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The Complexity of Codiagnosability
for Discrete Event and Timed Systems
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Abstract—In this paper we study the fault codiagnosis problem
for discrete event systems given by finite automata (FA) and timed
systems given by timed automata (TA). We provide a uniform
characterisation of codiagnosability for FA and TA which extends
the necessary and sufficient condition that characterises diag-
nosability. We also settle the complexity of the codiagnosability
problems both for FA and TA and show that codiagnosability
is PSPACE-complete in both cases. For FA this improves on the
previously known bound (EXPTIME) and for TA it is a new
result. We then generalise the previous results to the case of
dynamic observers. Finally we show that the codiagnosis problem
for TA under bounded resources is 2EXPTIME-complete.

Keywords-Fault Diagnosis, Discrete-Event Systems, Timed Au-
tomata

I. INTRODUCTION

Discrete-event systems [1], [2] (DES) can be modelled by
finite automata (FA) over an alphabet of observable events Σ.

The fault diagnosis problem is a typical example of a
problem under partial observation. The aim of fault diagnosis
is to detect faulty sequences of the DES. The assumptions are
that the behaviour of the DES is known and a model of it is
available as a finite automaton over an alphabet Σ ∪ {τ, f},
where Σ is the set of observable events, τ represents the
unobservable events, and f is a special unobservable event
that corresponds to the faults: this is the original framework
introduced by M. Sampath et al. [3] and the reader is referred
to this paper for a clear and exhaustive introduction to the
subject. A faulty sequence is a sequence of the DES containing
an occurrence of event f . An observer which has to detect
faults, knows the specification/model of the DES, and it is
able to observe sequences of observable events. Based on
this knowledge, it has to announce whether an observation
it makes (in Σ∗) was produced by a faulty sequence, a word
(Σ ∪ {τ, f})∗, of the DES or not. A diagnoser (for a DES)
is an observer which observes the sequences of observable
events and is able to detect whether a fault event has occurred,
although it is not observable. If a diagnoser can detect a fault
at most ∆ steps1 after it has occurred, the DES is said to
be ∆-diagnosable. It is diagnosable if it is ∆-diagnosable for
some ∆ ∈ N. Checking whether a DES is ∆-diagnosable
for a given ∆ is called the bounded diagnosability problem;
checking whether a DES is diagnosable is the diagnosability
problem.
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1Steps are measured by the number of transitions in the DES.

Checking diagnosability for a given DES and a fixed set of
observable events can be done in polynomial time using the
algorithms of [4], [5]. If a diagnoser exists there is a finite state
one. Nevertheless the size of the diagnoser can be exponential
as it involves a determinization step. The extension of this
DES framework to timed automata (TA) has been proposed by
S. Tripakis in [6], and he proved that the problem of checking
diagnosability of a timed automaton is PSPACE-complete.
In the timed case however, the diagnoser may be a Turing
machine. The problem of checking whether a timed automaton
is diagnosable by a diagnoser which is a deterministic timed
automaton was studied by P. Bouyer et al. [7].

Related Work. Codiagnosability generalises diagnosability by
considering decentralised architectures. Indeed many large
applications are physically distributed and in this case it might
be impossible or very expensive to observe on each local site
all the observable events in the system. This is why distributed
diagnosis has been introduced in [8] and later refined in [9],
[10]. In the seminal paper [8] about distributed diagnosis, 3
protocols are introduced for performing decentralised diagno-
sis. The variations are on the ability for local diagnosers to
communicate with a coordinator and for the coordinator to
gather information from local diagnosers.

In these protocols, local diagnosers (with their own par-
tial view of the system) can send some information to a
coordinator, summarising their observations. The coordinator
then computes a result from the partial observations of the
local diagnosers. The goal is to obtain a coordinator that
can detect the faults in the system. When local diagnosers
do not communicate with each other nor with a coordinator
(protocol 3 in [8]), the decentralised diagnosis problem is
called codiagnosis [10], [9]. In this case, codiagnosis means
that each fault can be detected by at least one local diagnoser.
Codiagnosis is a restricted yet useful and effective protocol:

• protocol 1 and 2 in [8] may introduce communication
delays that result in an additional delay in the detection
of faults;

• codiagnosis (protocol 3) is cheap because the coordinator
is a simple agent listening to local diagnosers; local di-
agnosers can detect faults and issue warnings themselves
without any need for a communication network;

• because of the distributed nature of some systems, it may
be impossible to build a centralized diagnoser. In the
example of Fig. 1, assume only {a, c} or {b, c} can be
observed, but a and b cannot observed at the same time.
The system depicted on Fig. 1 is not diagnosable by a
single agent observing either {a, c} or {b, c}, but it is
diagnosable by two agents (this result is established in



Section IV-B), one who observes {a, c} and another who
observes {b, c}. It is thus codiagnosable. Notice that there
are systems that are diagnosable but not codiagnosable
and thus codiagnosability and diagnosability are incom-
parable.
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Figure 1. A system that is codiagnosable but not diagnosable

In the paper [10], codiagnosability is considered and an
algorithm to check codiagnosability is presented for discrete
event systems (FA). The runtime of the algorithm is EX-
PTIME and this gives an upper bound for the complexity
of the codiagnosis problem. In [9], the authors consider a
hierarchical framework for decentralised diagnosis. In [11]
a notion of robust codiagnosability is introduced, which can
be thought of as a fault tolerant (local diagnosers can fail)
version of codiagnosability. None of the previous papers has
addressed the codiagnosability problems for timed automata.
Moreover, the exact complexity of the codiagnosis problems
is left unsettled for discrete event systems (FA).

Our Contribution. In this paper, we study the codiagnosabil-
ity problems for FA and TA. We settle the complexity of
the problems for FA (PSPACE-complete), improving on the
best known upper bound (EXPTIME). We also address the
codiagnosability problems for TA and provide new results:
algorithms to check codiagnosability and also codiagnosability
under bounded resources. We also address the codiagnosability
problem with dynamic observers for TA. Our contribution
is both of theoretical and practical interests. The algorithms
we provide are optimal, and can also be implemented us-
ing standard model-checking tools like SPIN [12] for FA,
or UPPAAL [13] for TA. This means that very expressive
languages can be used to specify the systems and very efficient
implementations and data structures are readily available.

Organisation of the Paper. Section II recalls the definitions of
finite automata and timed automata. We also give some results
on the Intersection Emptiness Problems (section II-F) that will
be used in the next sections. Section III introduces the fault
codiagnosis problems we are interested in, and a necessary
and sufficient condition that characterises codiagnosability for
FA and TA. Section IV contains the first main results: optimal
algorithms for the codiagnosability problems for FA and TA.
Section V describes how to synthesise the codiagnosers and
the limitations of this technique for TA. In Section VI, we
extend the results of Section IV to dynamic observers. Sec-
tion VII gives the second main result on the codiagnosability
problem under bounded resources for TA.

II. PRELIMINARIES

Σ denotes a finite alphabet and Στ = Σ∪{τ} where τ 6∈ Σ
is the unobservable action. B = {TRUE, FALSE} is the set of
boolean values, N the set of natural numbers, Z the set of
integers and Q the set of rational numbers. R is the set of
real numbers and R≥0 (resp. R>0) is the set of non-negative
(resp. positive) real numbers. We denote tuples (or vectors) by
d = (d1, · · · , dk) and write d[i] for di.

A. Clock Constraints

Let X be a finite set of variables called clocks. A clock
valuation is a mapping v : X → R≥0. We let RX≥0 be the set
of clock valuations over X . We let 0X be the zero valuation
where all the clocks in X are set to 0 (we use 0 when X is
clear from the context). Given δ ∈ R, v + δ is the valuation
defined by (v + δ)(x) = v(x) + δ. We let C(X) be the set
of convex constraints on X , i.e., the set of conjunctions of
constraints of the form x ./ c with c ∈ Z and ./∈ {≤, <
,=, >,≥}. Given a constraint g ∈ C(X) and a valuation v,
we write v |= g if g is satisfied by the valuation v. We also
write [[g]] for the set {v | v |= g}. Given a set R ⊆ X and a
valuation v of the clocks in X , v[R] is the valuation defined
by v[R](x) = v(x) if x 6∈ R and v[R](x) = 0 otherwise.

B. Timed Words

The set of finite (resp. infinite) words over Σ is Σ∗ (resp.
Σω) and we let Σ∞ = Σ∗ ∪ Σω . A language L is any subset
of Σ∞. A finite (resp. infinite) timed word over Σ is a word in
(R≥0.Σ)∗.R≥0 (resp. (R≥0.Σ)ω). Duration(w) is the duration
of a timed word w which is defined to be the sum of the
durations (in R≥0) which appear in w; if this sum is infinite,
the duration is ∞. Note that the duration of an infinite word
can be finite, and such words which contain an infinite number
of letters, are called Zeno words. We let Unt(w) be the untimed
version of w obtained by erasing all the durations in w. An
example of untiming2 is Unt(0.4 a 1.0 b 2.7 c) = abc. In this
paper we write timed words as 0.4 a 1.0 b 2.7 c · · · where
the real values are the durations elapsed between two letters:
thus c occurs at global time 4.1.

TW∗(Σ) is the set of finite timed words over Σ, TWω(Σ),
the set of infinite timed words and TW(Σ) = TW∗(Σ) ∪
TWω(Σ). A timed language is any subset of TW(Σ).

Let Σ′ ⊆ Σ be a sub-alphabet of Σ. Let πΣ′ be the
projection of timed words of TW(Σ) over timed words of
TW(Σ′). When projecting a timed word w on Σ′ ⊆ Σ, the
durations elapsed between two events are set accordingly:
for instance for the timed word 0.4 a 1.0 b 2.7 c, we
have π{a,c}(0.4 a 1.0 b 2.7 c) = 0.4 a 3.7 c (note that
projection erases some letters but keep the time elapsed
between two letters). Given a timed language L, we let
Unt(L) = {Unt(w) | w ∈ L}. Given Σ′ ⊆ Σ, πΣ′(L) =
{πΣ′(w) | w ∈ L}.

