iff A \otimes Obs is Σ -diagnosable

イロト イロト イヨト イヨト

 [C. Tripakis Altisen, ACSD 2007]
 (Obs, k)-diagnosability: A is (Obs, k)-diagnosable if there is an (Obs, k)-diagnoser for A
 Obs-diagnosability: A is Obs-diagnosable if ∃k ∈ N s.t. A is (Obs, k)-diagnosable

Finite Obs-diagnosability Problem

Input: A, a finite state observer Obs. Problem: Is A Obs-diagnosable ?

To check Obs-diagnosability, build a product $A \otimes Obs$:

- initial state: (q₀, s₀)
- $\blacktriangleright (q,s) \xrightarrow{\beta} (q',s') \text{ iff } q \xrightarrow{\lambda} q', s \xrightarrow{\lambda/\beta} s' \text{ for } \lambda \in \Sigma,$
- ▶ $(q,s) \xrightarrow{\Lambda} (q',s)$ iff $q \xrightarrow{\Lambda} q'$, and $\Lambda \in \{\epsilon, f\}$

A is Obs-diagnosable iff A \otimes Obs is $\Sigma\text{-diagnosable}$

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト

Comparing Dynamic Observers

O₁ observes less events than O₂ in the long run
 O₁ is less expensive than O₂

New Problem: compute an optimal observer

< <p>A < </p>

Comparing Dynamic Observers

O1 observes less events than O2 in the long run
 O1 is less expensive than O2

New Problem: compute an optimal observer

< 行い

Comparing Dynamic Observers

O1 observes less events than O2 in the long run
 O1 is less expensive than O2

New Problem: compute an optimal observer

< 🗗 🕨

Cost of a run: average number of events observed along a run Let $Obs = (S, s_0, \Sigma, \delta, L)$

cost relative to observation of the output w of the plant:

Cost of a run: average number of events observed along a run Let $Obs = (S, s_0, \Sigma, \delta, L)$

cost relative to observation of the output w of the plant:

$$\mathbf{Cost}_1(w) = \frac{\sum_{i=0}^{i=n} |L(\delta(s_0, Obs(w)(i)))|}{n+1} \text{ with } n = |Obs(w)|$$

Cost of a run: average number of events observed along a run Let $Obs = (S, s_0, \Sigma, \delta, L)$

cost relative to observation of the output w of the plant:

$$\mathbf{Cost}_1(w) = \frac{\sum_{i=0}^{i=n} |L(\delta(s_0, Obs(w)(i)))|}{n+1} \text{ with } n = |Obs(w)|$$

 $Obs(b^{n}.a) = a \text{ and } Cost_{1}(b^{n}.a) = 1/2$

Cost of a run: average number of events observed along a run Let $Obs = (S, s_0, \Sigma, \delta, L)$

cost relative to observation of the output w of the plant:

$$\textbf{Cost}_1(w) = \frac{\sum_{i=0}^{i=n} |L(\delta(s_0, Obs(w)(i)))|}{n+1} \text{ with } n = |Obs(w)|$$

 $Obs(b^{n}.a) = a \text{ and } Cost_{1}(b^{n}.a) = 1/2$

$$\mathbf{Cost}_2(w) = \frac{\sum_{i=0}^{i=n} |L(\delta(s_0, w(i)))|}{n+1} with n = |w|$$

Cost of a run: average number of events observed along a run Let $Obs = (S, s_0, \Sigma, \delta, L)$

cost relative to observation of the output w of the plant:

$$\mathbf{Cost}_1(w) = \frac{\sum_{i=0}^{i=n} |L(\delta(s_0, Obs(w)(i)))|}{n+1} \text{ with } n = |Obs(w)|$$

 $Obs(b^{n}.a) = a \text{ and } Cost_{1}(b^{n}.a) = 1/2$

cost relative to the raw output w of the plant:

$$\mathbf{Cost}_2(w) = \frac{\sum_{i=0}^{i=n} |L(\delta(s_0, w(i)))|}{n+1} with n = |w|$$

 $Cost_2(b^n.a) = (n + 1)/(n + 2)$

 $\rho = q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ a run of the plant A Let Obs be an observer and $w_i = \pi_{1/2}(tr(q_0 \cdots q_i))$

$$\textbf{Cost}_2(\rho, Obs) = \frac{1}{n+1} \cdot \sum_{i=0}^n |L(\delta(s_0, w_i)|$$

Maximal Cost of runs of length n:

 $Cost_2(n, A, Obs) = max{Cost_2(\rho, Obs) for \rho \in Runs^n(A)}$

The Cost of the pair (Obs, A) is $Cost_2(A, Obs) = \limsup_{n \to \infty} Cost_2(n, A, Obs)$

Theorem

Cost₂(A, Obs) can be computed in PTIME.

