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Abstract

We investigate expressiveness questions for time Petri nets (TPNs) and some

their most usefull extensions. We first introduce generalised time Petri nets

(GTPNs) as an abstract model that encompasses variants of TPNs such as self

modifications and read, reset and inhibitor arcs.

We give a syntactical translation from bounded GTPNs to timed automata

(TA) that generates isomorphic transition systems. We prove that the class of

bounded GTPNs is stricly less expressive than TA w.r.t. weak timed bisim-

ilarity. We prove that bounded GTPNs, bounded TPNs and TA are equally

expressive w.r.t. timed language acceptance. Finally, we characterise a syntac-

tical subclass of TA that is equally expressive to bounded GTPNs “à la Merlin”

w.r.t. weak timed bisimilarity. These results provide a unified comparison of

the expressiveness of many variants of timed models often used in practice. It

leads to new important results for TPNs. Among them are: 1-safe TPNs and

bounded-TPNs are equally expressive; ε-transitions strictly increase the expres-

sive power of TPNs; self modifying nets as well as read, inhibitor and reset arcs

do not add expressiveness to bounded TPNs.
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Equivalence, Bisimilarity

1. Introduction

In the last decade, a number of extensions of Petri Nets (PNs) with time

have been proposed: among them are Stochastic Petri Nets, as well as several

variants of so-called time or timed Petri nets. Stochastic Petri Nets are now

well-known and a large body of work is devoted to this model whereas the

theoretical properties of the other timed extensions have not been as thoroughly

investigated.

Petri Nets with Time. Previous studies [2, 3, 4] consider timed arc Petri

nets where each token has a clock representing its “age” but a lazy (non-urgent)

semantics of the net is assumed: this means that the firing of transitions may

be delayed, even if this implies that some transitions are disabled because their

input tokens become too old. The semantics for this class of Petri nets enjoys

nicemonotonicity properties and they fall into a class of systems for which many

problems are decidable.

In comparison, the other timed extensions of Petri Nets (apart from Stochas-

tic Petri Nets), i.e. time Petri nets (TPNs) [5] and timed Petri nets [6], do not

have such nice monotonicity properties although the number of clocks to be

considered is finite (one per transition). Also those models are very popular in

the Discrete Event Systems and industrial communities [7, 8, 9] as they allow

to model real-time systems in a simple and elegant way and there are tools to

check properties of time Petri Nets [10, 11, 12].

For TPNs, a transition can fire within a time interval whereas for timed Petri

nets it fires as soon as possible. For timed Petri nets, time can be considered

relative to places (P-timed Petri nets), arcs (A-timed Petri nets) or transitions

(T-timed Petri nets) [13, 14]. The same classes are defined for TPNs i.e. T-

TPNs [5, 15], A-TPNs [16] and P-TPNs [17]. A comparison of the expressiveness

of these variants w.r.t. (weak) timed bisimilarity can be found in [18].
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In this paper, we address the class of T-TPNs, which is the most commonly-

used subclass of TPNs. It will henceforth be referred to as TPNs.

PNs with read, inhibitor and reset arcs, self-modifying nets. Petri

nets can be extended by adding new types of arcs: read arcs enable to check

the contents of a place without removing the tokens in it; inhibitor arcs prevent

the firing of a transition if a place contains some tokens; reset arcs flush the

input places. Petri nets with at least two inhibitor arcs (or “zero test”) are

Turing-powerful [19]. Moreover, in [20], the authors prove that the reachability

problem is undecidable for PNs with reset arcs. In [21], it has been proved that

for any PN N with reset arcs, there is a PN N ′ with inhibitor arcs s.t. N and

N ′ are (weakly) bisimilar. Moreover read arcs do not add expressivity to PNs

since a read arc between a place p and a transition t can be simulated by two

arcs (p, t) and (t, p). This simulation does not hold for TPNs since reading the

place p imposes to fire t and this will reset all clocks associated with transitions

enabled by p. More broadly, the expressiveness of these arcs (read, reset and

logical inhibitor) associated with TPNs is still an open problem.

Self-modifying nets [22] are yet another extensions of PNs in which the

weights of the arcs can be specified either as constants or as the current marking

of some place of the net. It has been shown that self-modifying nets are strictly

more expressive w.r.t language acceptance than (standard) Petri nets [22]. As

for the read/reset/inhibitor arcs above, the expressiveness of this extension for

TPNs is also an open problem.

Timed Automata. Timed automata (TA) were introduced by Alur & Dill [23,

24] and have since been extensively studied. This model is an extension of finite

automata with (dense time) clocks for the specification of real-time systems.

Theoretical properties of various classes of TA have been considered in the last

two decades. For instance, classes of determinizable TA such as Event Clock

Automata are investigated in [25] and form a strict subclass of TA.

TA vs TPNs. In a previous work [26] we have proved that TPNs form a

subclass of TA in the sense that every TPN can be translated in a strongly timed
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bisimilar TA. This translation however needs a full state-space computation. A

similar result can be found in [27], with a syntactical translation, but gives only a

weak timed bisimulation. In another line of work, in [28], the authors compare

timed state machines and time Petri nets. They give a translation from one

model to another that preserves timed languages. However, they consider only

constraints with closed intervals and do not deal with general timed languages

(i.e. Büchi timed languages).

In the preliminary version of this paper [1] we showed that TA are strictly

more expressive than TPNs w.r.t. weak timed bisimilarity and we proposed

a translation from TA to TPNs, which preserves timed language acceptance.

In [29], Berthomieu et al. extend the TPN model with specific priorities to

establish an equivalence with TA w.r.t. weak timed bisimilarity. In [30], a

strict subclass of TA is identified which is equivalent to bounded TPNs w.r.t.

weak timed bisimilarity. In [31] the authors provide a translation from TA with

diagonal constraints and general resets of clocks to TPNs, which preserves timed

language acceptance. However, this translation does not include invariants in

TA, introduces new deadlocks into the system and does not consider infinite

timed words. Finally, [32] provides an overview of the known results about the

relationships among these models.

Our Contribution. In this article, we introduce generalised time Petri nets

(GTPNs) as an abstract model that encompasses many of the variants of TPNs

described previously. We then precisely compare the expressive power of TA

vs. generalised TPNs using the notions of timed language acceptance and timed

bisimilarity. This extends the previously mentioned results of [1] and [27] to

GTPNs.

The results of the paper are summarised in Table 2: all the results are new,

except the ones followed by [27] or [1] (which is the preliminary version of this

paper). The names of the classes used in the sequel are defined in Table 1,

where the following conventions apply: an ε subscript means that ε-transitions

are allowed in the class (and not allowed otherwise), a B indicates a subclass of
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bounded Petri nets (and no boundedness assumption otherwise).

Name Class

GTPNε generalised labelled time Petri nets (with ε-transitions)
B-GTPNε bounded GTPNε

TPNε labelled time Petri Nets (with ε-transitions)
B-TPNε bounded TPNε

1-B-TPNε subclass of B-TPNε with at most one token in each place
(one safe TPN)

TAε timed automata (with ε-transitions)

Class
for any class Classε above, Class is the subclass of Classε
without ε-transitions

Class(≤,≥)
for any class Class above, Class(≤,≥) is the subclass of
Class with only non-strict temporal constraints

TAsyn
ε (≤,≥)

syntactical subclass of TAε that is equivalent to
B-TPNε(≤,≥) (see Section 7)

Table 1: Names of the different classes of TPNs and TA

Timed language acceptance Timed bisimilarity

B-GTPN
≤L TA

<S TA
<L 1-B-TPNε

B-GTPNε
=L TAε

<W TAε
=L 1-B-TPNε =L B-TPNε

B-GTPNε(≤,≥)
=L TAsyn

ε (≤,≥) =W TAsyn
ε (≤,≥)

=L 1-B-TPNε(≤,≥) =W 1-B-TPNε(≤,≥)

TPNε
>L TAε

incomparable
with TAεGTPNε

Emptiness Problem Universality Problem

B-TPNε Decidable [27] Undecidable [1]

B-GTPNε Decidable Undecidable

Table 2: Summary of the Results

In the table, �L, �W and �S with �∈ {<,≤} means “less expressive”

for ≤ and “strictly less expressive” for <, w.r.t. respectively timed language

acceptance, weak timed bisimilarity and strong timed bisimilarity (the relations

can also be used the other way around: >L means “strictly more expressive”);

=L means “equally expressive as” w.r.t. language acceptance and =W “equally

expressive as” w.r.t. weak timed bisimilarity. Fig. 1 gives a picture on how
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TPNε
TAε

=L 1-B-TPNε

=L B-TPNε

=L B-GTPNε

2CM

B-TPN

(a) w.r.t. timed language acceptance

TPNε

A0

2CM

B-GTPNε

TAε

B-GTPNε

=W B-TPNε

=W 1-B-TPNε

B-GTPNε(≤,≥)
=W B-TPNε(≤,≥) =W 1-B-TPNε(≤,≥) =W TA

syn
ε (≤,≥)

(b) w.r.t. timed bisimilarity

Figure 1: Expressivness of TPNε vs TAε

the different classes are intertwined with each other (2CM stands for 2-counter

machines).

Outline of the paper. Section 2 gives notations and introduces timed lan-

guages and timed bisimulation. Section 3 introduces TA and generalised time

Petri nets and show how they supersede all the extensions of TPNs (with self-

modification and read/reset/inhibitor arcs). In Section 4, we extend the result

of [27] to the generalised class B-GTPN and give a syntactical translation that

preserves isomorphism of the underlying timed transitions systems. In Section 6

we focus on timed language acceptance and we propose a structural translation

from TAε to 1-B-TPNε preserving timed language acceptance. We then prove
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that TAε and bounded GTPNε are equally expressive w.r.t. timed language

acceptance. This enables us to obtain new results on TPNs given by corollar-

ies 2 to 3, page 36. Finally, in Section 7, we characterise a syntactical subclass

TAsyn
ε (≤,≥) of TA that is equivalent, w.r.t. timed bisimilarity, to the original

version of bounded TPNs (with closed intervals) i.e. TPNs “à la Merlin”[5].

This enables us to obtain new results on TPNs “à la Merlin” given by corollar-

ies 7 to 10, page 43.