2When a timed word ends with a delay of duration 0, we may omit it and
write 0.2 a instead of 0.2 a 0.
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C. Timed Automata

Timed automata are finite automata extended with real-
valued clocks to specify timing constraints between occur-
rences of events. For a detailed presentation of the fundamental
results for timed automata, the reader is referred to the seminal
paper of R. Alur and D. Dill [15].

Definition 1 (Timed Automaton): A Timed Automaton A is
a tuple (L, l0, X,Στ , E, Inv, F,R) where: L is a finite set of
locations; l0 is the initial location; X is a finite set of clocks;
Σ is a finite set of actions; E ⊆ L × C(X) × Στ × 2X × L
is a finite set of transitions; in a transition (`, g, a, r, `′), g is
the guard, a the action, and r the reset set; as usual we often
write a transition `

g,a,r−−−−→ `′; Inv ∈ C(X)L associates with
each location an invariant; as usual we require the invariants
to be conjunctions of constraints of the form x � c with �∈
{<,≤}; F ⊆ L is the set of final locations and R ⊆ L is the
set of repeated locations. �
The size of a TA A is denoted |A| and it is the size of the
encoding of the transition relation E of A. Constants are given
in binary, and each clock constraint is encoded using a tuple:
2 clocks, one constant and an operator from the set {≤, <,=
, >,≥}. A state s of A is a pair (`, v) ∈ L×RX≥0. A run % of
A from (`0, v0) is a (finite or infinite) sequence of alternating
delay and discrete moves:

% = (`0, v0)
δ0−→ (`0, v0 + δ0)

a0−→ (`1, v1) · · ·

· · · an−1−−−→ (`n, vn)
δn−→ (`n, vn + δn) · · ·

s.t. for every i ≥ 0:
• vi + δi |= Inv(`i) (this implies vi + δ |= Inv(`i) for

0 ≤ δ ≤ δi because invariants are in C(X)L);
• there is some transition (`i, gi, ai, ri, `i+1) ∈ E s.t. : (i)
vi + δi |= gi, (ii) vi+1 = (vi + δi)[ri].

The set of finite (resp. infinite) runs in A from a state s is
denoted Runs∗(s,A) (resp. Runsω(s,A)). We let Runs∗(A) =
Runs∗(s0, A), Runsω(A) = Runsω(s0, A) with s0 = (l0, 0),
and Runs(A) = Runs∗(A) ∪ Runsω(A). If % is finite and
ends in sn, we let last(%) = sn. Because of the denseness
of the time domain, the unfolding of A as a graph is infinite
(uncountable number of states and delay edges). The trace,
tr(%), of a run % is the timed word πΣ(δ0a0δ1a1 · · · δnan · · · ).
The duration of the run % is Duration(%) = Duration(tr(%)).
For V ⊆ Runs(A), we let Tr(V ) = {tr(%) | % ∈ V }, which
is the set of traces of the runs in V .

A finite (resp. infinite) timed word w is accepted by A if it
is the trace of a run of A that ends in an F -location (resp. a
run that reaches infinitely often an R-location). L∗(A) (resp.
Lω(A)) is the set of traces of finite (resp. infinite) timed words
accepted by A, and L(A) = L∗(A)∪Lω(A) is the set of timed
words accepted by A. In the sequel we often omit the sets R
and F in TA and this implicitly means F = L and R = ∅
i.e., that infinite runs are discarded.

A deterministic timed automaton (DTA) A is a TA with no τ
transition and, whenever (`, g, a, r, `′) and (`, g′, a, r′, `′′) are
distinct transitions of A, g ∧ g′ ≡ FALSE. We note DTA the
class of deterministic timed automata. A is complete if from
each state (`, v), and for each action a, there is a transition
(`, g, a, r, `′) such that v |= g.

A finite automaton is a particular TA with X = ∅ and
we write DFA for a deterministic FA. Consequently guards
and invariants are vacuously true and time elapsing transitions
do not exist. We write A = (Q, q0,Στ , E, F,R) for a
finite automaton. A run is thus a sequence of the form:
% = `0

a0−→ `1 · · · · · ·
an−1−−−→ `n · · · where for each i ≥ 0,

(`i, ai, `i+1) ∈ E. Definitions of traces and languages are the
same as for TA. For FA, the duration of a run % is the number
of steps (including τ -steps) of %: if % is finite and ends in `n,
Duration(%) = n and otherwise Duration(%) =∞.

D. Region Graph of a Timed Automaton

A region of RX≥0 is a conjunction of atomic constraints of
the form x ./ c or x − y ./ c with c ∈ Z, ./∈ {≤, <,=
, >,≥} and x, y ∈ X . The region graph RG(A) of a TA A
is a finite quotient of the infinite graph of A which is time-
abstract bisimilar to A [15]. It is a finite automaton on the
(symbolic and finite) alphabet E′ = E ∪ {τ}. The states of
RG(A) are pairs (`, r) where ` ∈ L is a location of A and r
is a region of RX≥0. More generally, the edges of the graph are
tuples (s, t, s′) where s, s′ are states of RG(A) and t ∈ E′.
If t ∈ E and t = (`, g, λ,R, `′), the edge corresponds to the
discrete transition t of A and gives the resulting new region
after firing t. Notice that λ can be the unobservable action.
Otherwise t = τ and an edge labelled τ in RG(A) stands for
a delay move to the time-successor region. The initial state of
RG(A) is (l0, 0). A final (resp. repeated) state of RG(A) is a
state (`, r) with ` ∈ F (resp. ` ∈ R). A fundamental property
of the region graph [15] is:

Theorem 1 ([15]): L(RG(A)) = Unt(L(A)).
The (maximum) size of the region graph is exponential in
the number of clocks and in the maximum constant of the
automaton A (see [15]): |RG(A)| = O(|L| · |X|! · 2|X| ·K |X|)
where K is the largest constant used in A.

E. Product of Timed Automata

Given n locations `1, · · · , `n, we write ` for the tuple
(`1, · · · , `n) and let `[i] = `i. Given a letter a ∈ Σ1∪· · ·∪Σn,
we let I(a) = {k | a ∈ Σk}.

Definition 2 (Product of TA): Let Ai = (Li, l
i
0, Xi, Σiτ ,

Ei, Invi), i ∈ {1, · · · , n}, be n TA s.t. Xi ∩ Xj = ∅ for
i 6= j. The product of the Ai is the TA A = A1 × · · · ×
An = (L, l0, X,Στ , E, Inv) given by: L = L1 × · · · × Ln;
l0 = (l10, · · · , ln0 ); Σ = Σ1 ∪ · · · ∪ Σn; X = X1 ∪ · · · ∪Xn;
Inv(`) = ∧nk=1Inv(`[k]) and E ⊆ L × C(X) × Στ × 2X × L
and (`, g, a, r, `

′
) ∈ E if:

• either a ∈ Σ \ {τ}, and
1) for each k ∈ I(a), (`[k], gk, a, rk, `

′
[k]) ∈ Ek,

2) g = ∧k∈I(a)gk and r = ∪k∈I(a)rk;
3) for k 6∈ I(a), `

′
[k] = `[k];

• or a = τ and ∃j s.t. (`[j], gj , τ, rj , `
′
[j]) ∈ Ej , g = gj ,

r = rj and for k 6= j, `
′
[k] = `[k]. �

This definition of product also applies to finite automata.
If the automaton Ai has the set of final locations Fi then

the set of final locations for A is F1 × · · · × Fn. For Büchi
acceptance, we add a counter c to A which is incremented
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every time the product automaton A encounters an Ri-location
in Ai, following the standard construction [16] for product of
Büchi automata. The automaton constructed with the counter
c is A+. The repeated set of states of A+ is L1×· · ·×Ln−1×
Ln × {n}. As the sets of clocks of the Ai’s are disjoint3, the
following holds:

Fact 1: L∗(A)=∩ni=1L∗(Ai) and Lω(A+)=∩ni=1Lω(Ai).

F. Intersection Emptiness Problem

In this section we give some complexity results for the
emptiness problem on products of FA and TA. First consider
the following problem on deterministic finite automata (DFA):

Problem 1 (Intersection Emptiness for DFA):
INPUTS: n DFA Ai, 1 ≤ i ≤ n, over the alphabet Σ.
PROBLEM: Check whether ∩ni=1L(Ai) 6= ∅.
The size of the input for Problem 1 is

∑n
i=1 |Ai|. D. Kozen

proved that:
Theorem 2 ([17]): Problem 1 is PSPACE-complete.

We establish a variant of Theorem 2 which will be used later
in the paper: we show that Problem 1 is PSPACE-hard even
if A2, · · · , An are automata where all the states are accepting
and A1 is the only automaton with a proper set of accepting
states (actually one accepting state is enough).

Proposition 1: Let Ai, 1 ≤ i ≤ n be n DFA over the
alphabet Σ. If for all Ai, 2 ≤ i ≤ n, all states of Ai are
accepting, Problem 1 is already PSPACE-hard.

Proof: Let A1, A2, · · · , An be n deterministic automata
with accepting states F1, F2, · · · , Fn on the alphabet Σ. Let
λ be a fresh letter not in Σ. Define automaton A′i by: from
any state q in Fi, add a transition (q, λ,⊥) where ⊥ is new
state. Let F ′1 = {⊥} and F ′i be all the states of A′i. It is clear
that L∗(A′1) = L∗(A1).λ.