How to compute the best or optimal observer?

1 m + 1 = + 1 = + 1

 $\rho = q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ a run of the plant A Let Obs be an observer and $w_i = \pi_{1/2}(tr(q_0 \cdots q_i))$

$$\textbf{Cost}_2(\rho, Obs) = \frac{1}{n+1} \cdot \sum_{i=0}^n |L(\delta(s_0, w_i)|$$

Maximal Cost of runs of length n:

 $Cost_2(n, A, Obs) = max{Cost_2(\rho, Obs) for \rho \in Runs^n(A)}$

The Cost of the pair (Obs, A) is $Cost_2(A, Obs) = \limsup_{n \to \infty} Cost_2(n, A, Obs)$

Theorem

Cost₂(A, Obs) can be computed in PTIME.

How to compute the best or optimal observer?

・ロシュ キョン ・ ヨン・

 $\rho = q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ a run of the plant A Let Obs be an observer and $w_i = \pi_{1/2}(tr(q_0 \cdots q_i))$

$$\mathbf{Cost}_2(\rho, Obs) = \frac{1}{n+1} \cdot \sum_{i=0} |L(\delta(s_0, w_i))|$$

Maximal Cost of runs of length n:

 $Cost_2(n, A, Obs) = max{Cost_2(\rho, Obs) for \rho \in Runs^n(A)}$

The Cost of the pair (Obs, A) is $Cost_2(A, Obs) = \limsup_{n \to \infty} Cost_2(n, A, Obs)$

Theorem

 $Cost_2(A, Obs)$ can be computed in PTIME.

How to compute the best or optimal observer?

1 m + 1 = + 1 = + 1

 $\rho = q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ a run of the plant A Let Obs be an observer and $w_i = \pi_{1/2}(tr(q_0 \cdots q_i))$

$$\textbf{Cost}_2(\rho, Obs) = \frac{1}{n+1} \cdot \sum_{i=0}^n |L(\delta(s_0, w_i)|$$

Maximal Cost of runs of length n:

 $Cost_2(n, A, Obs) = max{Cost_2(\rho, Obs) for \rho \in Runs^n(A)}$

The Cost of the pair (Obs, A) is $Cost_2(A, Obs) = \limsup_{n \to \infty} Cost_2(n, A, Obs)$

Theorem

Cost₂(A, Obs) can be computed in PTIME.

How to compute the best or optimal observer?

1 m + 1 = + 1 = + 1

 $\rho = q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n \text{ a run of the plant } A$ Let Obs be an observer and $w_i = \pi_{1/2}(tr(q_0 \cdots q_i))$

 $\mathbf{Cost}_2(\rho, Obs) = \frac{1}{n+1} \cdot \sum_{i=0}^n |\mathbf{L}(\delta(s_0, w_i))|$

Maximal Cost of runs of length n:

 $Cost_2(n, A, Obs) = max{Cost_2(\rho, Obs) for \rho \in Runs^n(A)}$

The Cost of the pair (Obs, A) is $Cost_2(A, Obs) = \limsup_{n \to \infty} Cost_2(n, A, Obs)$

Theorem

 $Cost_2(A, Obs)$ can be computed in PTIME.

How to compute the best or optimal observer?

3

・ロン ・ロン・・ モン・ ・ モン・

 $\rho = q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ a run of the plant A

Let Obs be an observer and $\mathbf{w}_i = \pi_{/\Sigma}(tr(q_0 \cdots q_i))$

$$\mathbf{Cost}_2(\rho, Obs) = \frac{1}{n+1} \cdot \sum_{i=0}^{n} |L(\delta(s_0, w_i))|$$

Maximal Cost of runs of length n:

 $Cost_2(n, A, Obs) = max{Cost_2(\rho, Obs) for \rho \in Runs^n(A)}$

The Cost of the pair (Obs, A) is

$$Cost_2(A, Obs) = \limsup_{n \to \infty} Cost_2(n, A, Obs)$$

Theorem

Cost₂(A, Obs) can be computed in PTIME.