2. Basic Notations and Definitions

2.1. Notations

Let Σ be a finite alphabet, Σ∗ (resp. Σω) denotes the set of finite (resp.

infinite) sequences of elements (or words) of Σ and Σ∞ = Σ∗∪Σω . For w ∈ Σ∞

we write |w| for the length of w, which is ∞ if w ∈ Σω. We also use Σε = Σ∪{ε}

with ε 6∈ Σ, where ε is both the empty word and the silent letter.

If A and B are two sets, BA stands for the set of mappings from A to

B. If A is finite and |A| = n, an element of BA can be viewed as a vector

of Bn. The usual operators +,−, < and = are used on vectors of An with

A ∈ {N,Q,R} (which denote respectively the sets of natural, rational and real

numbers) and are the point-wise extensions of their counterparts in A. The set

B denotes the boolean values {tt,ff}, R≥0 denotes the set of non-negative reals

and R>0 = R≥0 \ {0}.

An interval is a convex subset of R≥0. In the sequel, we mainly use the set

I(Q≥0) of intervals with lower bound in Q≥0 and upper bound in Q≥0 ∪ {∞}.

Open intervals do not contain their bounds, closed intervals contain them and

semi-open (or semi-closed) intervals contain only one of the bounds. For an

interval I, we let I↓ = {x | 0 ≤ x ≤ y for some y ∈ I} to be the (positive)

downward closure of I and I↑ = {x | x ≥ y for some y ∈ I} to be the upward

closure of I. As I is convex we have I = I↓ ∩ I↑.

A valuation ν over a set of variables X is an element of RX
≥0. For ν ∈ RX

≥0

and d ∈ R≥0, ν + d denotes the valuation defined by (ν + d)(x) = ν(x) + d, and

for X ′ ⊆ X , ν[X ′ 7→ 0] denotes the valuation ν′ with ν′(x) = 0 for x ∈ X ′ and
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ν′(x) = ν(x) otherwise. 0X denotes the valuation s.t. ∀x ∈ X, ν(x) = 0, and we

omit the subscript X when it is clear from the context. An atomic constraint

is a formula of the form x ⊲⊳ c for x ∈ X , c ∈ Q≥0 and ⊲⊳∈ {<,≤,≥, >}. The

constraint is said to be non-strict if ⊲⊳∈ {≤,≥} and strict if ⊲⊳∈ {<,>}. The

set of constraints over a set X of variables is denoted by C(X) and consists of

conjunctions of atomic constraints. Given a constraint ϕ ∈ C(X) and a valuation

ν ∈ RX
≥0, we denote ϕ(ν) ∈ B the truth value obtained by substituting each

occurrence of x in ϕ by ν(x). We let [[ϕ]]= {ν ∈ RX
≥0 | ϕ(ν) = tt}.

2.2. Timed Languages and Timed Transition Systems

A timed word w over Σ is a finite or infinite sequence w = (a0, d0)(a1, d1) · · ·

(an, dn) · · · s.t. for each i ≥ 0, ai ∈ Σ, di ∈ R≥0 and di+1 ≥ di.

A timed word w = (a0, d0)(a1, d1) · · · (an, dn) · · · over Σ can be viewed

as a pair (v, τ) ∈ Σ∞ × R∞
≥0 s.t. |v| = |τ |. The value dk gives the ab-

solute time (considering the initial instant is 0) at which the action ak oc-

curs. We write Untimed(w) = a0a1 · · · an · · · for the untimed part of w, and

Duration(w) = supdk∈τ dk for the duration of the timed word w. We let TW ∗(Σ)

(resp. TWω(Σ)) for the set of finite (resp. infinite) timed words over Σ and

define TW∞(Σ) = TW ∗(Σ) ∪ TWω(Σ). A timed language L over Σ is a subset

of TW∞(Σ).

Definition 1 (Timed Transition System). A timed transition system (TTS)
over the alphabet Σ is a tuple S = (Q,Q0,Σε,−→,F,R) where:

• Q is a set of states,

• Q0 ⊆ Q is the set of initial states,

• Σ is disjoint from R≥0,

• −→⊆ Q× (Σε∪R≥0)×Q is a set of edges. If (q, e, q′) ∈−→, we also write

q
e

−−→ q′;

• F ⊆ Q and R ⊆ Q are respectively the set of final and repeated states. �

Notice that q
d

−−→ q′ with d ∈ R≥0 denotes a delay transition and not an

absolute time. Moreover, in the sequel, we assume that TTS satisfy the classical

time-related conditions where d, d′ ∈ R≥0:
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• time determinism: if q
d

−−→ q′ and q
d

−−→ q′′ then q′ = q′′;

• time additivity: if q
d

−−→ q′ and q′
d′

−−→ q′′ then q
d+d′

−−−−→ q′′;

• null delay: ∀q : q
0

−−→ q;

• time continuity: if q
d

−−→ q′ then ∀d′ ≤ d, ∃q′′, q
d′

−−→ q′′ and q′′
d−d′

−−−−→ q′.

A run ρ from q0 is a finite or infinite sequence of alternating time and discrete

transitions of the form:

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ q′n · · ·

We write first(ρ) = q0. We assume that a finite run ends with a delay

transition dn and in this case we let last(ρ) = q′n and write ρ as q0
d0a0···dn−−−−−−→ q′n.

We also write q
∗
−→ q′ for any run ρ s.t. first(ρ) = q and last(ρ) = q′. Given

a run ρ, we can define the sequence abs(ρ) = (a0, D0)(a1, D1) · · · (an, Dn) · · ·

with Di =
∑i

k=0 di; notice that some actions ai may be equal to ε. The trace

of a run ρ, denoted by trace(ρ), is the timed word obtained from abs(ρ) by

deleting the ε actions (thus it is a timed word over Σ). We define Untimed(ρ) =

Untimed(trace(ρ)) and Duration(ρ) =
∑

dk∈R≥0
dk (this way the trace of ρ can

be a finite word and at the same time the run ρ can have an infinite duration).

A run is initial if first(ρ) ∈ Q0. An initial run ρ is accepting if:

• either ρ is a finite run and last(ρ) ∈ F,

• or ρ is infinite and there exists q ∈ R that appears infinitely often on ρ.

A timed word w is accepted by S if there is an accepting run ρ in S of trace w.

The timed language L(S) of S is the set of timed words accepted by S.

2.3. Simulation, Bisimulation and Isomorphism

In this section, we recall the definitions of isomorphism, similarity and bisim-

ilarity for timed systems.

Let S = (Q, q0, A,→,F,R) be a TTS. Let →∗ be the reflexive and transitive

closure of →. We denote Reach(q0) = {q ∈ Q|q0 →∗ q}, the set of reachable

states in S.
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Definition 2 (Isomorphism of TTS). Let S1 = (Q1, q
1
0 , A,→1,F1,R1) and

S2 = (Q2, q
2
0 , A, →2,F2,R2) be two TTSs. S1 and S2 are isomorphic (we write

S1
∼= S2) whenever there is a bijection g : Reach(q10) → Reach(q20) such that

OR: ∀q ∈ Reach(q10) we have q ∈ F1 (Resp. R1) iff g(q) ∈ F2 (Resp. R2) and

∀q, q′ ∈ Reach(q10) we have: q
a∈A
−−−→1 q′ iff g(q)

a
−→2 g(q′) and q

d∈R≥0
−−−−→1 q′ iff

g(q)
d
−→2 g(q′). �

Definition 3 (Strong Timed Similarity). Let S1 = (Q1, q
1
0 ,Σε,−→1,F1,R1)

and S2 = (Q2, q
2
0 ,Σε,−→2,F2,R2) be two TTS and � be a binary relation over

Q1 × Q2. We write s � s′ for (s, s′) ∈�. The relation � is a strong (timed)
simulation relation of S1 by S2 if:

1. (a) if s1 ∈ F1 and s1 � s2 then s2 ∈ F2;
(b) if s1 ∈ R1 and s1 � s2 then s2 ∈ R2;

2. if s1 ∈ q10 there is some s2 ∈ q20 s.t. s1 � s2;

3. if s1
a

−−→1 s′1 with a ∈ Σε ∪R≥0 and s1 � s2 then s2
a

−−→2 s′2 for some s′2,
and s′1 � s′2.

A TTS S2 strongly simulates S1 if there is a strong (timed) simulation relation
of S1 by S2. We write S1 �S S2 in this case. �

When there is a strong simulation relation� of S1 by S2 and �−1 is also a strong

simulation relation1 of S2 by S1, we say that � is a strong (timed) bisimulation

relation between S1 and S2. Two TTS S1 and S2 are strongly (timed) bisimilar

if there exists a strong (timed) bisimulation relation between S1 and S2. We

write S1 =S S2 in this case.

Let S = (Q,Q0,Σε,−→,F,R) be a TTS. The relation −→ε is defined by:

• q
d
−→ε q′ with d ∈ R≥0 iff there is a run ρ of the form q

∗
−→ q′ with

Untimed(ρ) = ε and Duration(ρ) = d,

• q
a
−→ε q′ with a ∈ Σ iff there is a run ρ of the form q

∗
−→ q′ with

Untimed(ρ) = a and Duration(ρ) = 0.

Definition 4 (Weak Timed Similarity). Let S1 = (Q1, q
1
0 ,Σε,−→1,F1,R1)

and S2 = (Q2, q
2
0 ,Σε,−→2,F2,R2) be two TTS. A binary relation� overQ1×Q2

is a weak (timed) simulation relation of S1 by S2 if

1. (a) if s1 ∈ F1 and s1 � s2 then s2 ∈ F2;

1s2 �−1 s1 ⇐⇒ s1 � s2.
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(b) if s1 ∈ R1 and s1 � s2 then s2 ∈ R2;
2. if s1 ∈ q10 there is some s2 ∈ q20 s.t. s1 � s2;

3. if s1
a

−−→1,ε s′1 with a ∈ Σ ∪ R≥0 and s1 � s2 then s2
a

−−→2,ε s′2 for some
s′2, and s′1 � s′2.

A TTS S2 weakly simulates S1 if there is a weak (timed) simulation relation
of S1 by S2. We write S1 �W S2 in this case. �

Note that S1
∼= S2 implies S1 �S S2 implies S1 �W S2 implies L(S1) ⊆ L(S2).

When there is a weak simulation relation � of S1 by S2 and �−1 is also a

weak simulation relation of S2 by S1, we say that � is a weak (timed) bisim-

ulation relation between S1 and S2. Two TTS S1 and S2 are weakly (timed)

bisimilar if there exists a weak (timed) bisimulation relation between S1 and

S2. We write S1 =W S2 in this case.