We can prove that ∩ni=1L∗(Ai) 6= ∅ ⇐⇒ ∩ni=1L∗(A′i) 6=
∅. Indeed, assume w ∈ ∩ni=1L∗(Ai) 6= ∅. Then A1 × A2 ×
· · ·×An reaches the state (q1, q2, · · · , qn) after reading w and
∀1 ≤ i ≤ n, qi ∈ Fi. Thus in A′1×A′2×· · ·×A′n the same state
can be reached and then λ can be fired in the product leading
to (⊥,⊥, · · · ,⊥). Conversely, if a word w is accepted by the
product A′1 × · · · × A′n, w must end with λ. Let w = u.λ ∈
∩ni=1L∗(A′i) 6= ∅. After reading u the state of the product
must be (q1, q2, · · · , qn) with ∀1 ≤ i ≤ n, qi ∈ Fi, and the
transitions fired when reading u are also in A1×A2×· · ·×An
which implies u ∈ ∩ni=1L∗(Ai).

The next results are TA counterparts of D. Kozen’s results.
Problem 2 (Intersection Emptiness for TA):

INPUTS: n TA Ai = (Li, l
i
0, Xi,Σ

i
τ , Ei, Invi, Fi), 1 ≤ i ≤ n

with Xk ∩Xj = ∅ for k 6= j.
PROBLEM: Check whether ∩ni=1L∗(Ai) 6= ∅.

Theorem 3: Problem 2 is PSPACE-complete.
Proof: checking ∩ni=1L∗(Ai) 6= ∅ on FA is already

PSPACE-hard [17] which establishes PSPACE-hardness.
PSPACE-easiness can be established as Theorem 31 (sec-

tion 4.1) of [18]: the regions of the product of TA Ai can
be encoded in polynomial space in the size of the clock
constraints of the product automaton. An algorithm to check
emptiness is obtained by: 1) guessing a sequence of pairs

3For finite automata, this is is vacuously true.

(location,region) in the product automaton and 2) checking
whether it is accepted. This can be done in NPSPACE and by
Savitch’s Theorem in PSPACE.
The previous theorem extends to Büchi languages:

Problem 3 (Büchi Intersection Emptiness for TA):
INPUTS: n TA Ai = (Li, l

i
0, Xi,Σ

i
τ , Ei, Invi, Ri), 1 ≤ i ≤ n

with Xk ∩Xj = ∅ for k 6= j.
PROBLEM: Check whether ∩ni=1Lω(Ai) 6= ∅.

Theorem 4: Problem 3 is PSPACE-complete.
Proof: PSPACE-hardness follows from the reduction of

Problem 2 to Problem 3 or again because checking Büchi
emptiness for timed automata is PSPACE-hard [15].

Consider the product automaton A+ the construction of
which is described at the end of section II-E. PSPACE-easiness
is established by: 1) guessing a state of RG(A+) of the form
((`, n), r) and 2) checking it is reachable from the initial
state (PSPACE) and reachable from itself (PSPACE). As n
is encoded in binary the result follows.

III. FAULT CODIAGNOSIS PROBLEMS

We first recall the basics of fault diagnosis. The purpose of
fault diagnosis [3] is to detect a fault in a system as soon as
possible. The assumption is that the model of the system is
known, but only a subset of the set of events Σ generated by
the system are observable. Faults are also unobservable.

In the sequel we distinguish the observations made by differ-
ent external observers. We assume that the set of observable
events is Σo ⊆ Σ. Whenever the system generates a timed
word w ∈ TW∗(Σ), an external observer can only see πΣo(w).
If an observer can detect faults under this partial observation
of the outputs of A, it is called a diagnoser. We require a
diagnoser to detect a fault within a given delay ∆ ∈ N.

To model timed systems with faults, we use timed automata
on the alphabet Στ,f = Στ ∪ {f} where f is the faulty
(and unobservable) event. We only consider one type of fault,
but the results we give are valid for many-types of faults
{f1, f2, · · · , fn}: indeed solving the many-types diagnosabil-
ity problem amounts to solving n one-type diagnosability
problems [5]. The observable events are given by Σo ⊆ Σ
and τ is always unobservable.

The idea of decentralised or distributed diagnosis was
introduced in [8]. It is based on decentralised architectures:
local diagnosers and a communication protocol. In these ar-
chitectures, local diagnosers (with their own partial view of the
system) can send to a coordinator some information, using a
given communication protocol. The coordinator then computes
a result from the partial results of the local diagnosers. The
goal is to obtain a coordinator that can detect the faults in
the system. When local diagnosers do not communicate with
each other nor with a coordinator (protocol 3 in [8]), the
decentralised diagnosis problem is called codiagnosis [10],
[9]. In this section we formalise the notion of codiagnosability
introduced in [10] in a style similar to [19]. This allows us to
obtain a necessary and sufficient condition for codiagnosability
of FA and to extend the definition of codiagnosability to TA.

In the sequel we assume that the model of the system is a
TA A = (L, l0, X, Στ,f , E, Inv) and is fixed.
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A. Faulty Runs

Let ∆ ∈ N. A run % = (`0, v0)
δ0−→ (`0, v0 + δ0)

a0−→
(`1, v1) · · · an−1−−−→ (`n, vn)

δn−→ (`n, vn + δ) · · · of A
is ∆-faulty if: there is an index i s.t. (1) ai = f and (2)
the duration of %′ = (`i, vi)

δi−→ · · · δn−→ (`n, vn + δn) · · ·
is larger or equal to ∆. We let Faulty≥∆(A) be the set of
∆-faulty runs of A. Note that by definition, if ∆′ ≥ ∆
then Faulty≥∆′(A) ⊆ Faulty≥∆(A). We let Faulty(A) =
∪∆≥0Faulty≥∆(A) = Faulty≥0(A) be the set of faulty runs
of A, and NonFaulty(A) = Runs(A) \ Faulty(A) be the set
of non-faulty runs of A. Finally, we let Faultytr

≥∆(A) =
Tr(Faulty≥∆(A)) and NonFaultytr(A) = Tr(NonFaulty(A))
which are the traces4 of ∆-faulty and non-faulty runs of A.

We also make the assumption that the TA A cannot prevent
time from elapsing. For FA, this assumption is that from
any state, a discrete transition can be taken. If it is not
case, τ loop actions can be added with no impact on the
(co)diagnosability status of the system. This is a standard
assumption in diagnosability and is required to avoid taking
into account these cases that are not interesting in practise.

For discrete event systems (FA), the notion of time is the
number of transitions (discrete steps) in the system. A ∆-
faulty run is thus a run with a fault action f followed by
at least ∆ discrete steps (some of them can be τ or even
f actions). When we consider codiagnosability problems for
discrete event systems, this definition of ∆-faulty runs apply.
The other definitions are unchanged.

Remark 1: A timed automaton where discrete actions are
separated by one time unit is not equivalent to using a
finite automaton when solving a fault diagnosis problem. For
instance, a timed automaton can generate the timed words
1.f.1.a and 1.τ.1.τ.1.a. In this case, it is 1-diagnosable: after
reading the timed word 2.a we announce a fault. If we do not
see the 1-time unit durations, the timed words f.a and τ2.a
give the same observation. And thus it is not diagnosable if we
cannot measure time. Using a timed automaton where discrete
actions are separated by one time unit gives to the diagnoser
the ability to count/measure time and this is not equivalent to
the fault diagnosis problem for FA (discrete event systems).

B. Codiagnosers and Codiagnosability Problems

A codiagnoser is a tuple of diagnosers, each of which has its
own set of observable events Σi, and whenever a fault occurs,
at least one diagnoser is able to detect it. In the sequel we write
πi in place of πΣi for readability reasons. A codiagnoser can
be formally defined as follows:

Definition 3 ((∆, E)-Codiagnoser): Let A be a TA over the
alphabet Στ,f , ∆ ∈ N and E = (Σi)1≤i≤n be a family of
subsets of Σ. A (∆, E)-codiagnoser for A is a mapping D =
(D1, · · · , Dn) with Di : TW∗(Σi)→ {0, 1} such that:
• ∀% ∈ NonFaulty(A),

∑n
i=1D[i](πi(tr(%))) = 0,

• ∀% ∈ Faulty≥∆(A),
∑n
i=1D[i](πi(tr(%))) ≥ 1. �

As for diagnosability, the intuition of this definition is that
(i) the codiagnoser will raise an alarm (D outputs a value

4Notice that tr(%) erases τ and f .

different from 0) when a ∆-faulty run has been identified,
and that (ii) it can identify those ∆-faulty runs unambiguously.
The codiagnoser is not required to do anything special for ∆′-
faulty runs with ∆′ < ∆ (although it is usually required that
once it has announced a fault, it does not change its mind and
keep outputting 1).
A is (∆, E)-codiagnosable if there exists a (∆, E)-co-

diagnoser for A. A is E-codiagnosable if there is some ∆ ∈ N
s.t. A is (∆, E)-codiagnosable.

The standard notions [3] of ∆-diagnosability and ∆-diag-
noser are obtained when E is the singleton E = {Σ}. The
fundamental codiagnosability problems for TA are:

Problem 4 ((∆, E)-Codiagnosability):
INPUTS: A TA A, ∆ ∈ N and E = (Σi)1≤i≤n.
PROBLEM: Is A (∆, E)-codiagnosable?

Problem 5 (E-Codiagnosability):
INPUTS: A TA A and E = (Σi)1≤i≤n.
PROBLEM: Is A E-codiagnosable?

Problem 6 (Optimal delay):
INPUTS: A TA A and E = (Σi)1≤i≤n.
PROBLEM: What is the minimum ∆ ∈ N s.t. A is (∆, E)-
codiagnosable?
The size of the input for Problem 4 is |A| + log ∆ + n · |Σ|,
and for Problems 5 and 6 it is |A|+ n · |Σ|.

In addition to the previous problems, we will consider the
construction of a (∆, E)-codiagnoser when A is (∆, E)-co-
diagnosable in section V. A necessary and sufficient condition
for diagnosability was already established in [3], but was stated
on a candidate diagnoser. We give here a simple language
based condition, valid in both the discrete and timed cases.

C. Necessary and Sufficient Condition for Codiagnosability

In this section we generalise the necessary and sufficient
condition for diagnosability from [6], [19] to codiagnosability.

Lemma 1: A is not (∆, E)-codiagnosable if and only if
∃% ∈ Faulty≥∆(A) and ∀1 ≤ i ≤ n,

∃%i ∈ NonFaulty(A) s.t. πi(tr(%)) = πi(tr(%i)). (1)

Proof: If part. Assume equation (1) holds and A is
(∆, E)-codiagnosable. There is a codiagnoser D = (D1, · · · ,
Dn) satisfying Def. 3. For each %i, Di(πi(tr(%i))) = 0 be-
cause each %i is non faulty. But we must also have for at least
one index i, Di(πi(tr(%i))) = Di(πi(tr(%))) = 1 because %
is ∆-faulty, which is impossible. Only If part. Assume A is
not (∆, E)-codiagnosable and ∀% ∈ Faulty≥∆(A), equation (1)
does not hold. In this case, there is an index 1 ≤ i ≤ n s.t. :

∀%′ ∈ NonFaulty(A),πi(tr(%)) 6= πi(tr(%′)).

When w ∈ πi(Faultytr
≥∆(A)) \ πi(NonFaultytr(A)) we let

Di(w) = 1 and 0 otherwise. Then D = (D1, · · · , Dn) is
a ∆-codiagnoser for A. Indeed, let % ∈ NonFaulty(A). Then
πi(tr(%)) ∈ πi(NonFaultytr(A)) and thus Di(πi(tr(%))) = 0.
Let % ∈ Faulty≥∆(A) and assume Di(πi(tr(%))) = 0 for
each 1 ≤ i ≤ n. By definition of Di we must have
πi(tr(%)) ∈ πi(NonFaultytr(A)). In this case, there is some
run %i ∈ NonFaulty(A) s.t. πi(tr(%)) = πi(tr(%i)) and thus
equation (1) holds which is a contradiction.
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Using Lemma 1, we obtain a language based characterisation
of codiagnosability extending the one given in [6], [19]. Let
π−1
i (X) = {w ∈ TW∗(Σ) | πi(w) ∈ X}.
Lemma 2: A is (∆, E)-codiagnosable if and only if

Faultytr
≥∆(A) ∩

( n⋂
i=1

π−1
i

(
πi(NonFaultytr(A))

))
= ∅. (2)

Proof: Assume equation 2 does not hold and let
w ∈ Faultytr

≥∆(A), and for each 1 ≤ i ≤ n, w ∈
π−1
i

(
πi(NonFaultytr(A))

)
. This implies that:

• ∃% ∈ Faulty≥∆(A) s.t. tr(%) = w;
• for each i, w ∈ π−1

i

(
πi(NonFaultytr(A))

)
and thus

πi(w) ∈ πi(NonFaultytr(A)). Thus, there is a run %i ∈
NonFaulty(A), s.t. πi(w) = πi(tr(%)) = πi(tr(%i)) and
equation (1) of Lemma 1 is satisfied.

For the converse, assume A is not (∆, E)-codiagnosable. By
Lemma 1, equation (1) is satisfied and:
• there is a run % with tr(%) ∈ Faultytr

≥∆(A);
• for each i, there is some %i ∈ NonFaulty(A)

s.t. πi(tr(%)) = πi(tr(%i)). Hence tr(%) ∈
π−1
i (πi(NonFaultytr(A))) for each i,

and this implies that equation 2 does not hold.

IV. ALGORITHMS FOR CODIAGNOSABILITY PROBLEMS

A. (∆, E)-Codiagnosability (Problem 4)

Deciding Problem 4 amounts to checking whether equa-
tion 2 holds or not. Recall that A = (L, l0, X,Στ,f , E, Inv).
Let t be a fresh clock not in X . Let Af (∆) = ((L×{0, 1})∪
{Bad}, (l0, 0), X ∪ {t},Στ , Ef , Invf ) with:
• ((`, n), g, λ, r, (`′, n)) ∈ Ef if n ∈ {0, 1} and

(`, g, λ, r, `′) ∈ E, λ ∈ Σ ∪ {τ};
• ((`, 0), g, τ, r ∪ {t}, (`′, 1)) ∈ Ef if (`, g, f, r, `′) ∈ E;
• for ` ∈ L, ((`, 1), t ≥ ∆, τ,∅, Bad) ∈ Ef ;
• Invf ((`, n)) = Inv(`) and Invf (Bad) = TRUE.

Af (∆) is similar to A but when a fault occurs it switches to
a copy of A (encoded by n = 1). When sufficient time has
elapsed in the copy (more than ∆ time units), location Bad
can be reached. The language accepted by Af (∆) with the
set of final states {Bad} is thus L∗(Af (∆)) = Faultytr≥∆(A).
Define Ai = (L, l0, Xi,Στ , Ei, Invi) with:
• Xi = {xi | x ∈ X} (create copies of clocks of A);
• (`, gi, λ, ri, `

′) ∈ Ei if (`, g, λ, r, `′) ∈ E, λ ∈ Σi ∪ {τ}
with: gi is g where the clocks x in X are replaced by their
counterparts xi in Xi; ri is r with the same renaming;

• (`, gi, τ, ri, `
′) ∈ Ei if (`, g, λ, r, `′) ∈ E, λ ∈ Σ \ Σi

• Invi(`) = Inv(`) with clock renaming (xi in place of x).
Each Ai accepts only non-faulty traces as the f -transitions
are not in Ai. If the set of final locations is L for
each Ai, then L∗(Ai) = πi(NonFaultytr(A)). To accept
π−1
i

(
πi(NonFaultytr(A)) we add transitions (`, TRUE, λ,∅, `)

for each location ` of Ei and for each λ ∈ Σ \ Σi. Let A∗i
be the automaton on the alphabet Σ constructed this way. By
definition of A∗i , L∗(A∗i ) = π−1

i

(
πi(NonFaultytr(A))

)
.

Define B = Af (∆)× A∗1 × A∗2 × · · · × A∗n with the set of
final locations FB = {Bad} × L × · · · × L. We let RB = ∅.
Using equation 2 we obtain:

Lemma 3: A is (∆, E)-codiagnosable iff L∗(B) = ∅.
Proof: The sets of clocks of the Ai’s and Af (∆) are

disjoint: for each 1 ≤ i < j ≤ n, Xi ∩ Xj = ∅ and Xi ∩
X = ∅. It follows from Fact 1 that L∗(B) = L∗(Af (∆)) ∩(⋂n

i=1 L∗(A∗i )
)
. By Lemma 2 and the construction of Af (∆)

and the Ai’s, the result follows.

Complexity. The size of the input for problem 4 is |A| +
log ∆ + n · |Σ|. The size of Af (∆) is (linear in) the size
of A and log ∆, i.e., O(|A| + log ∆). The size of A∗i is also
bounded by the size of A. It follows that |Af (∆)|+

∑n
i=1 |A∗i |

is in O((n+ 1)|A|) and is polynomial in the size of the input
of problem 4. We thus have a polynomial reduction from
Problem 4 to the intersection emptiness problem for TA. We
can now establish the following result:

Theorem 5:Problem 4 is PSPACE-complete for Timed Au-
tomata. It is already PSPACE-hard for Deterministic Finite
Automata.

Proof: PSPACE-easiness follows from the polynomial
reduction above and Lemma 3. PSPACE-hardness is obtained
by reducing the variant of the intersection emptiness problem
for DTA to the (∆, E)-codiagnosability problem. This problem
is PSPACE-hard (Proposition 1).

Let Ai, 1 ≤ i ≤ n, be n deterministic finite automata over
the alphabet Σ. Assume A1 has one accepting state and for
A2, · · · , An all states are accepting.

We construct B as shown on Fig. 2: a1, a2, · · · , an are fresh
letters not in Σ; the target state of ai, i ≥ 2 is the initial state
of Ai. The initial state of B is ι. Let Σi = Σ \ {ai} for each
1 ≤ i ≤ n. From the final state of A1 there is a transition
labelled f to a new state v and a transition a1 to the sink state
e.

We can prove that B is (1, E)-codiagnosable if and only
if ∩ni=1L∗(Ai) = ∅ with E = (Σi)1≤i≤n. Assume w ∈
∩ni=1L∗(Ai) 6= ∅. Take the run of trace τ.w.f.a1 in B. This
run is 1-faulty and π1(τ.w.f.a1) = w. For each 2 ≤ i ≤ n,
there is a run of trace ai.w which is non faulty and πi(ai.w) =
w and thus B is not (1, E)-codiagnosable.

Now, assume B is not (1, E)-codiagnosable. There is a 1-
faulty run, and this must be a run of trace τ.w.f.a1 with w ∈
L∗(A1) and π1(τ.w.f.a1) = w. Because B is not (1, E)-
codiagnosable, for each 2 ≤ i ≤ n, there is a non-faulty
run %i the trace of which is ui, with πi(ui) = w. For 2 ≤
i ≤ n, it must be the case that ui = ai.wi for some wi, as
otherwise πi(ui) would start with ak, k 6= i and thus it would
be impossible to have πi(ui) = w. As ui = ai.wi, πi(ui) =
wi = w, and w ∈ L∗(Ai). It follows that w ∈ ∩ni=1L∗(Ai)
and thus ∩ni=1L∗(Ai) is not empty.
Finally ∩ni=1L∗(Ai) 6= ∅ if and only if B is not (1, E)-
codiagnosable.