Use Karp's Maximum Mean-Weight Cycle Algorithm

 $\rho = q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n \text{ a run of the plant } A$ Let Obs be an observer and $w_i = \pi_{1/2}(tr(q_0 \cdots q_i))$

 $\mathbf{Cost}_2(\rho, Obs) = \frac{1}{n+1} \cdot \sum_{i=0}^n |L(\delta(s_0, w_i))|$

Maximal Cost of runs of length n:

 $Cost_2(n, A, Obs) = max{Cost_2(\rho, Obs) for \rho \in Runs^n(A)}$

The Cost of the pair (Obs, A) is $Cost_2(A, Obs) = \limsup_{n \to \infty} Cost_2(n, A, Obs)$

Theorem

 $Cost_2(A, Obs)$ can be computed in PTIME.

How to compute the best or optimal observer?

Problem 2: Bounded Cost Observer

```
Input: A, k \in \mathbb{N} and c \in \mathbb{N}.
Problem:
```

- (A). Is there an observer Obs s.t. A is (Obs,k)-diagnosable and Cost₂(Obs) ≤ c ?
- (B). If the answer to (A) is "yes", compute a witness observer Obs with Cost₂(Obs) ≤ c.

Steps to Solve Problem 2:

- Step 1: Compute the most liberal observer O; i.e. obtain a representation of the set of all observers
- ► Step 2: Compute an optimal cost observer.

Theorem ([C. Tripakis Altisen, ACSD 2007])

Problem 2: Bounded Cost Observer

```
Input: A, k \in \mathbb{N} and c \in \mathbb{N}.
Problem:
```

- (A). Is there an observer Obs s.t. A is (Obs,k)-diagnosable and Cost₂(Obs) ≤ c ?
- (B). If the answer to (A) is "yes", compute a witness observer Obs with Cost₂(Obs) ≤ c.

Steps to Solve Problem 2:

- Step 1: Compute the most liberal observer O; i.e. obtain a representation of the set of all observers
- ► Step 2: Compute an optimal cost observer.

Theorem ([C. Tripakis Altisen, ACSD 2007])

Problem 2: Bounded Cost Observer

```
Input: A, k \in \mathbb{N} and c \in \mathbb{N}.
Problem:
```

- (A). Is there an observer Obs s.t. A is (Obs,k)-diagnosable and Cost₂(Obs) ≤ c ?
- (B). If the answer to (A) is "yes", compute a witness observer Obs with Cost₂(Obs) ≤ c.

Steps to Solve Problem 2:

- Step 1: Compute the most liberal observer O; i.e. obtain a representation of the set of all observers
- ► Step 2: Compute an optimal cost observer.

Theorem ([C. Tripakis Altisen, ACSD 2007])

Problem 2: Bounded Cost Observer

```
Input: A, k \in \mathbb{N} and c \in \mathbb{N}.
Problem:
```

- (A). Is there an observer Obs s.t. A is (Obs,k)-diagnosable and Cost₂(Obs) ≤ c ?
- (B). If the answer to (A) is "yes", compute a witness observer Obs with Cost₂(Obs) ≤ c.

Steps to Solve Problem 2:

- Step 1: Compute the most liberal observer O; i.e. obtain a representation of the set of all observers
- Step 2: Compute an optimal cost observer.

Theorem ([C. Tripakis Altisen, ACSD 2007])

Problem 2: Bounded Cost Observer

```
Input: A, k \in \mathbb{N} and c \in \mathbb{N}.
Problem:
```

- (A). Is there an observer Obs s.t. A is (Obs,k)-diagnosable and Cost₂(Obs) ≤ c ?
- (B). If the answer to (A) is "yes", compute a witness observer Obs with Cost₂(Obs) ≤ c.

Steps to Solve Problem 2:

- Step 1: Compute the most liberal observer O; i.e. obtain a representation of the set of all observers
- Step 2: Compute an optimal cost observer.