3. Time Petri Nets and Timed Automata

3.1. Time Petri Nets

We consider here an extended version2 of TPNs with accepting and repeated

markings.

Time Petri nets (TPNs) were introduced by Merlin in [5] and extend Petri

Nets with timing constraints on the firings of transitions. In this model, a clock

is associated with each enabled transition, and gives the elapsed time since the

most recent date at which it became enabled. An enabled transition can be fired

if the value of its clock belongs to the interval associated with the transition.

Furthermore, time can only progress if the enabling duration still belongs to the

downward closure of the interval associated with any enabled transition.

There are different possible semantics for TPNs [33] and also various exten-

sions of the original model (self-modification, read/inhibitor/reset arcs) and we

introduce here generalised labelled TPNs which enable us to encompass the dif-

ferent semantics and variations in a single formalism. We then define classical

TPNs and TPNs with self-modification, read/inhibitor/reset arcs as particular

cases of generalised labelled TPNs.

2This is required to be able to define Büchi timed languages, which is not possible in the
original version of TPNs of [5].
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3.1.1. Generalised Labelled Time Petri Nets (GTPN)

We denote by GTPNε the class of generalised labelled time Petri nets.

Definition 5 (Generalised Labelled Time Petri Net). A generalised labelled
time Petri net N ∈ GTPNε is a tuple (P, T,Σε,En, Intermediate,Next, M0,Λ, I,F,R)
where:

• P = {p1, p2, · · · , pm} is a finite set of places. A marking of the net is an
element of NP ;

• T = {t1, t2, · · · , tn} is a finite set of transitions with P ∩ T = ∅;

• Σ is a finite set of actions ;

• En : NP → 2T is the enabling function. For a marking M , a transition in
En(M) is said to be enabled by M ;

• Intermediate : (NP × T ) → NP is the intermediate firing function and we
require that Intermediate(M, t) ≤ M for each t ∈ T ;

• Next : (NP × T ) → NP is the firing function;

• M0 ∈ NP is the initial marking;

• Λ : T → Σε is the labelling function;

• I : T → I(Q≥0) associates with each transition a firing interval ;

• F ⊆ NP is the set of final markings and R ⊆ NP is the set of repeated
markings. �

GTPNs are designed for an easy parametrisation of the key features of TPNs

through the En, Intermediate and Next functions. En generalises the criteria

for a transition to be enabled and Next generalises the computation of the

marking resulting from the firing of a transition. Intermediate is more subtle

and addresses the issue of the reset of the clock implicitly associated with an

enabled transition: a transition enabled before and after the firing of some

other transition, but not enabled by the intermediate marking, has its clock

reset. Different variants of the semantics for TPNs, based on this notion of

intermediate marking, are investigated in [33].

Under some timing constraints (see Def. 6), a transition t, enabled by mark-

ing M , can be fired leading to the new marking M ′ = Next(M, t). A transition

tk is said to be newly enabled by the firing of the transition ti from the marking
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M , (denoted by ↑ enabled(tk,M, ti)), if the transition is enabled by the new

marking M ′ = Next(M, ti) but was not by Intermediate(M, ti). Formally,

↑enabled(tk,M, ti) = tk ∈ En(Next(M, ti))
∧

(

(tk = ti) ∨ ¬
(

tk ∈ En(Intermediate(M, ti)))
)

) (1)

For a marking M in NP , M(pi) can be seen as a number of tokens in place

pi. To decide whether a transition t can be fired, we need to know for how long

it has been continuously enabled: if this amount of time lies into the interval

I(t), t can actually be fired and we say that it is firable, otherwise it cannot.

On the other hand, time can progress only if the enabling duration still belongs

to the downward closure of the interval associated with any enabled transition.

We define valuations ν ∈ (R≥0)
T over T so that the value ν(t) is the time

elapsed since transition t was last enabled. A state of the GTPN N is a pair

(M, ν) ∈ NP × (R≥0)
T . An admissible state of a GTPN is a state (M, ν) s.t.

∀t ∈ En(M), ν(t) ∈ I(t)↓. We let ADM(N ) be the set of admissible states of N .

Definition 6 (Semantics of a GTPN). The semantics of a generalised la-
belled time Petri nets N ∈ GTPNε with N = (P, T,Σε,En, Intermediate,Next,
M0,Λ, I,F,R) is the timed transition system SN = (Q, {q0},Σε,→,F′,R′) where:

• Q = ADM(N ),

• q0 = (M0,0), where 0 denotes the valuation with value 0 for all transitions
enabled by M0,

• F
′ = {(M, ν) ∈ Q |M ∈ F} and R

′ = {(M, ν) ∈ Q |M ∈ R},

• −→∈ Q×(Σε∪R≥0)×Q consists of the discrete and continuous transition
relations:

1. the discrete transition relation is defined ∀t ∈ T by:

(M, ν)
Λ(t)
−−−→ (M ′, ν′) iff































t ∈ En(M),

M ′ = Next(M, t),

ν(t) ∈ I(t),

∀t′ ∈ En(M ′), ν′(t′) =

{

0 if ↑enabled(t′,M, t),

ν(t′) otherwise.
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2. the continuous transition relation is defined ∀d ∈ R≥0 by:

(M, ν)
d
−→ (M, ν′) iff

{

ν′ = ν + d

∀t ∈ En(M), ν′(t) ∈ I(t)↓.

A run of N is an initial run of SN and the language accepted by N is L(N ) =
L(SN ). �

We simply write (M, ν)
w
−→ to emphasise that there is a sequence of tran-

sitions w that can be fired in SN from (M, ν). The resulting state (M ′, ν′) is

said to be reachable from (M, ν). The duration of the corresponding run in the

TTS is also denoted by Duration(w). If Duration(w) = 0 we say that w is an

instantaneous firing sequence.

Definition 7 (Reachable state, reachable marking). The set of reachable
states of N ∈ GTPNε is Reach(N ) = {(M, ν) ∈ NP × (R≥0)

T | (M0,0) −→∗

(M, ν)}. The set of reachable markings of N is mReach(N ) = {M ∈ NP | ∃ν ∈
(R≥0)

T | (M, ν) ∈ Reach(N )}. �

Definition 8 (Bounded Generalised Time Petri Nets (B-GTPNε)). Like
for standard Petri nets, the GTPN N is said to be K-bounded if for any reach-
able marking M and for each place p, M(p) ≤ K. It is bounded if there exists
some K such that it is K-bounded. We denote by B-GTPNε, for the class of
bounded generalised time Petri nets. �

These two previous definitions hold for all the subclasses of GTPNε listed

in Table 1.

3.1.2. Time Petri Nets (TPN)

We denote by TPNε the class of time Petri nets. OR:

Definition 9 (Time Petri Nets). A time Petri net N ∈ TPNε is a gener-
alised labelled time Petri net (P, T,Σε,En, Intermediate,Next,M0,Λ, I,F,R) for
which there exist two mappings •(.), (.)

•
: T → NP , called respectively the back-

ward and forward incidence mappings, and such that ∀M ∈ NP and ∀t ∈ T :

• En(M) = {t | (M ≥ •t)},

• Next(M, t) = M − •t+ t•,

• Intermediate(M, t) = M − •t.
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p1

t1 [1, 2]

t2 [3, 4]

•

(a) A simple TPN

p1

p2

p3

p4

t1 [1, 2] t2 [3, 4]

••

(b) TPN with an inhibitor arc

p1

p2

p3

p4

t1 [0, 4] t2 [0, 3]

••

(c) TPN with a read arc

Figure 2: Examples of TPN with read and inhibitor arcs

On the other hand, setting ∀M ∈ NP , ∀t ∈ T, Intermediate(M, t) = M yields

the so-called atomic semantics of TPNs [33].

The TPN Fig. 2(a) illustrates the notion of intermediate marking. For this

net, the transition t2 is never fired even if it is enabled in all reachable markings.

Indeed, for each firing of the transition t1, we have Intermediate(M, t1) < •t2

and the value ν(t2) is reset to zero.

OR: Finally, the original definition of TPN by Merlin [5] (i.e. TPN “à la

Merlin”) is the class B-TPNε(≤,≥) of TPNs without strict constraints in the

firing intervals I.

3.1.3. Time Petri Nets with Self-modification, Read/logical Inhibitor/Reset Arcs.

A read arc functions as an input arc for the enabling of transitions. The

tokens in the input place of such arcs are however not consumed when the

transition fires. Inhibitor arcs are dual to read arcs in the sense that enough

(wrt. to the weight of the arc) tokens in the input place of such an arc prevents

the transition to be enabled. As for read arcs, inhibitor arcs are only involved in

the enabling of transitions, not in their firing. Conversely, reset arcs are ignored

when deciding if a transition is enabled but empty their input places when the

transition fires, regardless of their previous contents. Finally, in self-modifying

nets [22], the weight of the input or output arcs is a function of the current

marking: the weight of the arc can either be an integer, as usual, or a reference

to some place of the net. In the latter case, the weight is the number of tokens

that are currently in the referenced place.

15



p1

p2

p3

p4

t1 [0, 4] t2 [0, 3]

• ••

(a) TPN with a reset arc

p1

p2

p3

p4

t1 [3, 4] t2 [1, 2]

weight= p1

•••

(b) A self modifying TPN

Figure 3: Examples of TPN with reset and self modifying TPN

Let us now consider some illustrative examples.

The TPN Fig. 2(b) has an inhibitor arc between p3 and t1. Then, the

transition t1 cannot be fired before the firing of t2 since it is inhibited by

the token in p3. A corresponding run is (each marking M is presented as

(M(p1)M(p2)M(p3)M(p4)))

(1010)
3.7

−−−→ (1010)
t2−−→ (1001)

1.12
−−−−→ (1001)

t1−−→ (0101)

The TPN Fig. 2(c) has a read arc between p3 and t1. Then, if t2 is fired

first, after its firing, the firing of t1 is not possible since the transition t1 is not

enabled anymore. The sequence t1, t2 is possible however since firing t1 does

not consume the token in p3.

The TPN Fig. 3(a) has a reset arc between p3 and t1. Then, if t1 is fired first,

after its firing, the firing of t2 is not possible since there is no token anymore

in p3. The sequence t2, t2, t1 is possible however since firing t1 does not require

any token in p3.