The size of B is in O(
∑n
i=1 |Ai| + n) which is equal

to O(
∑n
i=1 |Ai|) as |Ai| ≥ 1. The size of the input for

Problem 4 is thus O(
∑n
i=1 |Ai|) + n · (|Σ| + n) which is

quadratic and thus polynomial in
∑n
i=1 |Ai|. The intersection

emptiness problem for DTA is polynomially reducible to the
(∆, E)-codiagnosability Problem and Problem 4 is PSPACE-
hard for DTA.
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ι
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τ

A1

A2

Ak

An

Figure 2. Reduction for Theorem 5: Automaton B

B. E-Codiagnosability (Problem 5)
In this section we show how to solve the E-codiagnosability

problem. The algorithm is a generalisation of the procedure
for deciding diagnosability of discrete event and timed systems
(see [20] for a recent presentation).

First notice that A is not E-diagnosable if and only if for
all ∆ ∈ N, A is not (∆, E)-diagnosable.

For standard fault diagnosis (one diagnoser and E = {Σ}),
A is not diagnosable if there is an infinite faulty run in A the
projection of which is the same as the projection of a non-
faulty one [20].

The procedure for checking diagnosability of FA and TA
slightly differ due to specific features of timed systems. We
recall here the algorithms to check diagnosability of FA and
TA [20], [6] and extend them to codiagnosability.

1) Codiagnosability for Finite Automata: To check whether
a FA A is diagnosable, we build a synchronised product
Af × A1, s.t. Af behaves exactly like A but records in its
state whether a fault has occurred, and A1 behaves like A
without the faulty runs (transitions labelled f are cut off).
This corresponds to Af (∆) defined in section IV-A without
the clock ∆.

A faulty run in the product Af ×A1 is a run for which Af

reaches a faulty state of the form (q, 1). To decide whether
A is diagnosable we build an extended version of Af × A1

which is a Büchi automaton B [20]: B has a boolean variable
z which records whether Af participated in the last transition
fired by Af × A1. A state of B is a pair (s, z) where s is a
state of Af ×A1. B is given by the tuple ((Q×{0, 1}×Q)×
{0, 1}, ((q0, 0), q0, 0),Στ ,−→B,∅, RB) with:

• (s, z)
λ−−→B (s′, z′) if (i) there exists a transition t :

s
λ−−→ s′ in Af × A1, and (ii) z′ = 1 if λ is a move of

Af and z′ = 0 otherwise;
• RB = {(((q, 1), q′), 1) | ((q, 1), q′) ∈ Af ×A1}.

The important part of the previous construction relies on the
fact that, for A to be non Σ-diagnosable, Af should have an
infinite faulty run (and take infinitely many transitions) and A1

a corresponding non-faulty run (note that this one can be finite)
giving the same observation. With the previous construction,
we have [20]: B accepts the language L(B) = Lω(B) ⊆ Σω ,
and moreover A is diagnosable iff Lω(B) = ∅.

We examplify the construction of Af ×A1 for the example
of Fig. 1. Assume we can observe {a, c}. Automaton Af
is depicted in Fig. 3. Automaton A1 Fig. 4 (left). For A1

(and A2) we have used dashed arrows to denote b-loops as
b is not observed (see construction of Ai in Section IV-A.)

The product B = Af × A1 is given in Fig 5. We have

(q0, 0)

(q1, 1) (q2, 1) (q3, 1)

(q4, 0) (q5, 0)

τ

c

a

b

c

a

b

τ

τ

Figure 3. Automaton Af for A given in Fig. 1.

q0 q4 q5

q0 q4 q5

A1

A2

c

a

τ

τ

b b b

c

τ

b

τ

a a a

Figure 4. Automata A1 (observes {a, c}) and A2 (observes {b, c}).

omitted the sub-automaton built after transition c from the
initial state because it contains only non-faulty states and thus
is irrelevant to check Büchi emptiness of B. We can clearly
see that there is an infinite path in B and thus the automaton
of Fig. 1 is not diagnosable if we observe only {a, c}. As this
automaton is symmetric (replace a with b) it follows that it is
not diagnosable if we observe {b, c}.

(q0, 0), q0

non-faulty
states

(q1, 1), q0

(q2, 1), q0 (q3, 1), q4

(q3, 1), q5

c

τ

b

c

τ

τ

τ

Figure 5. Automaton B = Af ×A1

The construction for codiagnosability is an extension of the
previous one adding A2, · · · , An to the product. Let Bco =
Af ×A1 × · · · ×An with Ai defined in section IV-A. In Bco
we again use the variable z to indicate whether Af participated
in the last move. Define the set of repeated states of Bco by:
RBco = {(((q, 1), q), 1) | ((q, 1), q) ∈ Af × A1 × · · · × An}.
By construction, a state in RBco is: (1) faulty as it contains a
component (q, 1) for the state of Af and (2) Af participated
in the last move as z = 1. It follows that:

Lemma 4: A is E-codiagnosable iff Lω(Bco) = ∅.
Theorem 6: Problem 5 is PSPACE-complete for Determin-

istic Finite Automata.
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Proof: PSPACE-easiness follows form the fact that check-
ing whether Lω(Bco) = ∅ can be done in PSPACE (Theo-
rem 2). PSPACE-hardness follows from a reduction of Prob-
lem 1 to Problem 5 using the same encoding as the one given
in the proof of Theorem 5: the automaton B of Fig. 2 is not
(∆, E)-codiagnosable for any ∆ ∈ N.

For the example of Fig. 1, we can build Bco = Af×A1×A2

given in Fig. 3 and 4. We obtain the automaton of Fig. 6. As
Bco contains no infinite faulty path, the automaton of Fig. 1
is codiagnosable by observing {a, c} and {b, c}.

(q0, 0), q0, q0

non-faulty
states

(q1, 1), q0, q0

c
τ

Figure 6. Automaton Bco = Af ×A1 ×A2

2) Codiagnosability for Timed Automata: Checking diag-
nosability for timed automata requires an extra step in the
construction of the equivalent of automaton B defined above:
indeed, for TA, a run having infinitely many discrete steps
could well be Zeno, i.e., the duration of such a run can be
finite. This extra step in the construction was first presented
in [6]. It can be carried out by adding a special timed
automaton Div(x) and synchronising it with Af×A1. Let x be
a fresh clock not in X . Let Div(x) = ({0, 1}, 0, {x}, E, Inv)
be the TA given in Fig. 7. If we use F = ∅ and R = {1} for

0

[x ≤ 1]

1

[x ≤ 1]

x = 1; τ ; x := 0

x = 1; τ ; x := 0

Figure 7. Timed Automaton Div(x)

Div(x), any accepted run is time divergent and thus cannot be
zeno. Let D = Af ×Div(x)×A1 and let FD = ∅ and RD be
the set of states where Af is in a faulty location and Div(x)
is in location 1. For standard fault diagnosis, the following
holds [6], [20]: A is diagnosable iff Lω(D) = ∅.

The construction to check codiagnosability is obtained by
adding A2, · · · , An in the product. Let Dco = Af ×Div(x)×
A1 × · · · ×An.

Lemma 5: A is E-codiagnosable iff Lω(Dco) = ∅.
Theorem 7: Problem 5 is PSPACE-complete for TA.

Proof: The size of Dco is in O((n + 1) · |A|) and thus
polynomial in the size of the input of Problem 5 (|A|+n · |Σ|).
PSPACE-easiness follows because the intersection emptiness
problem for Büchi automata can be solved in PSPACE.
PSPACE-hardness holds because it is already PSPACE-hard
for FA.

C. Optimal Delay (Problem 6)

Using the results for checking E-codiagnosability and
(∆, E)-codiagnosability, we obtain algorithms for computing
the optimal delay.

Lemma 4 reduces codiagnosability of FA to Büchi empti-
ness on a product automaton. The number of states of the
automaton Bco is bounded by 4 · |A|n, and the number of
faulty states by 2 · |A|n. This implies that:

Proposition 2: Let A be a FA. If A is E-codiagnosable, then
A is (2 · |A|n, E)-codiagnosable.

Proof: If L(Bco) = ∅ there cannot be a faulty run of
length more than 2 · |A|n otherwise at least one faulty state
s will be encountered twice on this run, and in this case we
could construct an infinite faulty run which contradicts the fact
that L(Bco) = ∅.
From Proposition 2, we can conclude that:

Theorem 8: Problem 6 can be solved in PSPACE for FA.
Proof: Checking whether A is E-codiagnosable can be

done in PSPACE. If the result is “yes”, we can do a binary
search for the optimal delay: start with ∆ = 2·|A|n, and check
whether A is (∆, E)-codiagnosable. If “yes”, divide ∆ by 2
and so on. The encoding of 2 · |A|n has size O(n · log |A|) and
thus is polynomial in the size of the inputs of Problem 6.
For timed automata, a similar reasoning can be done on the
region graph of Dco. If a TA A is E-codiagnosable, there can-
not be any cycle with faulty locations in RG(Dco). Otherwise
there would be a non-zeno infinite word in L(Dco) and thus
an infinite time-diverging faulty run in A, with corresponding
non-faulty runs in each Ai, giving the same observation. Let
K be the size of RG(Dco). If A is E-codiagnosable, then a
faulty state in RG(Dco) can be followed by at most K states.
Otherwise a cycle in the region graph would occur and thus
Lω(Dco) would not be empty. This also implies that all the
states (s, r) in RG(Dco) that can follow a faulty state must
have a bounded region. As the amount of time that can elapse
in one region is at most 1 time unit5, the maximum duration
of a faulty run in Dco is bounded by K. This implies that:

Proposition 3: Let A be a TA. If A is E-codiagnosable,
then A is (K, E)-codiagnosable with K = |RG(Dco)|.
The size of the region graph of Dco is bounded by |L|n+1 ·
((n+1)|X|+1)!·2(n+1)|X|+1·M (n+1)|X|+1. Thus the encoding
of constant K has size O(n · |A|).

Theorem 9: Problem 6 can be solved in PSPACE for Timed
Automata.

Proof: Checking whether a TA A is E-codiagnosable
can be done in PSPACE. If the result is “yes”, we can do
a binary search for the maximum delay: start with ∆ = K =
|RG(Bco)|, and check whether A is (∆, E)-codiagnosable. If
“yes”, divide ∆ by 2 and so on. The encoding of K has size
O(n · |A|) and thus is polynomial in the size of the input of
Problem 6.

V. SYNTHESIS OF CODIAGNOSERS

A. Synthesis for Finite Automata

The synthesis of a codiagnoser for a FA A can be achieved
by determinizing n versions of A. This is exactly the same
procedure that is applied for standard diagnosis: assume
Σo ⊆ Σ is the set of observable events in A, and A is
(∆,Σo)-diagnosable. To build a ∆-diagnoser we proceed as
follows [5], [4]:

5The constants in the automata are integers.
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1) build Af as before and replace the events in Σ\Σo by τ ;
recall that f is also replaced by τ in Af and a boolean
value indicates whether a fault has occurred;

2) determinize Af and obtain B;
3) define the set of final states FB of B by: S =
{s1, s2, · · · , sl} is in FB iff for each 1 ≤ i ≤ l, si is
a faulty state of Af ;

4) a (∆,Σo)-diagnoser D for A can be constructed as
follows:

a) let % be a run of A and w = πΣo(tr(%)).
b) if when reading w, B reaches a state in FB , define

D(w) = 1,
c) otherwise D(w) = 0.

Applying this construction for each Σo = Σi, 1 ≤ i ≤ n,
we obtain a tuple D = (D1, D2, · · · , Dn) of diagnosers Di

which is a (∆, E)-codiagnoser for A. Note that the size of D
is exponential in the size of A (this is already the case for the
diagnosis problem).

For the example of Fig. 1, we obtain the tuple of diagnosers
given in Fig. 8. The set of final states for D1 and D2 is
depicted using double circles.

{q0}

{q2} {q3}

{q3, q4, q5} {q5}

D1
a c

c
a

{q0}

{q2} {q3}

{q3, q4, q5} {q5}

D2
b c

c
b

Figure 8. The codiagnoser for the example of Fig.1

B. Synthesis for Timed Automata

The synthesis of a diagnoser for timed automata [6] is
already more complicated than for FA. Timed automata are
not (always) determinizable [15] and thus we cannot use the
same procedure as for FA and determinize Af . Moreover,
checking whether a TA is determinizable is not decidable [21],
and it is thus impossible to check whether we can use the same
procedure.

The construction of a diagnoser for timed automata [6]
consists in computing on-the-fly the current possible states of
the timed automaton Af after reading a timed word w. This
procedure is effective but gives a diagnoser which is a Turing
machine. The machine computes a state estimate of A after
each observable event, and if it contains only faulty states, it
announces a fault.

Obviously the same construction can be carried out for
codiagnosis: we build Mi, 1 ≤ i ≤ n Turing machines that
estimate the state of A. When one Mi’s estimate on an input
Σi-trace w contains only faulty states, we set Di(w) = 1
and 0 otherwise. This tuple of Turing machines is a (∆, E)-
codiagnoser.

Computing the estimates with Turing machines might be
too expensive to be implemented at runtime. More efficient
and compact codiagnosers might be needed with reasonable
computation times. In the next section, we address the problem
of codiagnosis for TA under bounded resources.

VI. CODIAGNOSIS WITH DYNAMIC OBSERVERS

Dynamic observers for fault diagnosis of discrete-event
systems were introduced in [22], [19]. In contrast to static
observers that observe a fixed set of (observable) events given
by an alphabet Σo, dynamic observers can choose to observe
a new set of events after each occurrence of a (currently)
observable event. The benefit of this approach is to reduce the
observation to minimal sets of events and adjust it dynamically
during the course of execution of the system.

A. Dynamic Observers

The choice of the events to observe can depend on the
choices the observer has made before and on the observations
(event, time-stamp) it has made. Moreover an observer may
have unbounded memory. The following definition extends the
notion of observers introduced in [22] to the timed setting.

Definition 4 (Observer): An observer Obs (over Σ) is a
deterministic and complete timed automaton Obs = (N,n0, Y,
Σ, δ, InvTRUE) together with a mapping O : N → 2Σ′ , where
N is a (possibly infinite) set of locations, n0 ∈ N is the initial
location, Σ′ ⊆ Σ is the maximal set of observable events,
δ : N × Σ × C(Y ) → N × 2Y is the transition function (a
total function), and O is a labelling function that specifies the
set of events that the observer wishes to observe when it is
at location n. The invariant6 InvTRUE maps every location to
TRUE, implying that an observer cannot prevent time from
elapsing. We require that, for any location n and any a ∈ Σ,
if a 6∈ O(n) then δ(n, a, ·) = (n,∅): this means the observer
does not change its location nor resets its clocks when an event
it has chosen not to observe occurs. �
O only depends on the location of Obs, and we can extend
O to states of Obs (location, valuation) is a straightforward
manner: given a state (n, v) of Obs, O(n, v) is defined by
O(n).

Moreover, as an observer is deterministic we let δ(w) denote
the state (n, v) reached after reading the timed word w ∈
TW∗(Σ) from the initial state (n0, 0). It follows that O(δ(w))
is the set of events Obs observes after reading w.
An observer implicitly defines a transducer which is a map-
ping [[Obs]] : TW∗(Σ)→ TW∗(Σ′). Given a word w, [[Obs]](w)
is the output of the transducer on w. It is called the observation
of w by the observer Obs. Σ′ is the output alphabet of Obs.

B. Codiagnosability with Dynamic Observers

Definition 5 ((∆,O)-diagnoser): Let A be a TA over Στ,f ,
∆ ∈ N and O = (Obsi)1≤i≤n be a family of observers with
output alphabets Σi. A (∆,O)-codiagnoser for A is a mapping
D = (D1, · · · , Dn) with Di : TW∗(Σi)→ {0, 1} such that:

6In the sequel, we omit the invariant when a TA is an observer, and replace
it by the mapping O.

9



• ∀ρ ∈ NonFaulty(A),
∑n
i=1D[i]([[Obsi]](tr(%))) = 0,

• ∀ρ ∈ Faulty≥∆(A),
∑n
i=1D[i]([[Obsi]](tr(%))) ≥ 1. �

A is (∆,O)-codiagnosable if there is a (∆,O)-codiagnoser
for A. A is O-codiagnosable if there is some ∆ such that A
is (∆,O)-codiagnosable.

We now consider theO-codiagnosability when the observers
Obsi are DTA.

Problem 7 (Codiagnosis with DTA Observers):
INPUTS: A TA A and a family of DTA O = (Obsi)1≤i≤n.
PROBLEM:
(A) Is A O-codiagnosable?
(B) If the answer to (A) is “yes”, compute the minimum ∆ ∈

N s.t. A is (∆,O)-codiagnosable.
To solve Problem 7, we generalise Lemma 1 and Lemma 2
for dynamic observers. Let

[[Obsi]](L) = {Obsi(w), w ∈ L}
[[Obsi]]−1(L) = {w ∈ TW∗(Σ), [[Obsi]](w) ∈ L}.

Lemma 6: A is not (∆,O)-codiagnosable if and only if
∃% ∈ Faulty≥∆(A) and ∀1 ≤ i ≤ n,

∃%i ∈ NonFaulty(A) s.t. [[Obsi]](tr(%)) = [[Obsi]](tr(%i)). (3)

Proof: If part. Assume equation (3) holds and A is
(∆,O)-codiagnosable. In this case there is a codiagnoser D =
(D1, · · · , Dn) satisfying Def. 5. For each %i we must have
Di([[Obsi]](tr(%i))) = 0 because each %i is non faulty. But
there must be at least one index i with Di([[Obsi]](tr(%i))) =
Di([[Obsi]](tr(%))) = 1 because % is ∆-faulty, which is
impossible.

Only If part. Assume A is not (∆,O)-codiagnosable and
∀% ∈ Faulty≥∆(A), equation (3) does not hold. In this case,
there is an index 1 ≤ i ≤ n s.t. :

∀%′ ∈ NonFaulty(A), [[Obsi]](tr(%)) 6= [[Obsi]](tr(%′)).

When w ∈ [[Obsi]](Faultytr
≥∆(A)) \ [[Obsi]](NonFaultytr(A)),

define Di(w) = 1 when and 0 otherwise. Then D =
(D1, · · · , Dn) is a ∆-codiagnoser for A. Let % ∈
NonFaulty(A). Then [[Obsi]](tr(%)) ∈ [[Obsi]](NonFaultytr(A))
and thus Di([[Obsi]](tr(%))) = 0. Let % ∈ Faulty≥∆(A)
and assume Di([[Obsi]](tr(%))) = 0 for each 1 ≤ i ≤
n. By definition of Di we must have [[Obsi]](tr(%)) ∈
[[Obsi]](NonFaultytr(A)). In this case, there is some run %i ∈
NonFaulty(A) s.t. [[Obsi]](tr(%)) = [[Obsi]](tr(%i)) and thus
equation (3) holds which is a contradiction.

Lemma 7: A is (∆,O)-codiagnosable if and only if

Faultytr
≥∆(A)∩

( n⋂
i=1

[[Obsi]]−1
(
[[Obsi]](NonFaultytr(A))

))
= ∅.