Theorem ([C. Tripakis Altisen, ACSD 2007])

Example: Most Permissive Observer

< < >>

- A I I A I I A I I A

▶ Player 1 chooses what to observe: X / Player 2 generates ρ .I, I \in X

- Player 1 and 2 produce plays
- given a strategy for Player 1 and the moves of Player 2

w(p) is the sum of the weights $w_1w_2\cdots w_n$ of the play p Cost₂(p,Obs) = w(p)/(|p| + 1)

▶ Player 1 chooses what to observe: X / Player 2 generates $\rho.I, I \in X$

- Player 1 and 2 produce plays
- given a strategy for Player 1 and the moves of Player 2

w(p) is the sum of the weights $w_1w_2\cdots w_n$ of the play p Cost₂(p,Obs) = w(p)/(|p| + 1)

- ▶ Player 1 chooses what to observe: X / Player 2 generates $\rho.I, I \in X$
- Player 1 and 2 produce plays
- given a strategy for Player 1 and the moves of Player 2

w(p) is the sum of the weights $w_1w_2\cdots w_n$ of the play p Cost₂(p, Obs) = w(p)/(|p| + 1)

- ▶ Player 1 chooses what to observe: X / Player 2 generates ρ .I, I \in X
- Player 1 and 2 produce plays
- given a strategy for Player 1 and the moves of Player 2

w(p) is the sum of the weights $w_1w_2\cdots w_n$ of the play p Cost₂(p, Obs) = w(p)/(|p| + 1)
Optimal Dynamic Observer/Two-Player Game

- ▶ Player 1 chooses what to observe: X / Player 2 generates ρ .I, I \in X
- Player 1 and 2 produce plays
- given a strategy for Player 1 and the moves of Player 2

 $w(\rho)$ is the sum of the weights $w_1w_2\cdots w_n$ of the play ρ $Cost_2(\rho, Obs) = w(\rho)/(|\rho| + 1)$

► Goal for Player 1: minimize $\limsup_{n\to\infty} \{w(\rho)/(|\rho|+1) | \rho \in Runs^n(A)\}$

Optimal Dynamic Observer/Two-Player Game

- ▶ Player 1 chooses what to observe: X / Player 2 generates ρ .I, I \in X
- Player 1 and 2 produce plays
- given a strategy for Player 1 and the moves of Player 2

w(p) is the sum of the weights $w_1w_2 \cdots w_n$ of the play p $Cost_2(\rho, Obs) = w(\rho)/(|\rho| + 1)$

► Goal for Player 1: minimize $\limsup_{n\to\infty} \{w(\rho)/(|\rho|+1) | \rho \in Runs^n(A)\}$

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $l_0 = \lim \sup w(\rho)/(|\rho| + 1)$
 - ▶ Player 2: maximize $l_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \ \exists v \in \mathbb{Q} \ s.t.$ each player has a memoryless strategy to ensure $l_0 \leq v$ and $l_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

イロト イ理ト イヨト イヨト

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - ▶ Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - ▶ Player 2: maximize $l_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure <math display="inline">I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

イロト イポト イヨト イヨト

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - ▶ Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure <math display="inline">I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

イロト イヨト イヨト

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure <math display="inline">I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

イロト イヨト イヨト

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure <math display="inline">I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - 🗿 Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

・ロト ・聞ト ・ヨト ・ヨト

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure <math display="inline">I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

< □ ▶ < / 🖓 .

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - ▶ $\exists v \in \mathbb{Q}$ s.t. each player has a memoryless strategy to ensure $I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:

Compute the most liberal observer O

- Build a weighted graph game: O × A
- Use Zwick & Paterson's algorithm

< <p>A < </p>

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $I_0 = \limsup w(\rho)/(|\rho| + 1)$
 - Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure <math display="inline">I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

< <p>A < </p>

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $l_0 = \limsup w(\rho)/(|\rho| + 1)$
 - Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure <math display="inline">I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

- Weighted two-player games
- Each state s has a weight w(s) can be done with weight on edges
- Goal of the Players:
 - Player 1: minimize $I_0 = \limsup w(\rho)/(|\rho| + 1)$
 - Player 2: maximize $I_1 = \liminf w(\rho)/(|\rho| + 1)$
- Results for weighted two-player games:
 - $\blacktriangleright \exists v \in \mathbb{Q} \text{ s.t. each player has a memoryless strategy to ensure } I_0 \leq v$ and $I_1 \geq v$
 - v can be effectively computed
 - Memoryless strategies for both players can be effectively computed
- Solution to Problem 2:
 - Compute the most liberal observer O
 - Build a weighted graph game: O × A
 - Use Zwick & Paterson's algorithm