The self modifying TPN Fig. 3(b) has an arc between p3 and t2 with a weight

equal to the marking of place p1. Then t2 cannot be fired first. After the firing

of t1 the transition t2 can be fired whereas t1 has to wait at least 3 time units.

A corresponding run is:

(2010)
3.7

−−−→ (2010)
t1−−→ (1110)

1.8
−−−→ (1110)

t2−−→ (1101)
1.3

−−−→ (1101)
t1−−→ (0201)

In [34], the authors showed that for Petri nets, inhibitor arcs can simulate

reset arcs (and conversely). Thus reset arcs increase the expressiveness of Petri
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net (they are Turing-powerful) and reachability and boundedness problems are

undecidable for Petri net with reset arcs.

It is easy to show in the untimed setting that a read arc between a place p

and a transition t is equivalent to having both an arc from p to t and an arc

from t to p. In the timed setting however, this result obviously does not hold as

the firing of t might disable other transitions enabled by p and thus reset their

clocks.

In this paper, we do not use timed inhibitor arcs since, in time Petri nets,

they are classically used to control stopwatches [35]. Instead, we focus here on

logical inhibitor arcs.

It has been shown that self-modifying nets are more expressive w.r.t language

acceptance than (standard) Petri nets [22]. Here we will consider the more

general setting where the weight of any arc is an arbitrary function of the current

marking, i.e., a function in N(NP ).

We propose to study the expressiveness of self-modifying time Petri nets

with reset, logical inhibitor, and read arcs which are classically used to extend

time Petri nets.

For this purpose, in this paragraph, we define these several specific types of

arcs and we show how they can be seen as particular cases of GTPNs.

Definition 10 (Self-modifying TPN with read/inhibitor/reset arcs). A
labelled self-modifying time Petri net with read/logical inhibitor/reset arcs N is
a tuple (N , ◦(.), ∗(.), ▽(.)) where:

• N = (P, T,Σε,
•(.), (.)

•
,M0,Λ, I,F,R) is a TPN

• ◦(.) : T → (N(NP ))P is the read incidence mapping;

• ∗(.) : T → (N(NP ))P is the logical inhibitor incidence mapping;

• ▽(.) : T → {0, 1}P is the reset incidence mapping; �

For any transition t, •t, t•, ◦t and ∗t are vectors of functions associating an

integer to a marking. For any marking M , we denote by •t(M), t•(M), ◦t(M)

and ∗t(M) the vectors of integers obtained by applying each component of the

vectors to M .
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Then, this can be easily defined in the framework of generalised TPNs. A

labelled self-modifying time Petri net with read/logical inhibitor/reset arcs N =

(P, T,Σε,
•(.), (.)

•
, ◦(.), ∗(.), ▽(.), M0,Λ, I,F,R) is the generalised labelled time

Petri net (P, T,Σε,En, Intermediate,Next,M0,Λ, I,F,R) such that ∀M ∈ NP ,

• En(M) = {t | ((M ≥ •t(M)) and (M ≥ ◦t(M)) and (M < ∗t(M)) },

• ∀ti ∈ T , Next(M, ti) = M −max(▽ti ×M t, •ti(M)) + ti
•(M) where M t

is the transposed matrix of M , × is the matrix multiplication between

two vectors and max(▽ti × M t, •ti(M)) is defined as follows : ∀pj ∈

P,max(▽ti ×M t, •ti(M))(pj) = max(▽ti ×M t(pj),
•ti(M)(pj)).

• ∀ti ∈ T , Intermediate(M, ti) = M −max(▽ti ×M t, •ti(M)).

Notice that the requirement Intermediate(M, t) ≤ M for each t ∈ T of Defi-

nition 5 is satisfied. Thus, labelled self-modifying time Petri nets with read,

logical inhibitor and reset arcs belong to the class of generalised TPNs.

3.2. Timed Automata

Timed automata were first introduced by Alur and Dill in [23, 24] and extend

finite automata with a finite number of clocks. We consider the model of [36] in

which transitions and locations are decorated by constraints on clocks specifying

respectively when the transition can be taken (guards) and when sojourn in the

location is allowed (invariants).

Definition 11 (Timed Automaton). A timed automaton A is a tuple (L, l0,
X,Σε, E, Inv,F,R) where:

• L is a finite set of locations ;

• l0 ∈ L is the initial location;

• X is a finite set of nonnegative real-valued clocks ;

• Σε is a finite set of actions ;

• E ⊆ L×C(X)×Σε × 2X ×L is a finite set of edges, e = 〈l, γ, a, R, l′〉 ∈ E

represents an edge from the location l to the location l′ with the guard
γ ∈ C(X), the label a and the reset set R ⊆ X ;
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• Inv ∈ C(X)L assigns an invariant to any location; we restrict the invari-
ants to conjuncts of terms of the form x � r for x ∈ X and r ∈ N and
�∈ {<,≤};

• F ⊆ L is the set of final locations and R ⊆ L is the set of repeated locations.
�

Definition 12 (Semantics of a Timed Automaton). The semantics of the
timed automaton A = (L, l0, X,Σε, E, Inv,F,R) is the timed transition system
SA = (Q, q0,Σε,→,F′,R′) with:

• Q = {(l, v) ∈ L× (R≥0)
X | Inv(l)(v) = tt},

• q0 = (l0,0) is the initial state,

• F
′ = {(ℓ, ν) | ℓ ∈ F} and R

′ = {(ℓ, ν) | ℓ ∈ R},

• and → is defined by:

1. the discrete transitions relation (l, v)
a
−→ (l′, v′) iff ∃ (l, γ, a, R, l′) ∈ E

s.t. v ∈[[γ]], v′ = v[R 7→ 0] and v′ ∈[[Inv(l′)]];

2. the continuous transition relation (l, v)
t

−→ (l′, v′) iff l = l′, v′ = v+ t

and v′ ∈[[Inv(l)]].

A run of A is an initial run of SA and the language accepted by A is L(A) =
L(SA). �

3.3. Expressiveness and Equivalence Problems

If B,B′ are two timed models, TPNs or TA, we write B =S B′ (resp.

B =W B′) for SB =S SB′ (resp. SB =W SB′) where SB and SB′ are the TTS

semantics of B and B′. We write B =L B′ when L(B) = L(B′).

Let C and C′ be two classes of timed model and ⊲⊳ ∈ {L,W ,S, I} respectively

for timed language, weak and strong timed bisimilarity and isomorphism of TTS.

Definition 13 (Expressiveness w.r.t. ⊲⊳). C ismore expressive than C′ w.r.t.
⊲⊳, written C′ ≤⊲⊳ C, if for all B′ ∈ C′ there is a B ∈ C s.t. B =⊲⊳ B′. If moreover
there is some B ∈ C s.t. there is no B′ ∈ C′ with B =⊲⊳ B′, then C′ <⊲⊳ C (read
“strictly more expressive”). If both C′ ≤⊲⊳ C and C ≤⊲⊳ C′ then C and C′ are
equally expressive w.r.t. ⊲⊳ and we write C =⊲⊳ C′. �

4. From Generalised Time Petri Nets to Timed Automata

We first recall the following theorem from [27]:
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Theorem 1 ([27]). For any N ∈ B-TPNε there is a TA A ∈ TAε s.t. N =W

A, hence B-TPNε ≤W TAε. Moreover, we also have that B-TPNε(≤,≥) ≤W

TAε(≤,≥).

This previous result was obtained by a structural translation from TPNs to

TA preserving weak timed bisimilarity. In this paper, we extend and strengthen

this previous result: we give a syntactical translation from B-GTPNε to (prod-

ucts of) timed automata that preserves isomorphism of the semantics and thus

strong timed bisimilarity.

We define our translation using products of timed automata with a finite

number of shared bounded integer variables. They are equally expressive as

timed automata, since each variable can be encoded by a finite automaton. A

TA with shared variables has an additional set of integer variables V and we

therefore extend its notation to A = (L, l0, C, V,Σε, E, Inv,F,R). We classi-

cally allow tests and updates of integer variables on transitions. To synchronise

transitions, we use a distinct synchronisation alphabet Σs. An edge of such a

TA component in the product is therefore a tuple 〈l, γ, s, a, U,R, l′〉 ∈ E from

the location l to the location l′ with the guard γ ∈ C(X), the synchronisation

action s ∈ {b!, b?} with b ∈ Σs, the label a ∈ Σε, the update of shared variables

U (where U is either ∅ or the conjunction of atomic updates v := k with v ∈ V

and k ∈ N) and the reset set R ⊆ X . We also impose that all the transitions of

the product are synchronised.

Definition 14 (Synchronised product of Timed Automata with variables).
LetA1, . . . , An be n timed automata withAi = (Li, li,0, Ci, V,Σε∪Σs, Ei, Invi,Fi,Ri),
The synchronised product of TA (A1| . . . |An) is a timed automatonA = (L, l0, C, V,Σε,

E, Inv,F,R) where:

• L = L1 × L2 × · · · × Ln,

• the initial location of A is l0 = (l1,0, l2,0, · · · , ln,0),

• the set of clocks of A is C = ∪n
i=1Ci,

• l
γ,a,U,R
−−−−−→ l′ ∈ E iff ∀i, ∃γi, si, ai, Ui, Ri s.t. (l[i], γi, si, ai, Ui, Ri, l

′[i]) ∈ Ei

and:

– there exists a unique j such that sj = b! and aj = a,
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– ∀i 6= j, we have si = b?, ai = ε and Ui = ∅,

– γ =
∧

i γi and R =
⋃

i Ri.

• for all l = (l1, . . . , ln) ∈ L, Inv(l) =
∧n

i=1 Inv(li),

• F ⊆ L and R ⊆ L are arbitrary sets and they will be defined on a product
when necessary. �

Assume we are given aGTPNε N = (P, T,Σε,En, Intermediate,Next,M0,Λ,

I,F,R) with P = {p1, · · · , pm} and T = {t1, · · · , tn}.

We build one timed automaton Ai for each transition ti and synchronise

them to faithfully simulate N . The idea of the translation is as follows: the

current marking of the net is given by a shared/global array variable p of size

m: p[k], 1 ≤ k ≤ m gives the number of tokens in place pk Each Ai has its own

local clock xi that records the time since transition ti was last enabled (it holds

the value of ν(ti)).

