
Skink: Static Analysis of Programs in

LLVM Intermediate Representation

(Competition contribution)

Franck Cassez, Anthony M. Sloane, Matthew Roberts, Matthew Pigram,
Pongsak Suvanpong, and Pablo Gonzalez de Aledo

Macquarie University, Sydney, Australia

Abstract. Skink is a static analysis tool that analyses the LLVM in-
termediate representation (LLVM-IR) of a program source code. The
analysis consists of checking whether there is a feasible execution that
can reach a designated error block in the LLVM-IR. The result of a pro-
gram analysis is “correct” if the error block is not reachable, “incorrect”
if the error block is reachable, or “inconclusive” if the status of the pro-
gram could not be determined. In this paper, we introduce Skink 2.0 to
analyse single and multi-threaded C programs.

1 Overview

Skink is a static analysis tool that analyses the LLVM intermediate repre-
sentation (LLVM-IR) of a source program. For instance, Skink can analyse
C/C++ programs using the LLVM-IR as generated by the Clang compiler.
The objective of the static analysis is to check whether a program is correct
w.r.t. a given specification. For C/C++ programs, the specification is provided
via assert(condition) statements in the C program. The aim of the analysis
is to determine whether a condition can be violated. In the SV-COMP setting,
assert calls VERIFIER error if the condition is false.

The LLVM-IR representation consists of a collection of functions made up of
blocks. A block represents a sequence of simple instructions (e.g., store, load,
function calls) and ends with a terminating instruction such as a branch that
points to the next block(s). The LLVM-IR we analyse contains a designated “er-
ror” block that corresponds to a call to VERIFIER error. A (feasible) program
trace (execution) that contains the error block is an error trace. A program is
incorrect if and only if it can generate an error trace.

2 Verification Approach

Skink’s strategy to determine whether an error trace exists uses the iterative
refinement of the trace abstraction algorithm of Heizmann [1,2]. First the LLVM-
IR of a source program is mapped to a control flow graph (CFG) which is a
finite labeled automaton. The labels are the “basic blocks” and the “choices”



(branching) of the LLVM-IR. In the automaton the labels are letters and do not
carry any special meaning.

The (regular) language accepted by the CFG is the set of traces leading to
an error block. These traces are abstract error traces: the CFG does not give any
semantics to the labels, and it is not guaranteed that any such trace is actually
feasible in the concrete program.

Checking whether a program is correct reduces to determining whether an
abstract error trace is feasible or equivalently whether the language of the CFG
contains a feasible abstract error trace. To determine whether a trace is feasible,
we take into account the semantics of the instructions of the basic blocks. This
is achieved by encoding a trace of the CFG as a logical statement and checking
whether this statement is satisfiable or not. If satisfiable, a feasible error trace
has been found and the program is incorrect. Otherwise, if a trace t is spurious,
an interpolant automaton can be computed that accepts t and other traces that
are infeasible for the same reason as t [1,2]. In the latter case, we can refine the
CFG and look for an error trace in the language of the CFG minus the language
accepted by the interpolant automaton. When this iterative refinement process
stops1 either no error traces remain and the program is correct or a feasible error
trace is discovered and the program is incorrect.

This algorithm can also be used for checking concurrent programs using the
product of the CFGs in each thread. This is in general not very effective as the
number of interleavings grows exponentially in the number of threads. The algo-
rithm implemented in Skink 2.0 to analyse multi-threaded C programs extends
our previous work that showed how to combine trace abstraction refinement and
partial-order reduction [3].2 In Skink 2.0 we have combined trace abstraction
refinement with state-of-the-art dynamic partial order reduction techniques [4].

3 Software Architecture

Skink 2.0 is developed in Scala and can directly analyse LLVM-IR programs.
Skink 2.0 is currently able to analyse programs in C (via Clang) but it is
trivially expandable to any language that can be compiled to LLVM-IR.

Front-end: Skink’s front-end is written using our sbt-rats parser generator [5]3

and our Kiama Scala library for language processing [6].4 We have developed
a Scala-LLVM parser that can read LLVM-IR and build an abstract syntax tree
(AST). Semantic analysis is performed on the AST to recover information such
as variable types. Skink 2.0 constructs CFGs for functions from the AST using
the Kiama attribute grammar methods.

1 It may never stop and in this case the analysis is inconclusive.
2 The implementation introduced in [3] has nothing in common with Skink; it was

limited to analysing programs written in a custom input language (but not C) and
implemented static partial-order reductions algorithms.

3 https://bitbucket.org/inkytonik/sbt-rats
4 https://bitbucket.org/inkytonik/kiama

2



Middle-end: Our Scala library Automat5 provides the automata-theoretic op-
erations (union, intersection, DFS, partial order reduction) that are needed in
the refinement algorithm. This is used to obtain candidate abstract error traces
(via a test for language emptiness) and to construct the refinements (difference
between two regular languages). On top of the automata-based refinement algo-
rithm, Skink 2.0 provides two core functionalities. The first is the encoding of
an abstract error trace into an SSA form and eventually a logical formula; this
logical formula is satisfiable if and only if the trace is feasible. Satisfiability is
determined by an SMT-solver (see Back-end section below). The second is the
computation of an interpolant automaton which is based on an annotation of an
infeasible trace with invariants.