Winning Strategy for Player 1 = Optimal Observer

Conclusion & Future Work

Results:

- Dynamic observers for bounded diagnosis (k-diagnosability)
- Computation of the most permissive observer [C. Tripakis Altisen, ACSD 2007]
- Cost & computation of the cost of a dynamic observers
- Existence of a finite optimal dynamic observer
- Effective computation of the optimal dynamic observer

Future Work:

- Exact complexity of Problem 2
- ▶ Implement the algorithm
- Extend to control of DES

Conclusion & Future Work

Results:

- Dynamic observers for bounded diagnosis (k-diagnosability)
- Computation of the most permissive observer [C. Tripakis Altisen, ACSD 2007]
- Cost & computation of the cost of a dynamic observers
- Existence of a finite optimal dynamic observer
- Effective computation of the optimal dynamic observer

Future Work:

- Exact complexity of Problem 2
- ▶ Implement the algorithm
- Extend to control of DES

Conclusion & Future Work

Results:

- Dynamic observers for bounded diagnosis (k-diagnosability)
- Computation of the most permissive observer [C. Tripakis Altisen, ACSD 2007]
- Cost & computation of the cost of a dynamic observers
- Existence of a finite optimal dynamic observer
- Effective computation of the optimal dynamic observer

Future Work:

- Exact complexity of Problem 2
- Implement the algorithm
- Extend to control of DES

References

[C. Tripakis Altisen, 2007]	Franck Cassez, Stavros Tripakis, and Karine Altisen. Sensor minimization problems with static or dynamic observers for fault diagnosis. Technical Report RI-2007-1, IRCCyN/CNR5, 1 rue de la Noë, BP 92101, 44321 Nantes Cedes, France, January 2007. Available at http://www.irccyn.fr/franck.
[C. Tripakis Altisen, ACSD 2007]	Franck Cassez, Stavros Tripakis, and Karine Altisen. Sensor minimization problems with static or dynamic observers for fault diagnosis. In 7th International Conference on Application of Concurrency to System Design (ACSD'07), Bratislava, Slovak Republic, July 2007. IEEE Computer Society.
[Dasdan et al., IEEE DAC 1999]	Ali Dasdan, Sandy S. Irani, and Rajesh K. Gupta. Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems. In Annual ACM IEEE Design Automation Conference, pages 37–42, New Orleans, Louisiana, United States, 1999. ACM Press New York, NY, USA. ISBN:1-58133-109-7.
[Debouk et al., DEDS 2004]	Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. On an optimization problem in sensor selection. Discrete Event Dynamic Systems, 4(12), November 2004.
[Jiang et al., IEEE TAC 2001]	Shengbing Jiang, Zhongdong Huang, Vigyan Chandra, and Ratnesh Kumar. A polynomial algorithm for testing diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 46(8), August 2001.
[Jiang et al., IEEE TAC 2003]	Shengbing Jiang, Ratnesh Kumar, and Humberto E. Garcia. Optimal sensor selection for discrete event systems with partial observation. IEEE Transactions on Automatic Control, 48(3):369–381, March 2003.
[Karp, Discrete Math. 1978]	Richard M. Karp. A characterization of the minimum mean cycle in a digraph. Discrete Mathematics, 23:309–311, 1978.
[R & W, 1987]	Peter Ramadge and W. Murray Wonham. Supervisory control of a class of discrete event processes. SIAM J. Control Optim., 25(1), January 1987.

æ

イロト イヨト イヨト イヨト

References (cont.)

[Sampath et al., IEEE TAC 1995]	Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamohideen, and Demosthenis C. Teneketzis. Diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 40(9), September 1995.
[Tsitsiklis, 1989]	John N. Tsitsiklis. On the control of discrete event dynamical systems. Mathematics of Control, Signals and Systems, 2(2), 1989.
[Yoo et al., ACC 2001]	Tae-Sic Yoo and Stéphane Lafortune. On the computational complexity of some problems arising in partially-observed discrete event systems. In American Control Conference (ACC'01), 2001. Arlington, VA.
[Zwick & Paterson, TCS 1996]	Uri Zwick and Michael S. Paterson. The complexity of mean payoff games on graphs. Theoretical Computer Science, 158(1–2):343–359, 1996.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >