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Outline of the talk

◮ Fault Diagnosis for Finite State Systems
• Fault Diagnosis Problem
• Sensor Minimization Problems

◮ Fault Diagnosis with Dynamic Observers
• Dynamic Observers
• Cost of an Observer
• Synthesis of Optimal Dynamic Observers
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Diagnosis for finite state Systems

Outline

◮ Fault Diagnosis for Finite State Systems
• Fault Diagnosis Problem
• Sensor Minimization Problems

◮ Fault Diagnosis with Dynamic Observers
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Diagnosis for finite state Systems Fault Diagnosis Problem

Fault Diagnosis

•

• • •

•
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◮ A finite automaton A over Σε,f
= Σ ∪ {ε, f}

◮ f is the fault action, Σ is the set of observable events

◮ k-faulty run contain f followed by more than k actions Faulty≥k(A)

◮ Non faulty run: contains no f NonFaulty(A)
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◮ f is the fault action, Σ is the set of observable events

◮ k-faulty run contain f followed by more than k actions Faulty≥k(A)

◮ Non faulty run: contains no f NonFaulty(A)

Aim: observe Σ∗ sequences and detect k-faulty runs
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Diagnosis for finite state Systems Fault Diagnosis Problem

Fault Diagnosis

•

• • •

•

ε
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◮ A finite automaton A over Σε,f
= Σ ∪ {ε, f}

◮ f is the fault action, Σ is the set of observable events

◮ k-faulty run contain f followed by more than k actions Faulty≥k(A)

◮ Non faulty run: contains no f NonFaulty(A)

Role of an observer:

◮ never raise an alarm on non-faulty runs

◮ must raise an alarm on k-faulty runs
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Diagnosis for finite state Systems Fault Diagnosis Problem

Diagnosis Problem

•

• • •
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tr(ρ) = trace of the run ρ (it is a word in (Σ ∪ {f})∗)
π/Σ(tr(ρ)) = projection of the trace of the run on observable events

Definition (k-diagnoser)

A mapping D : Σ∗ → {0, 1} is a k-diagnoser for A if:
◮ for each run ρ ∈ NonFaulty(A), D(π/Σ(tr(ρ))) = 0;
◮ for each run ρ ∈ Faulty≥k(A), D(π/Σ(tr(ρ))) = 1.

(Σ, k)-Diagnosability Problem

Given A, Σ, k ∈ N, is there a k-diagnoser for A?
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Diagnosis for finite state Systems Fault Diagnosis Problem

Example

•
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◮ Σ = {a, b}. Is the plant 1, 2-diagnosable?

◮ Σ = {b}. Is the plant 1, 2, k-diagnosable?
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◮ Σ = {a, b}. Is the plant 1, 2-diagnosable? Yes

◮ Σ = {b}. Is the plant 1, 2, k-diagnosable?
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◮ Σ = {a, b}. Is the plant 1, 2-diagnosable? Yes

◮ Σ = {b}. Is the plant 1, 2, k-diagnosable? No
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◮ Σ = {a}. Is the plant 1, 2-diagnosable?
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Diagnosis for finite state Systems Fault Diagnosis Problem

Example
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◮ Σ = {a, b}. Is the plant 1, 2-diagnosable? Yes

◮ Σ = {b}. Is the plant 1, 2, k-diagnosable? No
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◮ Σ = {a}. Is the plant 1, 2-diagnosable? 3-diagnosable
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Diagnosis for finite state Systems Fault Diagnosis Problem

Results for the Diagnosis Problem

[Sampath et al., IEEE TAC 1995, Jiang et al., IEEE TAC 2001]

A is (Σ, k)-diagnosable if there is a k-diagnoser for A.

A is Σ-diagnosable if ∃k ∈ N s.t. A is (Σ, k)-diagnosable.

Diagnosis Problems

◮ (A) Is A Σ-diagnosable ?
◮ (B) If “yes” to (A), compute the minimum k and

◮ (C) Compute a witness diagnoser.

Results for Diagnosis Problem
◮ (A) is in PTIME

◮ (B) is in PTIME

◮ (C) is in EXPTIME
A witness diagnoser is an automaton with at most 2O(A) states
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Diagnosis for finite state Systems Sensor Minimization Problems

Minimization of the set of Observable Events

•

• • •

•

ε

ε

f
a b

a

b

◮ Aim: find Σo ⊆ Σ s.t. A is Σo-diagnosable and minimize |Σo|
◮ minimum Σo = {a, b} and (Σo, 2)-diagnosable
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Diagnosis for finite state Systems Sensor Minimization Problems

Results for Sensor Minimization Problems

(Static Minimization Problem)

Input: A, n ∈ N∗ s.t. n ≤ |Σ|.
Problem: Is there any Σo ⊆ Σ, |Σo| ≤ n, s.t. A is Σo-diagnosable ?