Back-end: To check whether a (symbolic) abstract error trace is feasible we
use a Scala abstraction over the SMTLIB standard for common languages
and interfaces for SMT solvers. Our library MQ-scala-smtlib6 provides this
abstraction. MQ-scala-smtlib was also developed using sbt-rats and Kiama.

We support most of the SMT-solvers (including Z37, SMTInterpol8 and
CVC49) via a common Scala abstract interface. As a result we can choose which
solver to use at run time, and we may use multiple and different solvers during
the same program analysis. In the current implementation, Skink 2.0, we mostly
use Z3, SMTInterpol and CVC4, depending on the theories and operations we
need (linear integer arithmetic, arrays, bitvectors, interpolants) and on the SV-
COMP categories to analyse.

4 Strengths and Weaknesses

Skink 2.0 does not support the full LLVM-IR assembly language and our
front-end parser may fail to parse some LLVM-IR input. Another limitation
of Skink 2.0 is that we use the LLVM inlining capability (opt -inline) to ob-
tain a single CFG for each LLVM-IR. This may fail preventing the subsequent
program analysis. These limitations should be overcome in the next months
by extending our front-end Scala-LLVM parser and implementing our modular
analysis technique [7]. We may assume unbounded integers in the analysis and
this may result in false negatives due to overflow/underflow errors (in our tests
it happened once in the ControlFlow category).

On the positive side, Skink 2.0 can analyse programs that can be compiled
into LLVM-IR which makes it usable on a variety of languages including C/C++,
Objective C and Swift. A major strength of Skink 2.0 is that it can discover
loop invariants (interpolants) and is able to establish program correctness. Our
abstract Scala solver library MQ-Scala-smtlib provides access to a number
of theories (Arrays, BitVectors) and solver capabiltities (generate interpolants).

5 https://bitbucket.org/franck44/automat
6 https://bitbucket.org/franck44/mq-scala-smtlib
7 https://github.com/Z3Prover/z3
8 https://ultimate.informatik.uni-freiburg.de/smtinterpol/
9 http://cvc4.cs.nyu.edu/web/

3



Skink 2.0 is, to the best of our knowledge, the only tool that combines trace
abstraction refinement with a version (source-DPOR) of the optimal state-of-the-
art dynamic partial order reduction algorithm [4]. This enables us to efficiently
verify some programs in the Concurrency benchmarks category.

5 Set Up and Configuration

Participation statement: Skink opts-out from all categories except Integer and
Control Flow, Concurrency and BitVectors.

Set up and configuration: Skink 2.0 is available from http://science.mq.edu.
au/∼fcassez/sw/skinkv2.0.tgz. The archive includes all dependencies needed to
run it on Ubuntu Xenial Xerus 64-bit (16.04.1). skink.sh is the simplest and
the recommended way to run this Skink 2.0 distribution10. skink.sh should be
passed the C file on which analysis is to be performed. It will place along that file
the verification output (.verif) and the witness file (.graphml) as appropriate.

6 Software Project and Contributors

Skink 2.0 is developed by F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P.
Gonzalez, P. Suvanpong at the Department of Computing, Macquarie University.
The libraries used in Skink 2.0 are open-source software. More information can
be found at http://science.mq.edu.au/∼fcassez/software-verif.html.

References

1. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In
Palsberg, J., Su, Z., eds.: SAS. Volume 5673 of LNCS., Springer (2009) 69–85

2. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In Sharygina, N., Veith, H., eds.: CAV. Volume 8044 of LNCS.,
Springer (2013) 36–52

3. Cassez, F., Ziegler, F.: Verification of concurrent programs using trace abstraction
refinement. In Davis, M., Fehnker, A., McIver, A., Voronkov, A., eds.: LPAR-20
2015. Volume 9450 of LNCS., Springer (2015) 233–248

4. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In Jagannathan, S., Sewell, P., eds.: POPL ’14, San Diego, CA,
USA, January 20-21, 2014, ACM (2014) 373–384

5. Sloane, A.M., Cassez, F., Buckley, S.: The sbt-rats parser generator plugin for
Scala (tool paper). In: SCALA 2016, New York, NY, USA, ACM (2016) 110–113

6. Sloane, A.M.: Lightweight language processing in Kiama. In GTTSE 2009, Braga,
Portugal, July 6-11, 2009. Volume 6491 of LNCS., Springer (2009) 408–425

7. Cassez, F., Müller, C., Burnett, K.: Summary-based inter-procedural analysis via
modular trace refinement. In FSTTCS 2014. Volume 29 of LIPIcs., Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2014) 545–556

10 The required Scala run-time and libraries are bundled into the skink.jar file.

4