(4)
Proof: Assume equation 4 does not hold and let

w ∈ Faultytr
≥∆(A), and for each 1 ≤ i ≤ n, w ∈

[[Obsi]]−1
(
[[Obsi]](NonFaultytr(A))

)
. This implies that:

• ∃% ∈ Faulty≥∆(A) s.t. tr(%) = w;
• for each i, w ∈ [[Obsi]]−1

(
[[Obsi]](NonFaultytr(A))

)
and

[[Obsi]](w) ∈ [[Obsi]](NonFaultytr(A)). Thus, there is a
run %i ∈ NonFaulty(A), s.t. [[Obsi]](w) = πi(tr(%)) =

[[Obsi]](tr(%i)) and as equation (3) of Lemma 6 is satis-
fied, A is not (∆,O)-codiagnosable.

Conversely, assume A is not (∆,O)-codiagnosable. By
Lemma 6, equation (3) is satisfied and:

• there is a run % with tr(%) ∈ Faultytr
≥∆(A);

• for each i, there is some run %i ∈ NonFaulty(A)
s.t. [[Obsi]](tr(%)) = [[Obsi]](tr(%i)). This implies that
tr(%) ∈ [[Obsi]]−1([[Obsi]](NonFaultytr(A))) for each i,

and this implies that equation 4 does not hold.
To check equation 4 we can build TA that accept

[[Obsi]]−1
(
[[Obsi]](NonFaultytr(A))

)
. Define Ai = A⊗Obsi =

(L×Ni, (`0, ni0), Xi ∪ Yi,Στ,f , Ei, Invi⊗) as follows:

• Xi = {xi | x ∈ X} (copies of the clocks of A);
• ((`, n), g′ ∧ gi, β, r

′ ∪ ri, (`
′, n′)) ∈ Ei if λ ∈ Σ,

(`, g, λ, r, `′) ∈ E, (n, gi, λ, ri, n
′) ∈ δi, g′ (resp. r′) is g

(resp. r) where each clock x is replaced by xi, β = λ if
λ ∈ O(n) and β = τ otherwise.

• ((`, n), g′, τ, r, (`′, n)) ∈ Ei if (`, g, τ, r, `′) ∈ E and g′

(resp. r′) is g (resp. r) where clock x is replaced by xi.
• Invi⊗(`, n) = Inv(`) with each clock x is replaced by xi.

The TA Ai = A ⊗ Obsi is an unfolding of A which
reveals what is observable under observer Obsi at each
product location. Each A ⊗ Obsi accepts only non-faulty
traces. If the set of final locations is L × Ni for each
A ⊗ Obsi, L∗(A ⊗ Obsi) = [[Obsi]](NonFaultytr(A)). To
accept [[Obsi]]−1

(
[[Obsi]](NonFaultytr(A))

)
, it remains to add

transitions ((`, n), TRUE, λ,∅, (`, n)) for each location (`, n)
and each λ 6∈ O(n). Let again A∗i be the automaton on
the alphabet Σ constructed this way. By definition of A∗i ,
L∗(A∗i ) = [[Obsi]]−1

(
[[Obsi]](NonFaultytr(A))

)
. Define B =

Af (∆)×A∗1×A∗2×· · ·×A∗n (Af (∆) defined in section IV-A)
with the set of final locations FB = {Bad}× (L×N1)×· · ·×
(L×Nn). We let RB = ∅. Using equation 4 we obtain:

Lemma 8: A is (∆,O)-codiagnosable iff L∗(B) = ∅.
Proof: The sets of clocks of the A∗i ’s and Af (∆) are

disjoint: for each 1 ≤ i < j ≤ n, Xi ∩ Xj = ∅ and Xi ∩
X = ∅. It follows from Fact 1 that L∗(B) = L∗(Af (∆)) ∩(⋂n

i=1 L∗(A∗i )
)
. By Lemma 2 and the construction of Af (∆)

and the A∗i ’s, the result follows.
Complexity. The size of the input for problem 4 is |A| +
log ∆+

∑n
i=1 |Obsi|. The size of Af (∆) is (linear in) the size

of A and log ∆, i.e., O(|A| + log ∆). The size of A∗i is also
bounded by the size of |A|·|Obsi|. Hence |Af (∆)|+

∑n
i=1 |A∗i |

is in O(|A|+ log ∆ +
∑n
i=1(|A| · |Obsi|)) and is polynomial

in the size of the input of problem 7. We thus have a polyno-
mial reduction from Problem 7 to the intersection emptiness
problem for TA. We can now establish the following result:

Theorem 10: Problem 7 is PSPACE-complete for TA and
already PSPACE-hard for DFA.

Proof: PSPACE-easiness follows from the polynomial
reduction described above and Lemma 8. PSPACE-hardness
for DFA holds because: (1) a static observer that observes
(Σ1, Σ2, · · · ,Σn) is a particular case of a dynamic observer
and (2) for static observers, Problem 7 is PSPACE-hard for
DFA (Theorem 5).
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VII. CODIAGNOSIS WITH DETERMINISTIC TIMED
AUTOMATA

The fault diagnosis problem using timed automata has been
introduced and solved by P. Bouyer et al. in [7]. The problem
is to determine, given a TA A, whether there exists a diagnoser
D for A, that can be represented by a deterministic timed
automaton.

We recall the result of [7] and after we study the corre-
sponding problem for codiagnosis.

A. Fault Diagnosis with Deterministic Timed Automata
When synthesising (deterministic) timed automata, an im-

portant issue is the amount of resources the timed automaton
can use: this can be formally defined [23] by the (number of)
clocks, Z, that the automaton can use, the maximal constant
max, and a granularity 1

m . As an example, a TA of resource
µ = ({c, d}, 2, 1

3 ) can use two clocks, c and d, and the clocks
constraints using the rationals −2 ≤ k/m ≤ 2 where k ∈ Z
and m = 3. A resource µ is thus a triple µ = (Z,max, 1

m )
where Z is a finite set of clocks, max ∈ N and 1

m ∈ Q>0 is the
granularity. A region of granularity µ of RX≥0 is a conjunction
of atomic constraints of the form x ./ c or x − y ./ c
with c = k

m for some k ∈ Z and −max ≤ c ≤ max,
./∈ {≤, <,=, >,≥} and x, y ∈ X . DTAµ is the class of
DTA of resource µ.

Remark 2: Notice that the number of locations of the DTA
in DTAµ is not bounded and hence this family has an infinite
(yet countable) number of elements.
If a TA A is ∆-diagnosable with a diagnoser that can be
represented by a DTA D with resource µ, we say that A
is (∆, D)-diagnosable. P. Bouyer et al. in [7] considered the
problem of deciding whether there exists a DTA diagnoser
with resource µ:

Problem 8 (∆-DTA-Diagnosability [7]):
INPUTS: A TA A = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N, a
resource µ = (Z,max, 1

m ).
PROBLEM: Is there any D ∈ DTAµ s.t. A is (∆, D)-
diagnosable ?

Theorem 11 ([7]): Problem 8 is 2EXPTIME-complete.
The solution to the previous problem is based on the

construction of a two-player safety game, GA,∆,µ. In this
game a set of states, Bad, must be avoided for A to be ∆-
diagnosable. The most permissive winning strategy gives the
set of all DTAµ diagnosers (the most permissive diagnosers)
which can diagnose A (or ∅ is there is none). We recall here
the construction of the two-player game.

Let A = (L, l0, X,Στ,f , E, Inv) be a TA, Σo ⊆ Σ. Define
A(∆) = (L1 ∪ L2 ∪ L3, l

1
0, X ∪ {z},Στ,f ,→∆, Inv∆) as

follows:
• Li = {`i, ` ∈ L}, for i ∈ {1, 2, 3}, i.e., Li elements are

copies of the locations in L,
• z is a (new) clock not in X ,
• for ` ∈ L, Inv(`1) = Inv(`), Inv(`2) = Inv(`) ∧ z ≤ ∆,

and Inv(`3) = TRUE,
• the transition relation is given by:

– for i ∈ {1, 2, 3}, `i (g,a,R)−−−−−−→∆ `′i if a 6= f and

`
(g,a,R)−−−−−−→ `′,

– for i ∈ {2, 3}, `i (g,f,R)−−−−−−→∆ `′i if a 6= f and

`
(g,f,R)−−−−−−→ `′,

– `1
(g,f,R∪{z})−−−−−−−−−→∆ `′2 if a 6= f and `

(g,f,R)−−−−−−→ `′,
– `2

(z=∆,τ,∅)−−−−−−−−→∆ `3.
The previous construction creates 3 copies of A: the system
starts in copy 1, when a fault occurs it switches to copy 2,
resetting the clock z, and when in copy 2 (a fault has occurred)
it can switch to copy 3 after ∆ time units (copy 3 could be
replaced by a special location Bad). We can then define L1 as
the non-faulty locations, and L3 as the ∆-faulty locations.

Given a resource µ = (Y,max, 1
m ) (X ∩ Y = ∅), a

minimal guard for µ is a guard which defines a region
of granularity µ. The (symbolic) universal automaton U =
({0}, {0}, Y,Σ, Eµ, Invµ) is specified by:
• Invµ(0) = TRUE,
• (0, g, a, R, 0) ∈ Eµ for each (g, a,R) s.t. a ∈ Σ, R ⊆ Y ,

and g is a minimal guard for µ.
U is finite because Eµ is finite. Nevertheless U is not

deterministic because it can choose to reset different sets of
clocks Y for a pair “(guard, letter)” (g, a). To diagnose A,
we have to find when a set of clocks has to be reset. This
can provide enough information to distinguish ∆-faulty words
from non-faulty words.
The algorithm of [7] requires the following steps:

1) define the region graph RG(A(∆)× U),
2) compute a projection of this region graph:

• let (g, a,R) be a label of an edge in RG(A(∆)×U),
• let g′ be the unique minimal guard s.t. [[g]] ⊆ [[g′]];
• let pU be the projection defined by pU (g, a,R) =

(g′, a, R ∩ Y ) if a ∈ Σo and pU (g, a,R) = τ
otherwise.