Results:

◮ Static Minimization Problem is NP-complete
[Yoo et al., ACC 2001, C. Tripakis Altisen, ACSD 2007]

◮ Mask Version of Static Minimization Problem is also NP-complete
[C. Tripakis Altisen, ACSD 2007]

Previous work: Static Observers

In this paper: Dynamic Observers
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Dynamic Observers

Outline

◮ Fault Diagnosis for Finite State Systems

◮ Fault Diagnosis with Dynamic Observers
• Dynamic Observers
• Cost of an Observer
• Synthesis of Optimal Dynamic Observers
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Dynamic Observers Dynamic Observers

Why Dynamic Observations ?

•

• • •

•• ε

εf
a b

b
a

◮ Static observer: fixed set of observable events

◮ Static observation: |Σo| ≥ 2, Σo = {a, b}; ({a, b}, 1)-diagnosable
◮ Dynamic observer: choose dynamically the set of observable events
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Why Dynamic Observations ?

•

• • •

•• ε

εf
a b

b
a

◮ Static observer: fixed set of observable events

◮ Static observation: |Σo| ≥ 2, Σo = {a, b}; ({a, b}, 1)-diagnosable
◮ Dynamic observer: choose dynamically the set of observable events

Assume you can choose Σo dynamically:

Is the plant diagnosable observing only one event at a time ?
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Dynamic Observers Dynamic Observers

Why Dynamic Observations ?

•

• • •

•• ε

εf
a b

b
a

◮ Static observer: fixed set of observable events
◮ Static observation: |Σo| ≥ 2, Σo = {a, b}; ({a, b}, 1)-diagnosable
◮ Dynamic observer: choose dynamically the set of observable events

1 observe only a
2 once an a has been observed, observe only b
3 if a.b occurs diagnose a fault

The plant is dynamically 2-diagnosable
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Dynamic Observers Dynamic Observers

Dynamic Observers

Definition (Dynamic Observer)

A dynamic observer Obs is a complete and deterministic labeled
automaton (S, s0, Σ, δ, L) s.t. ∀s ∈ S, ∀a ∈ Σ, if a 6∈ L(s) then δ(s, a) = s.

Definition ((Obs, k)-diagnoser)

D : Σ∗ → {0, 1} is an (Obs, k)-diagnoser for A if
◮ for each run ρ ∈ NonFaulty(A), D(Obs(π/Σ(tr(ρ)))) = 0 and

◮ for each run ρ ∈ Faulty≥k(A), D(Obs(π/Σ(tr(ρ)))) = 1.
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Dynamic Observers Dynamic Observers

Dynamic Observer and Diagnosability

Obs: 0 1 2
a/a

b/ε

b/b

a/ε a/ε

b/ε

B is (Obs, 2)-diagnosable.
Define D(a.b.ρ) = 1 and D(ρ) = 0 otherwise. D is 2-diagnoser.

Obs observes only one event in each state.
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Dynamic Observers Dynamic Observers

Checking Obs-diagnosability

[C. Tripakis Altisen, ACSD 2007]
(Obs, k)-diagnosability: A is (Obs, k)-diagnosable if there is an

(Obs, k)-diagnoser for A
Obs-diagnosability: A is Obs-diagnosable if ∃k ∈ N s.t.

A is (Obs, k)-diagnosable

Finite Obs-diagnosability Problem

Input: A, a finite state observer Obs.
Problem: Is A Obs-diagnosable ?

To check Obs-diagnosability, build a product A ⊗ Obs:
◮ initial state: (q0, s0)

◮ (q, s)
β

–→ (q′, s′) iff q
λ
–→ q′, s

λ/β
––––→ s′ for λ ∈ Σ,

◮ (q, s)
λ

–→ (q′, s) iff q
λ
–→ q′, and λ ∈ {ε, f}

A is Obs-diagnosable iff A ⊗ Obs is Σ-diagnosable
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Dynamic Observers Cost of an Observer

Comparing Dynamic Observers

0O1:

L(0) = {a}

1

L(1) = {b}

2

L(2) = ∅

a

b

b

a a

b

0O2: L(0) = {a, b}

b

a

◮ O1 observes less events than O2 in the long run
◮ O1 is less expensive than O2

New Problem: compute an optimal observer
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Dynamic Observers Cost of an Observer

Cost of an Observer

Cost of a run: average number of events observed along a run
Let Obs = (S, s0, Σ, δ, L)
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1 L(1) = ∅a

b a

b

◮ cost relative to observation of the output w of the plant:

◮ cost relative to the raw output w of the plant:
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Dynamic Observers Cost of an Observer

Computing the Cost of a Given Observer

ρ = q0
a1
––→ q1 · · · qn–1

an
––→ qn a run of the plant A

Let Obs be an observer and wi = π/Σ(tr(q0 · · · qi))

Cost2(ρ,Obs) =

1

n + 1
·

n∑

i=0

|L(δ(s0, wi)|

Maximal Cost of runs of length n:

Cost2(n, A,Obs) = max{Cost2(ρ,Obs) for ρ ∈ Runsn(A)}

The Cost of the pair (Obs,A) is

Cost2(A,Obs) = lim sup
n→∞

Cost2(n, A,Obs)

Theorem
Cost2(A,Obs) can be computed in PTIME.

How to compute the best or optimal observer ?
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Dynamic Observers Synthesis of Optimal Dynamic Observers

Bounded Cost Observer

Problem 2: Bounded Cost Observer
Input: A, k ∈ N and c ∈ N.
Problem:

(A). Is there an observer Obs s.t. A is (Obs,k)-diagnosable and
Cost2(Obs) ≤ c ?

(B). If the answer to (A) is “yes”, compute a witness observer Obs with
Cost2(Obs) ≤ c.

Steps to Solve Problem 2:
◮ Step 1: Compute the most liberal observer O;

i.e. obtain a representation of the set of all observers

◮ Step 2: Compute an optimal cost observer.

Theorem ([C. Tripakis Altisen, ACSD 2007])

There is a finite state most permissive observer for A.
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Dynamic Observers Synthesis of Optimal Dynamic Observers

Example: Most Permissive Observer
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Dynamic Observers Synthesis of Optimal Dynamic Observers

Optimal Dynamic Observer/Two-Player Game
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{b}
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◮ Player 1 chooses what to observe: X / Player 2 generates ρ.l, l ∈ X
◮ Player 1 and 2 produce plays
◮ given a strategy for Player 1 and the moves of Player 2

w(ρ) is the sum of the weights w1w2 · · · wn of the play ρ
Cost2(ρ,Obs) = w(ρ)/(|ρ| + 1)

◮ Goal for Player 1: minimize lim supn→∞
{w(ρ)/(|ρ| + 1) |ρ ∈ Runsn(A)}
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Dynamic Observers Synthesis of Optimal Dynamic Observers

Mean Payoff Games [Zwick & Paterson, TCS 1996]

◮ Weighted two-player games
◮ Each state s has a weight w(s)

can be done with weight on edges
◮ Goal of the Players:

◮ Player 1: minimize l0 = lim supw(ρ)/(|ρ| + 1)
◮ Player 2: maximize l1 = lim infw(ρ)/(|ρ| + 1)

◮ Results for weighted two-player games:
◮ ∃ν ∈ Q s.t. each player has a memoryless strategy to ensure

l0 ≤ ν and l1 ≥ ν
◮ ν can be effectively computed
◮ Memoryless strategies for both players can be effectively computed

◮ Solution to Problem 2:
1 Compute the most liberal observer O
2 Build a weighted graph game: O × A
3 Use Zwick & Paterson’s algorithm

Winning Strategy for Player 1 = Optimal Observer
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◮ ν can be effectively computed
◮ Memoryless strategies for both players can be effectively computed

◮ Solution to Problem 2:
1 Compute the most liberal observer O
2 Build a weighted graph game: O × A
3 Use Zwick & Paterson’s algorithm

Winning Strategy for Player 1 = Optimal Observer
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Conclusion & Future Work

Results:

◮ Dynamic observers for bounded diagnosis (k-diagnosability)
◮ Computation of the most permissive observer

[C. Tripakis Altisen, ACSD 2007]

◮ Cost & computation of the cost of a dynamic observers
◮ Existence of a finite optimal dynamic observer

◮ Effective computation of the optimal dynamic observer

Future Work:
◮ Exact complexity of Problem 2

◮ Implement the algorithm
◮ Extend to control of DES
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