Furthermore, each transition is either enabled or disabled, and Ai has two

locations to represent this status. The simulation of N runs in rounds: at each

round, if some transitions are enabled, we select one of them (ti) and fire it.

If no transition is firable, the net is in a deadlock state. Once ti is selected,

the other transitions tj , j 6= i update their status (enabled or disabled) and

possibly reset their clocks if they are newly enabled. The target location for the

automaton Ai of transition ti is completely determined by the current marking

p and the transition being fired tk.

We associate a synchronisation actionfire[i] with each transition ti. To sim-

ulate the firing of ti (and the update of tj , j 6= i) we let Ai make the action

fire[i]! and force the other automata to make fire[i]?. To ensure this, we make

sure that the automata Aj , j 6= i, can all make fire[i]? and thus are forced to

synchronise: this is achieved by ensuring that fire[i]? is always enabled in any

location of Aj , j 6= i.

For readability reasons, we have split the automaton Ai in two parts: Fig. 4

specifies what happens when the transition ti is fired; Fig. 5 what happens when

another transition tj 6= ti is fired. The full template is thus the union of the

two sets of transitions given in Figures 4 and 5.
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Enabled

xi ∈ I(ti)
↓ Disabled

xi ∈ I(ti) ∧ ti 6∈ En(Next(p, ti)),
fire[i]!, Λ(ti)

p := Next(p, ti)

xi ∈ I(ti) ∧ ti ∈ En(Next(p, ti)),
fire[i]!, Λ(ti)

p := Next(p, ti)
xi := 0

Figure 4: Automaton Ai – Firing of transition ti

Enabled

xi ∈ I(ti)
↓ Disabled

ti 6∈ En(Next(p, tj)),
fire[j]?

ti ∈ En(Next(p, tj)),
fire[j]?
xi := 0

ti ∈ En(Next(p, tj)) ∧ ti ∈ Intermediate(p, tj),
fire[j]?

ti ∈ En(Next(p, tj)) ∧ ti 6∈ Intermediate(p, tj),
fire[j]?
xi := 0

ti 6∈ En(Next(p, tj))
fire[j]?

Figure 5: Automaton Ai – Firing of a transition tj , j 6= i
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We first explain what happens when transition ti is fired (Fig. 4). First,

notice that clock xi of Ai holds the value of ν(ti) and thus ti is firable iff

xi ∈ I(ti) which is enforced by the guard xi ∈ I(ti) and the invariant xi ∈ I(ti)
↓

in the Enabled location. The automaton is in location Enabled iff transition

ti ∈ En(p) and we maintain this invariant for any transition.

There are two possible results when firing ti: either the transition is disabled

and in this case we reach location Disabled or it is still enabled after the firing

and we stay in location Enabled. In the latter case, the transition is newly

enabled (Equation 1 evaluates to true) and we reset its clock. In the other

case, xi is not used in location Disabled and we may safely reset it or leave it

unchanged.

Now consider that another transition tj 6= ti is fired (Fig. 5). As required

earlier, in each location, fire[j]?, j 6= i is enabled: the guards of all transitions

are disjoint and their union is equivalent ot tt. The target location when firing

another transition j 6= i is fully determined by the formal definitions of En,

Intermediate and Next. Notice that there is one copy of each transition in Fig. 5

for each j 6= i.

The whole (synchronised) system is obtained by the synchronisation of the

timed automata Ai, 1 ≤ i ≤ n. The final and repeated states are those for which

the marking p ∈ F and p ∈ R respectively.

Let ∆(N ) = (A1 | A2 | · · · · · · | An) be the product of timed automata

with shared variables obtained by the translation of the GTPNε N . The size

of each automaton Ai is linear w.r.t. the number of transitions of N and since

the product is synchronised on all transitions, in each state of the product, at

most one edge per transition of the net can be effectively taken. The size of the

product is therefore exponential wrt. the size of the net. Moreover, since we

consider bounded nets, p can be encoded by a finite automaton with one state

per marking and the size of this finite automaton is then exponential w.r.t. the

number of places of the net N . Thus the size of ∆(N ) is exponential w.r.t. the

size of N .
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Let SN be the TTS that gives the semantics ofN . Let ∆(N ) = (A1 | A2 | · · ·

· · · | An) be the product of timed automata obtained by the translation above

and S∆(N ) its semantics.

Proposition 1. SN and S∆(N ) are isomorphic.

Proof. We relate the states of N to the states of ∆(N ). Let (M, ν) and

(p,q,x) be, respectively, a state of SN and a state of S∆(N ) where q gives the

product location of (A1| · · · |An) i.e. for 1 ≤ i ≤ n, q[i] gives the location of Ai,

and x[i], i ∈ [1..n] gives the value of the clock xi.

Let g be the mapping defined by g
(

(M, ν)
)

= (p,q,x) iff:

• ∀1 ≤ i ≤ m,p[i] = M(pi),

• ∀1 ≤ i ≤ n,q[i] =











Enabled if ti ∈ En(M),

Disabled otherwise.

• ∀1 ≤ i ≤ m,x[i] = ν(ti).

It is easy to see that g is a bijection. OR: Let R∆ and F∆ be respectively

the final and repeated states of ∆(N ). As defined previously, these sets are

respectively those for which the marking p ∈ F and p ∈ R. Then for all states

(M, ν) of SN we have (M, ν) ∈ F (Resp. R) iff g((M, ν)) ∈ R∆ (Resp. F∆). To

prove isomorphism (Definition 2), we have to prove that continuous transitions

and discrete transitions can be executed by each of the transitions systems. Let

(M, ν) be a state of SN and g
(

(M, ν)
)

= (p,q,x).

Continuous transitions. First notice that if a continuous transition of duration

d is allowed in S∆(N ) from (p,q,x), (p,q,x)
d

−−→ (p,q,x′) and allowed in SN

from (M, ν), (M, ν)
d

−−→ (M, ν′), we have (M, ν′) = (M, ν+d) and (p,q,x+d) =

(p,q,x′) and thus g
(

(M, ν′)
)

= (p,q,x′).

It remains to prove that SN can make a transition of duration d from (M, ν)

iff S∆(N ) can do the same from (p,q,x). SN can make a transition of duration
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d from (M, ν) iff ∀1 ≤ i ≤ n:

ti ∈ En(M) =⇒ ν(ti) + d ∈ I(ti)
↓

[ti ∈ En(M) ⇐⇒ q[i] = Enabled] ⇐⇒ q[i] = Enabled =⇒ ν(ti) + d ∈ I(ti)
↓

[x[i] = ν(ti)] ⇐⇒ q[i] = Enabled =⇒ x[i] + d ∈ I(ti)
↓

which is equivalent to S∆(N ) can make a transition of duration d.

Discrete Transitions. Let us now consider the discrete transition (M, ν)
Λ(ti)
−−−−→

(M ′, ν′). As ti can be fired we must have: 1) ti ∈ En(M), 2) ν(ti) ∈ I(ti).

As g
(

(M, ν)
)

= (p,q,x), this is equivalent to 1) q[i] = Enabled and 2) x[i] ∈

I(ti) and thus fire[i]! can be triggered in S∆(N ) and we have (p,q,v)
Λ(ti)
−−−−→

(p′,q′,x′). The updates in ∆(N ) are directly computed using the functions

En, Intermediate and Next defined forGTPNε, then we have: 1) p′ = Next(p, ti)

(i.e. M ′ = Next(M, ti)) and ∀tj ∈ En(Next(p, ti)), 2) x′[j] = 0 if tj 6∈

Intermediate(p, ti) ( i.e. ↑enabled(tj,M, ti)), and x′[j] = x[j] otherwise. Thus

g
(

(M ′, ν′)
)

= (p′,q′,x′). �

This enables us to obtain the following results:

Theorem 2. For any N ∈ B-GTPN (resp. B-GTPNε) there is a TA ∆(N ) ∈

TA (resp. TAε) s.t. SN
∼= SA.

Theorem 2 implies:

Theorem 3. B-GTPN ≤I TA and B-GTPNε ≤I TAε.

Remark 1. Isomorphism of TTS implies all the other equivalences, and thus

Theorem 2 also implies the same order for all other equivalences. Notice also

that the order applies to subclasses of B-GTPN where the constraints are re-

stricted: for instance B-GTPN(≤,≥) ≤I TA(≤,≥) as the same comparison

operators are used in N and ∆(N ).

Remark 2. Starting from a GTPN N ∈ B-GTPNε(≤,≥) the translation from

GTPN to TA gives a TA A in the subclass TAsyn
ε (≤,≥) defined in Section 7

(Def. 15). Thus B-GTPN(≤,≥) ≤I TAsyn
ε (≤,≥) .
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5. Strict Ordering Results

In this section, we recall some results from [1] and extend them to bounded

GTPNs proving that they are strictly less expressive w.r.t. weak timed bisimi-

larity than timed automata.

l0 l1
a ; x < 1

Figure 6: The Timed Automaton A0

Consider the timed automata A0 of Fig. 6 and A1 which is as A0 with the

guards x < 1 replaced by x ≤ 1.

Theorem 4 ([1]). There is no TPN weakly timed bisimilar to A0 ∈ TA (Fig. 6)

or to A1 ∈ TA(≤,≥).

Theorem 5. There is no GTPNε weakly timed bisimilar to A0 ∈ TA (Fig. 6).

Theorem 6. There is no GTPNε weakly timed bisimilar to A1 ∈ TA(≤,≥).

The proofs are easy adaptations of Theorem 4 (for TPN) in [1].

We can deduce several new interesting results from the previous theorems.

These new results are expressed by the following corollaries:

Corollary 1. B-GTPN <S TA, B-GTPNε <W TAε and B-GTPNε(≤,≥) <W

TAε(≤,≥).

Proof. Theorem 3 states that B-GTPN ≤S TA and B-GTPNε ≤W TAε

and Theorem 5 implies the strict relation. By remark 1 B-GTPNε(≤,≥) ≤W

TAε(≤,≥) and Theorem 6 implies the strict relation. �

Following these “negative” results, we compare the expressiveness of bounded

TPNs and TA w.r.t. to timed language acceptance and then characterise a sub-

class of TA that admits bisimilar bounded TPNs.
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Px≥c

Px

γtt

rb

re

tx(ε, [c, c])

t′(ε, ]0,∞[)

r(ε, [0, 0])

•

(a) Widget Nx>c

Pxrb

γttre

tx(ε, [c, c])r(ε, [0, 0])

•

(b) Widget Nx≥c (with c > 0)

Figure 7: Widgets for Nx>c and Nx≥c

6. Equivalence w.r.t. Timed Language Acceptance

In this section, we prove that TA, safe TPNs and bounded GTPNs are

equally expressive w.r.t. timed language acceptance, and give an effective syn-

tactical translation from TA to a subclass of GTPNs (1-safe TPNs). The result

of Proposition 2, page 30 already appeared in [1], and in this paper we improve

the translation, give the full proof, and some new consequences of this result.

Let A = (L, l0, X,Σε, E,Act, Inv,F,R) be a TA. Since we are only concerned

in this section with the language accepted by A we assume the invariant function

Inv is uniformly true and the original constraints of the invariants are instead

added to the guards of transitions. Let Cx be the set of atomic constraints on

clock x that are used in A. The TPN resulting from our translation is built

from “elementary blocks” modelling the truth value of the constraints of Cx.

Then we link them with other blocks for resetting clocks.

Encoding Atomic Constraints. Let ϕ ∈ Cx be an atomic constraint on x. From

ϕ, we define the TPN Nϕ, given by the widgets of Fig. 7 and Fig. 8. In the

figures, a transition is written t(σ, I) where t is the name of the transition,

σ ∈ Σε and I ∈ I(Q≥0).

To avoid drawing too many arcs, we have adopted the following notation:

the grey box is seen as a macro place; an arc from this grey box means that there

are as many copies of the transition as places in the grey box. For instance the
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Px

γtt

rb

Pu

re

Pi

tx(ε, [0, c[)
(resp. [0, c])

r(ε, [0, 0])

u(ε, [0, 0])

Only from Pi

•

•

Figure 8: Widget Nx<c (resp. Nx≤c)

TPN of Fig. 7(b) has 2 copies of the transition r: one with input places Px and

rb and output places re and Px and another fresh copy of r with input places rb

and γtt and output places re and Px. Note that in the widgets of Fig. 8 we put

a token in γtt when firing r only on the copy of r with input place Pi (otherwise

the number of tokens in place γtt could be unbounded).

We also assume that the automaton A has no constraint x ≥ 0 (as it evalu-

ates to true they can be safely removed) and thus that the widget of Fig. 7(b)

only appears with c > 0. Each of these TPNs basically consists of a “constraint”

sub-part (in the grey boxes for Fig. 7 and in the dashed box for Fig. 8) that

models the truth value of the atomic constraint, and another “reset” sub-part

that will be used to update the truth value of the constraint when the clock x

is reset.

The “constraint” sub-part features the place γtt: the intended meaning is that

when a token is available in this place, the corresponding atomic constraint ϕ

is true.

When a clock x is reset, all the grey blocks modelling a constraint on x must be

set to their initial marking which has one token in Px for Fig. 7 and one token
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in Px and γtt for Fig. 8. Our strategy to reset a block modelling a constraint is

to put a token in the place rb (rb stands for “reset begin”). Time cannot elapse

from there on (strong semantics for TPNs), as there will be a token in one of

the places of the grey block and thus transition r will be enabled.

Resetting Clocks. In order to reset all the blocks modelling constraints on a

clock x, we chain all of them in some arbitrary order, the re place of the ith

block is linked to the rb place of the i + 1th block, via a 0 time unit transition

ε. Assume R ⊆ X is a non empty set of clocks. To reset all the widgets in the

scope of R, we connect the reset chains in some arbitrary order as illustrated in

Fig. 9. For an edge (ℓ, γ, a, R, ℓ′), we denote by R0
ℓℓ′ the first place of this widget

and Rm
ℓℓ′ the last one. The picture inside the dashed box in Fig. 9 denotes the

widget NReset(R). To update the (truth value of the) widgets of D(R) it then

suffices to put a token in R0
ℓℓ′ . In null duration it will go to Rn

ℓℓ′ and have the

effect of updating each widget of D(R) on its way.

Nϕ
xm
qm

Nϕ
xm
1

Nϕ
x1
q1

Nϕ
x1
2

Nϕ
x1
1

r1
b r1e r2

b r2e r
q1
b r

q1
e r1

b r1e r1
b r

qm
e

R0
ℓℓ′ R1

ℓℓ′ Rm−1
ℓℓ′

Rm
ℓℓ′

• • •

• • •

r(ε, [0, 0]) ε r(ε, [0, 0])

. . .
r(ε, [0, 0]) r(ε, [0, 0])

. . .
r(ε, [0, 0])

(ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0])

[0, 0]

Figure 9: Widget NReset(R) to reset the widgets of the constraints of clocks xi, 1 ≤ i ≤ m

The Complete Construction. First we create fresh places Pℓ for each ℓ ∈ L.

Then we build the widgets Nϕ, for each atomic constraint ϕ that appears in A.

Finally for each R ⊆ X s.t. there is an edge e = (ℓ, γ, a, R, ℓ′) ∈ E we build a

reset widget NReset(R). Then for each edge (ℓ, γ, a, R, ℓ′) ∈ E with γ = ∧i=1,nϕi

and n ≥ 0 we proceed as follows:

1. create a transition f(a, [0,∞[) and if m ≥ 1 (i.e. R 6= ∅) another one

rℓℓ′(ǫ, [0, 0]),
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NReset(R)

Nϕn

Nϕ2

Nϕ1

γ1
tt

γ2
tt

γn
tt

. . .

Pℓ

R0
ℓℓ′ Rm

ℓℓ′ Pℓ′

f(a, [0,∞[)

rℓℓ′(ǫ, [0, 0])

Figure 10: Widget Ne of an edge e = (ℓ, γ, a, R, ℓ′)

2. connect them to the places of the widgets Nϕi
and NReset(R) as described

on Fig. 10. In case γ = tt (or n = 0) there is only one input place to

f(a, [0,∞[) which is Pℓ. In case R = ∅ there is no transition rℓℓ′(ǫ, [0, 0])

and the output place of f(a, [0,∞[) is Pℓ′ .

To complete the construction we just need to put a token in the place Pℓ0 if ℓ0

is the initial location of the automaton, and set each widget Nϕ to its initial

marking, for each atomic constraint ϕ that appears in A, and this defines the

initial marking M0. The set of final markings is defined by the set of markings

M s.t. M(Pℓ) = 1 for ℓ ∈ F and the set of repeated markings by the set of

markings M s.t. M(Pℓ) = 1 for ℓ ∈ R.

We note ∆(A) the TPN obtained as described previously. Notice that by

construction 1) ∆(A) is 1-safe and moreover 2) in each reachable marking M of

∆(A)
(
∑

ℓ∈LM(Pℓ)
)

≤ 1.

A widget related to an atomic constraint has a constant size, a clock resetting

widget has a linear size w.r.t. the number of atomic constraints of the clock and a

widget associated with an edge has a linear size w.r.t. its description size. Thus

the size of ∆(A) is linear w.r.t. the size of A improving the quadratic complexity

of the (restricted) translation in [28]. Finally, to prove L(∆(A)) = L(A) we

build two simulation relations �1 and �2 s.t. ∆(A) �1 A and A �2 ∆(A).

Proposition 2. L(A) = L(∆(A)).
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Proof. The proof works as follows: we first show that ∆(A) weakly simulates

A which implies L(A) ⊆ L(∆(A)). Then, we show that A weakly simulates

∆(A) which entails L(∆(A)) ⊆ L(A) and thus L(A) = L(∆(A)). It is sufficient

to give the proof for the case A has no ε transitions. In case A has ε transitions,

ε is treated as an ordinary action.

Let A = (L, l0, C,A,E,Act, Inv,F,R) and ∆(A) = (P, T,Aε,
•(.), (.)

•
,M0,Λ,

Γ, F∆, R∆). Assume C = {x1, · · · , xk}, P = {p1, · · · , pm} and T = {t1, · · · , tn}.

We denote the set of atomic constraints of A by CA and the set of atomics

constraints of A on clock x by CA(x).

In the sequel, the name of places and transitions of a widget Nϕ are super-

scripted by ϕ. For example, for a constraint ϕ = x ≥ c, the places γtt and Pu

of a widget Nϕ are respectively written γ
ϕ
tt and Pϕ

u .

Proof of ∆(A) simulates A. We define the relation � ⊆ (L ×Rn
≥0)×(Np×Rm

≥0)

by:

(ℓ, v) � (M, ν) ⇐⇒







































(1)M(Pℓ) = 1

(2)∀ϕ ∈ {x < c, x ≤ c}, M(Pϕ
u ) = 0

(3)∀ϕ ∈ CA, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1

(4)∀ϕ ∈ CA(x), ν(tϕx ) = v(x)

(I)

We can now prove that � is a weak simulation relation of A by ∆(A):

1. final and repeated states: by definition of ∆(A) and the definition of �;

2. initial states: it is clear that (l0,0) � (M0,0);

3. continuous transitions: let (ℓ, v)
d
−→ (ℓ, v + d). Take (M, ν) s.t. (ℓ, v) �

(M, ν). As the widgets Nϕi
are non-blocking, time d can elapse from

(M, ν), and there is a run ρ = (M, ν)
∗
−→ (M ′, ν′) with Duration(trace(ρ)) =

d and Untimed(trace(ρ)) = ε. We can choose ρ without any transitions

f(a, [0,∞[) so that a token remains in Pℓ and M ′(Pℓ) = 1. Thus to prove

(ℓ, v + d) � (M ′, ν′) it remains to prove items (2) and (3) of equation (I).

Let ϕ = x ⊲⊳ c with ⊲⊳∈ {<,≤}.
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• if v ∈[[ϕ]] and v + d 6∈[[ϕ]], then, from item (4), there is some d′ ≤ d

s.t. transition tϕx of widget Nϕ is enabled and it must be fired before

ϕ becomes false. Thus tϕx is fired at d′ (which is possible as there is

no token in Pϕ
u and thus the token is in Pϕ

x ) and subsequently uϕ in

the same widget, thus transferring the tokens from Pϕ
x , γ

ϕ
tt to P

ϕ
i .

• if v ∈[[ϕ]] and v + d ∈[[ϕ]], it is possible to do nothing in widget Nϕ

and let the token in Pϕ
x and γ

ϕ
tt.

• if v 6∈[[ϕ]] then v + d 6∈[[ϕ]], then there must be a token in P
ϕ
i and we

let time elapse without firing any transition.

Let ϕ = x ⊲⊳ c with ⊲⊳∈ {>,≥}.

• if v ∈[[ϕ]] then v + d ∈[[ϕ]] and M(γϕ
tt) = 1. We just let time elapse in

Nϕ.

• if v 6∈[[ϕ]] and v + d ∈[[ϕ]], there is d′ ≤ d s.t. transitions tϕx must be

fired (and t′
ϕ
can be fired at d′ + ξ with ξ > 0 for Nx>c). We fire

those transitions at d′ and let d− d′ elapse.

• if v 6∈[[ϕ]] and v + d 6∈[[ϕ]] we also let time elapse and leave a token in

Pϕ
x .

This way for each constraint ϕ = x ⊲⊳ c, there is a run ρϕ = (M, ν)
d
−→ε

(Mϕ, νϕ) s.t. (Mϕ, νϕ) satisfies requirements (2) and (3) of equation (I).

Taken separately we have for each constraint (ℓ, v) � (Mϕ, νϕ). It is not

difficult3 to build a run ρ with an interleaving of the previous runs ρϕ s.t.

ρ = (M, ν)
d
−→ε (M

′, ν′) and (M ′, ν′) satisfies requirements (2) and (3) of

equation (I) for each constraint ϕ, and thus (ℓ, v) � (M ′, ν′).

4. discrete transitions: Let (ℓ, v)
a
−→ (ℓ′, v′) and (ℓ, v) � (M, ν). Then there

is an edge e = (ℓ, γ, a, R, ℓ′) ∈ E s.t. γ = ∧i=1,nϕi, n ≥ 0 and ϕi is an

atomic constraint. By definition 12, v ∈[[ϕi]] for 1 ≤ i ≤ n. This implies

M(γϕi

tt ) = 1 (definition of �). Thus the transition f(a, [0,∞[) is firable

3Just find an ordering for all the date d′ at which a transition must be fired and fire those

transitions in this order with time elapsing between them.
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in the widget Ne leading to (M ′, ν′). From there on we do not change

the markings of widgets Nϕi
for the constraints ϕi that do not need to be

reset (the clock of ϕi is not in R). We also use the widget NReset(R) to

reset the constraints ϕi with a clock in R and finally put a token in Pℓ′ .

The new state (M ′′, ν′′) obtained this way satisfies (ℓ′, v′) � (M ′′, ν′′).

This completes the proof that ∆(A) simulates A and thus L(A) ⊆ L(∆(A)).

Proof of L(∆(A)) ⊆ L(A). We can now build a simulation relation of ∆(A)

by A. We first define the following boolean conditions for a clock x ∈ X , for

all the widgets of ∆(A) involving the clock x (and associated with a constraint

ϕ ∈ CA(x)), and given a state (M, ν) ∈ (Np ×Rm
≥0) of ∆(A) and a state (ℓ, v) ∈

(L × Rn
≥0) of A:

C1(x) =
(

∀ϕ = (x > c), v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1∨(M(Pϕ

x≥c) = 1∧ν(t′
ϕ
) > 0)

)

C2(x) =
(

∀ϕ = (x ≥ c), v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1 ∨ (M(Pϕ

x ) = 1 ∧ ν(tϕx ) = c)
)

C3(x) =
(

∀ϕ ∈ {x < c, x ≤ c}, v 6∈[[ϕ]]⇒ M(Pϕ
i ) = 1

)

Note that these conditions imply for all widgets: M(γϕ
tt) = 1 ⇒ v ∈[[ϕ]]

We define the relation � ⊆ (Np × Rm
≥0)× (L × Rn

≥0) by:

(M, ν) � (ℓ, v) ⇐⇒



































































M(Pℓ) = 1 ⇒ ∀x ∈ X,











C1(x) ∧ C2(x) ∧ C3(x)

∀ϕ ∈ CA(x), ν(tϕx ) = v(x)

M(Pℓ) = 0 ⇒







































∃e = (ℓ•, γ, a, R, ℓ) ∈ E

st























∑m
i=0 M(Ri

ℓ•ℓ
) = 1

∀x 6∈ R,











C1(x) ∧C2(x) ∧C3(x)

∀ϕ ∈ CA(x), ν(tϕx ) = v(x)

(II)

We now prove that � is a weak simulation relation of ∆(A) by A.

• the property on final and repeated states is satisfied by definition of A,

• for the initial configuration, it is clear that (M0,0) � (l0,0),
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• continuous time transitions: let (M, ν)
d
−→ (M ′, ν′) with d ≥ 0 and M =

M ′. Let (M, ν) � (ℓ, v). Since the traversal of a reset widget is in null

duration, and since time can elapse from (M, ν), we have M(Pℓ) = 1. As

there are no invariants in A, time d can elapse from (ℓ, v). For all widgets

associated to a constraint ϕ ∈ CA(x), we have ν′(tϕx ) = ν(tϕx )+d = v(x)+d

(even if tϕx is not enabled). If no ε transition fires in the TPN, then either

the truth values of the constraints stay unchanged or three cases can occur:

– there is some clock x and constraint ϕ = (x > c) such that v(x) = c

and M(Pϕ
x≥c) = 1 and ν(t′

ϕ
) = 0. Then v + d ∈[[ϕ]] and ν(t′

ϕ
) = d

and ∀x ∈ X the condition C1(x) is respected.

– there is some clock x and constraint ϕ = (x ≥ c) such that v(x) < c

and v(x) + d = c and M(Pϕ
x ) = 1. Then we have v 6∈[[ϕ ]] and

ν(tx
ϕ) = v(x) < c. Moreover we have ν′(tx

ϕ) = ν(tx
ϕ) + d = c,

v′(x) = c and v′ ∈[[ϕ]] and the condition C2(x) remains true.

– there is some clocks x and constraints ϕ ∈ {(x < c), (x ≤ c)} such

that v(x) < c, v(x)+d > c and M(Pϕ
i ) = 1 (it means that the guard

was true in A whereas the widget of ∆(A) considered the guard false

and the guard becomes false for both). Then v + d 6∈[[ϕ]] and since

M(Pϕ
i ) = 1, the condition C3(x) remains true.

Then, the condition C1(x) ∧ C2(x) ∧ C3(x) remains true.

Thus (ℓ, v)
d
−→ (ℓ, v + d) in A s.t. (M ′, ν′) � (ℓ, v + d).

• discrete transitions: let (M, ν)
a
−→ (M ′, ν′). We distinguish the cases

a = ε and a ∈ Σ and when a = ε, we distinguish the cases M(Pℓ) = 0 and

M(Pℓ) = 1.

If a = ε and M(Pℓ) = 1 then we are updating some widget Nϕ ( ε

transition is not a reset transition because a reset can only occur when

M(Pℓ) = 0). We split the cases according to the different types of widgets:

– update of a widgetNx>c: either t
ϕ
x or t′

ϕ
is fired. If tϕx is fired then the

time elapsed since the x was last reset is equal to c. Thus M(γϕ
tt) = 0
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and v(x) ≤ c and v 6∈[[x > c]]. This implies (M ′, ν′) � (ℓ, v).

If t′ is fired on the contrary, v′(x) > c but again (M ′, ν′) � (ℓ, v).

– update of a widget Nx≥c: the same reasoning as before can be used

and leads to (M ′, ν′) � (ℓ, v).

– update of a widget Nx<c: In this case either tϕx or uϕ is fired. Assume

tϕx is fired. Thus M ′(Pϕ
i ) = 0. The time elapsed since x was last

reset is strictly less than c and v ∈[[ϕ]]. Thus (M ′, ν′) � (ℓ, v). Now

assume uϕ is fired. Again M(Pϕ
i ) = 0 and thus v(x) < c. This time

M ′(Pϕ
i ) = 1 and C3(x) is true. From this state, the automaton A

has more behaviors than ∆(A) but we have (M ′, ν′) � (ℓ, v). The

same reasoning applies for Nx≤c.

If a ∈ Σ then the transition is f(a, [0,∞[) for some widget Ne for e =

(ℓ, γ, a, R, ℓ′). Since the transition f(a, [0,∞[) is firable from (M, ν), all

the widgets Nϕ of atomic constraints ϕ that appears in the guard γ have

a token in the place γϕ
tt. By equation II, the conditions C1(x), C2(x) and

C3(x) are true for (M, ν) and we haveM(γϕ
tt) = 1 ⇒ v ∈[[ϕ]]. It means that

the guard γ is true and we can fire the matching transition in A leading

to a state (ℓ′, v′). The firing of f has left the input places γtt unchanged.

Since, ∀x ∈ X , x 6∈ R, the truth values of the constraints involving x stay

unchanged and conditions C1(x), C2(x) and C3(x) remain true for these

clocks. Thus (M ′, ν′) � (ℓ′, v′).

We can now consider the case a = ε and M(Pℓ) = 0. It means that the

last transition fired in A corresponds to an edge e = (ℓ•, γ, a, R, ℓ). The ǫ

transition is either an update of a widget or the transition rℓℓ′(ǫ, [0, 0]) of

the widget Ne (Fig. 10) or a transition of the widget NReset(R) of Fig. 9

(either (ǫ, [0, 0]) or r).

– If the ǫ transition is an update of a widget, then we can go back to

the case a = ε and M(Pℓ) = 1 and apply the same reasoning for all

clocks x 6∈ R and, for these clocks we have C1(x), C2(x) and C3(x)
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and thus (M ′, ν′) � (ℓ, v).

– If the ǫ transition is a transition r(ǫ, [0, 0]) or (ǫ, [0, 0]) of the widget

NReset(R) (Fig. 9) then it is the reset of a widget corresponding to

a clock x ∈ R. There exists i ∈ [0,m] such that M(Ri
ℓ•ℓ

) = 1

and after the firing of the transition we have either M ′(Ri
ℓ•ℓ

) = 1 or

M ′(Ri+1
ℓ•ℓ

) = 1. Then for all the widgets in the scope of a clock x ∈ X

such that x 6∈ R, the firing of this transition has left the input places

γtt unchanged and conditions C1(x), C2(x) and C3(x) remain true

for these clocks. Thus (M ′, ν′) � (ℓ, v).