The projected automaton pU (RG(A(∆) × U)) is the
automaton RG(A(∆)×U) where each label α is replaced
by pU (α).

3) determinize pU (RG(A(∆)×U)) (removing τ actions) and
obtain HA,∆,µ.

4) build a two-player safety game GA,∆,µ as follows:

• each transition s
(g,a,Y )−−−−−−→ s′ in HA,∆,µ yields a

transition in GA,∆,µ of the form:

s (s, g, a) s′
(g, a) (g, a, Y )

• the round-shaped state are the states of Player 1,
whereas the square-shaped states are Player 0 states
(the choice of the clocks to reset).

• the bad states (for Player 0) are the states
{(`1, r1), · · · , (`k, rk)} with both a ∆-faulty (in L3)
and a non-faulty (in L1) location. We let Bad denote
the set of bad states.

The main results of [7] are:
• there is a TA D ∈ DTAµs.t. A is (∆, D)-diagnosable iff

Player 0 can win the safety game “avoid Bad” GA,∆,µ;
• it follows that Problem 8 can be solved in 2EXPTIME

as GA,∆,µ has size doubly exponential in A, ∆ and µ;
• a witness diagnoser D of size doubly exponential in A,

∆ and µ can be obtained: it is a deterministic timed
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automaton with a set of accepting locations F . When the
projection w of a timed word of A onto Σo is accepted
by D, D outputs 1 otherwise it outputs 0;

• the acceptance problem for Alternating Turing machines
of exponential space can be reduced to Problem 8 and
thus it is 2EXPTIME-hard.

Another result of [7] is that for Event Recording Automata
(ERA), Problem 8 is PSPACE-complete.

B. Algorithm for Codiagnosability

In this section we include the alphabet Σ of a DTA in the
resource µ and write µ = (Σ, Z,max, 1

m ).
Problem 9 (∆-DTA-Codiagnosability):

INPUTS: A TA A = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N, and a
family of resources µi = (Σi, Zi,maxi,

1
mi

), 1 ≤ i ≤ n with
Σi ⊆ Σ.
PROBLEM: Is there any codiagnoser D = (D1, D2, · · · , Dn)
with Di ∈ DTAµi s.t. A is (∆, D)-codiagnosable ?
To solve Problem 9, we extend the algorithm given in [7] for
DTA-diagnosability. Let Gi be the game GA,∆,µi and Badi
the set of bad states. Given a strategy fi, we let fi(Gi) be
the outcome7 of Gi when fi is played by Player 0. Given
w ∈ TW∗(Σ) and a DTA A on Σ, we let last(w,A) be the
location reached when w is read by A.

Lemma 9: A is (∆, D)-codiagnosable if and only if there
is a tuple of strategies f s.t. ∀1 ≤ i ≤ n,

(1) f [i] is state-based on the game Gi, and

(2) ∀w ∈ Tr(A),

{
If Si = last(πΣi(w), fi(G

i)),
then ∃1 ≤ j ≤ n, s.t. Sj 6∈ Badj .

Item (2) of Lemma 9 states that there is no word in A for
which all the Player 0 in the games Gi are in bad states. The
strategies for each Player 0 are not necessarily winning, but
there is always one Player 0 who has not lost the game Gi.

Proof: If part. Assume there is a tuple of state-based
strategies f = (f1, f2, · · · , fn) on each game Gi, s.t. (2) is
satisfied. From (1), each choice of Player 0 in Gi determines
one transition from each square state (see the definition of Gi

and square states in section VII-A). Thus the graph of Gi can
be folded into a set of transitions q

g,a,Y−−−→ q′ if the choice of
Player 0 is g, a, Y in square state (q, g, a). This gives a DTA
Gi,c. We can then build a diagnoser Di defined by the DTA as
follows: (i) for each state q = {(`1, r1), · · · , (`k, rk)} in Gi,c,
if all the `j are ∆-faulty, q is accepting; (ii) given w ∈ Tr(A),
if πΣi(w) ∈ L(Gi,c), let Di(πΣi(w)) = 1 and otherwise 0.
D is a ∆-codiagnoser for A. Indeed, let w ∈ NonFaultytr(A).
In each game Gi,c, we cannot reach a ∆-faulty state because
of (2). Hence

∑n
i=1D[i] = 0. Now assume w ∈ Faultytr≥∆(A):

In each Gi,c we must reach a state qi containing a ∆-faulty
state. By (2), there is some j s.t. qj 6∈ Badj and this implies
that qj is made only of ∆-faulty states and qj is accepting,
thus D[j](πΣj (w)) = 1.

Only If part. For this part we first show that a tu-
ple of strategies f exists and then address the state-
based problem. Let D = (D1, D2, · · · , Dn) be the tu-

7fi(G
i) is a timed transition system.

ple of DTA that diagnoses A. For each game Gi, de-
fine the strategy fi by: let % = (g1, λ1)(g1, λ1, Y1) · · ·
(gk−1, λk−1)(gk−1, λk−1, Yk−1)(gk, λk) be a run in Gi;
fi(%) = (g, a, Y ) if in Di the symbolic sequence
(g1, λ1) · · · (gk, λk) reaches a location ` and there is a tran-
sition (`, (g, a, Y ), `′) in Di. By assumption, as D is a ∆-
codiagnoser, for each w ∈ Faultytr≥∆(A), there is at least one
Dj which reaches an accepting state after reading πΣj (w).

As a consequence, in the corresponding game, Gj , the state
reached is made only of ∆-faulty states. Indeed, if a non-faulty
state is reachable, then the word w is also the projection of
a non faulty run. Hence Dj should announce 0 which is a
contradiction.

If w ∈ NonFaultytr(A), all the states reached in each Gi

are non faulty.
Now assume we have the strategies fi, 1 ≤ i ≤ n. We can

construct state-based strategies on each game Gi. Given f1,
(not necessarily winning) on G1, let T1 be the set of bad states
reachable in f1(G1). Define the language L1 to be the set of
words w ∈ Tr(A) s.t. a state in T1 is reachable in f1(G1)
when reading πΣ1(w). These are the words on which f1 is
not winning in G1.

Let Reach(f1(G1)) be the set of states reachable in G1.
There is a strategy (f1) to avoid B1 = Reach(G1) \
Reach(f1(G1)). Hence there is a state-based strategy f ′1 that
avoids B1.

Let 1 ≤ i < n. Consider the game fi+1(Gi+1) restricted to
the (projections of the) words w ∈ Li. The idea is that on Li,
a strategy fj , j ≤ i is winning in Gj . In this restricted game,
we define the set Ti+1 of bad states that are still reachable.
Let Li+1 be the set of words w ∈ Tr(A) s.t. a state in Ti+1 is
reachable in the restricted timed transition system fi+1(Gi+1).

Notice that we can construct a state-based strategy f ′i which
avoids the same states as fi does. For each restricted game
f ′i(G

i) we define the diagnoser Di as before. If for some i,
Li = ∅, we can define the diagnosers Dk, k ≥ i to always
announce 0 for each word.
f ′ is a (∆, E)-codiagnoser for A and all the f ′[i] are state-

based on Gi.
From the previous Lemma, we can obtain the following

result:
Theorem 12: Problem 9 is 2EXPTIME-complete.

Proof: 2EXPTIME-hardness follows from Theorem 11,
from [7]. 2EXPTIME easiness is obtained using the following
algorithm:

1) compute the games Gi, 1 ≤ i ≤ n;
2) select a state-based strategy on each game Gi;
3) check condition (2) of Lemma 9.

The sizes of the games Gi are doubly exponential in A, ∆
and the resources µi (recall that Σi is included in µi). There
is a doubly exponential number of state-based strategies for
each game Gi. Once selected we have a DTA Gi,c.

Checking condition (2) of Lemma 9 can be done on the
product A(∆) × G1,c × · · · × Gn,c. It amounts to deciding
whether a location in L3 × Bad1 × · · ·Badn is reachable.
Reachability can be checked in PSPACE for product of TA
(Theorem 2). As the size of the input is doubly exponential
in the size of A, this results in a 2EXPSPACE algorithm.
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∆-Codiagnosability Codiagnosability Optimal Delay Synthesis
(Bounded Resources)

Dynamic
Codiagnosability

FA PSPACE-C.
PTIME [5], [4]

PSPACE-C.
PTIME [5], [4]

PSPACE
PTIME [5], [4]

EXPTIME
EXPTIME [3]

PSPACE-C.
PTIME [19]

TA PSPACE-C.
PSPACE-C. [6]

PSPACE-C.
PSPACE-C. [6]

PSPACE
PSPACE [20]

2EXPTIME-C.
2EXPTIME-C. [7]

PSPACE-C.
PTIME [24]

Table I
SUMMARY OF THE RESULTS

Nevertheless, there is no exponential blow up in the number
of clocks of the product. Actually the size of RG(A(∆) ×
G1,c×· · ·×Gn,c) is |L| ·22|A|+|µ1| · · · · ·22|A|+|µn| · (n · |X|)! ·
2n·|X| ·Kn·|X| with K the maximal constant in A, ∆, and the
resources µi. It is doubly exponential in the size of A, ∆ and
the resources µi. Reachability can be checked in linear time
on this graph and thus in doubly exponential time in the size
of A, ∆ and the resources. Step 3 above is done at most a
doubly exponential number of times and the result follows.

VIII. CONCLUSION

Table I gives an overview of the results described in this
paper (bold face) for the codiagnosis problems in comparison
with the results for the diagnosis problems (second line,
normal face).
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