– If the ǫ transition is the transition rℓℓ′(ǫ, [0, 0]) of the widget Ne

(Fig. 10), then M(Rm
ℓ•ℓ

) = 1, M ′(Pℓℓ′) = 1 and C1(x), C2(x) and

C3(x) are true ∀x 6∈ R. Moreover, ∀x ∈ R, all the widgets of the

constraints involving the clock x are in the state M ′(Px) = 1 and

then we have C1(x), C2(x) and C3(x) for all x ∈ R. Since these

conditions remain true ∀x 6∈ R, we have (M ′, ν′) � (ℓ, v).

This completes the proof that A simulates ∆(A). It follows that L(∆(A)) ⊆

L(A). We can thus conclude that L(∆(A)) = L(A), which ends the proof of

Proposition 2. �

Proposition 2 implies many new interesting results expressed by the following

corollaries:

Corollary 2. B-GTPNε =L B-TPNε =L 1-B-TPNε =L TAε.

Proof. Let N ∈ B-GTPNε, thanks to the translation of Section 4 and to

Theorem 2, there is a TA AN ∈ TAε s.t. L(N) = L(AN ) which can effectively

be built. From AN we use proposition 2 and obtain ∆(AN ) (again effective)

which is 1-safe (∆(AN ) ∈ 1-B-TPNε) and then in B-GTPNε. �

It follows that Self-modification, read, logical inhibitor and reset arcs do

not add expressiveness to bounded TPNs w.r.t. timed language acceptance: as

shown in Section 3.1.3, bounded self-modifying TPNs with read, logical inhibitor
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and reset arcs forms a subclass of B-GTPNε which is equally expressive to

1-B-TPNε and as B-TPNε.

Some counterparts of important Theorems for TA can be obtained for TPNs:

Corollary 3 (ε-transitions add expressiveness to bounded TPNs).

B-GTPN <L 1-B-TPNε (and thus B-TPN <L 1-B-TPNε).

Proof. From Theorem 3, we have B-GTPN ≤L TA. A main result of [37]

states that TA <L TAε and thus we have B-GTPN <L TAε. Using Corollary 2

we get B-GTPN <L 1-B-TPNε. �

Given a TTS S = (Q,Q0,Σε,→,F,R), the universal language problem asks

whether L(S) = TW∞(Σ), i.e. whether S accepts every timed word.

Corollary 4. The universal language problem is undecidable for 1-B-TPNε.

Proof. From the well-known result of Alur & Dill [24] the universal language

problem is undecidable fro TA. By Corollary 2, we can reduce the language

universal problem for 1-B-TPNε to the universality problem on the equivalent

automaton. The cosntruction of the equivalent automaton is effective. �

Finally we recall the following theorem from [19]:

Theorem 7 ([19]). TPNs can simulate 2-counter-machines (2CM) and they

are Turing powerful.

This implies that unbounded TPNs can generate non regular (untimed) lan-

guages. This does not hold for timed automata [24] and thus:

Corollary 5. TAε <L TPNε.

Proof. TPNε can simulate 2-counter-machines (Theorem 7) but not TAε and

Corollary 2 states that TAε =L B-TPNε <L TPNε. �

On the other hand, since there is no TPN (and no GTPN) weakly timed bisimilar

to A0 (Fig. 6):

Corollary 6. The classes GTPNε and TAε (as well as TPNε and TAε) are

incomparable w.r.t. timed bisimilarity.
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7. Equivalence w.r.t. Timed Bisimilarity

OR: From Theorem 5, we know that there is no translation from TA to

TPN preserving timed bisimularity. This can be illustrated by considering the

widget Nx<c of Fig. 8: the firing of transitions tx then u indeed leads to a state

where γtt is not marked, while x < c and the corresponding guard in the TA is

therefore true.

Thus, in this section, we consider the original definition of TPN by Merlin [5]

i.e. the class B-TPNε(≤,≥) of TPNs without strict constraints.

First recall (Rem. 2) that starting from a GTPN N ∈ B-GTPNε(≤,≥)

(and in particular from a TPN “à la Merlin”), the translation proposed in Sec-

tion 4 gives a TA A with a particular form, belonging to the following subclass

TAsyn
ε (≤,≥) :

Definition 15. The subclass TAsyn
ε (≤,≥) of TA is defined by the set of TA

of the form (L, l0, X,Σε, E, Inv,F,R) where :

• guards are conjunctions of atomic constraints of the form x ≥ c and in-
variants are conjunctions of atomic constraints of the form x ≤ c.

• the invariants satisfy the following property: ∀e = (ℓ, γ, a, R, ℓ′) ∈ E, if
x 6∈ R and x ≤ c is an atomic constraint in Inv(ℓ), then either Inv(ℓ′)
does not constrain x or the constraint on x is of the form x ≤ c′ with
c′ ≥ c. �

We now adapt the construction of Section 6 to define a translation from

TAsyn
ε (≤,≥) to B-TPNε(≤,≥) preserving timed bisimilarity. The widget

Nx≤c is modified as depicted in Fig. 11(a). The widget Nx≥c is the one of Sec-

tion 6 in Fig. 7(b). Moreover, for each invariant, a widget depicted in Fig. 11(b)

prevents timed from elapsing when the border value of the invariant is reached.

In the sequel, the place Px and the transition tx of a widget Nϕ for ϕ ∈ CA

are respectively written Pϕ
x and tϕx . Moreover, for a constraint ϕ = (x ≥ c),

the place γtt of a widget Nϕ is written γ
ϕ
tt, and the place urg of a widget Nϕ is

written urgϕ.
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(a) Widget Nx≤c

The widgets in the scope of Inv(ℓ)
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. . .
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ℓ

(ε, [0, 0])
I
ϕ′
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ℓ
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(b) Widgets for Inv(ℓ) = ϕk ∧ · · · ∧ ϕk′

Figure 11: Widgets for an invariant

The widgets in the scope of R

Nϕn

Nϕ2

Nϕ1
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Nϕj′

. . .
P

ϕj
x P

ϕj′

x

γ
ϕ1

tt

γ
ϕ2

tt

γ
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tt

. . .

Pℓ

Pℓ′

fr(a, [0,∞[)

Figure 12: New widget Ne for an edge e = (ℓ, γ, a, R, ℓ′)
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Edges and Resetting Clocks. The reset of all the blocks in the scope of a set of

clocks R can be done in one step by merging4 all the transitions r(ε, [0, 0]) and

(ε, [0, 0]) of the widget NReset(R) of Fig. 9. Since the marking of a widget, when

the reset occurs, is not unique, and since a clock x of an automaton can be

reset in more than one transition, we create copies of these (ε, [0, 0]) transitions

in such a way that, given an edge e = (ℓ, γ, a, R, ℓ′) and given a marking of

widgets in scope of R, the reset of these widgets can be done by the firing of

one transition which we denote Rℓℓ′(ε, [0, 0]). Then there is one copy of Rℓℓ′ per

possible marking of the set of blocks in the scope of R. Finally, for each edge

(ℓ, γ, a, R, ℓ′) we create, as in Section 6, a transition f(a, [0,∞[) and we merge it

with Rℓℓ′(ε, [0, 0]) leading to a transition fr(a, [0,∞[) as depicted in Fig 12. We

obtain one copy of fr(a, [0,∞[) per possible marking of the set of blocks in the

scope of R. It is represented in Fig. 12 by starting the input arcs of fr(a, [0,∞[)

from the border of boxes Nϕj
and Nϕj′

.

The construction. As in Section 6, we create a place Pℓ for each location ℓ ∈ L.

Then we build the block Nϕ for each atomic constraint ϕ = (x ≥ c) (Fig. 7(b))

that appears in the guards of A and for each atomic constraint ϕ = (x ≤ c)

(Fig.11(a)) that appears in an invariant of A.

For each edge (ℓ, γ, a, R, ℓ′) ∈ E, we create the transition fr(a, [0,∞[) and we

connect it to the widgets in the scope of R as described in the paragraph above

(see Fig. 12). Now, assume γ = ∧i=1,nϕi and n ≥ 0, we connect fr(a, [0,∞[) to

the places γ
ϕi

tt of the widgets Nϕi
as described on Fig. 12. In case γ = tt (or

n = 0) there is only one input place to fr(a, [0,∞[) which is Pℓ.

Finally, for each location ℓ ∈ L with Inv(ℓ) = ϕk ∧· · ·∧ϕk′ , (as a shorthand

we denote ϕk ∈ Inv(ℓ) when Inv(ℓ) = · · · ∧ ϕk ∧ · · · .) we proceed as follows

(see figure Fig. 11(b)):

1. create a transition I
ϕk

ℓ (ε, [0, 0]) for each ϕk ∈ Inv(ℓ);

4The merging of two transitions t1 and t2 gives one transition t1,2 such that •t1,2 = •t1+•t2
and t1,2

• = t1
• + t2

•. Here, temporal intervals are [0, 0] and labels are ε both for the merged
transitions and for the result of the merging
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2. connect Iϕk

ℓ (ε, [0, 0]) to Pℓ and to the place urgϕk of block Nϕk
.

LetA = (L, ℓ0, X,Σε, E, Inv,F,R) and assume that the set of atomic constraints

of A is CA = CA(≥)∪CA(≤) where CA(⊲⊳) is the set of atomic constraints x ⊲⊳ c,

⊲⊳∈ {≤,≥}, of A and X = {x1, · · · , xk}.

We denote ∆+(A) = (P, T,Σε,
•(.), (.)

•
, M0,Λ, I, F∆, R∆) the TPN built as

described previously.

As for the language preserving translation, we have, by construction: 1)

∆+(A) is 1-safe and moreover 2) in each reachable marking M of ∆+(A)
(
∑

ℓ∈LM(Pℓ)
)

≤ 1.

Each widget related to an atomic constraint has a constant size. However

each widget associated with an edge has an exponential number of copies of

fr wrt. the number of atomic constraints of A. Thus the size of ∆+(A) is

exponential w.r.t. the size of A.

We can now build a bisimulation relation ≈ between A and ∆+(A).

Let (ℓ, v) be a state of A and (M, ν) be a state of ∆+(A). We define the

relation ≈ ⊆ (Np × Rm
≥0)× (L × Rn

≥0) by :

(M, ν) ≈ (ℓ, v) ⇐⇒



















































































(1)M(Pℓ) = 1

(2)∀ϕ ∈ CA, ν(tϕx ) = v(x)

(3)∀ϕ = (x ≥ c) ∈ CA(≥), v ∈[[ϕ]] ⇐⇒

M(γϕ
tt) = 1 ∨ (M(Pϕ

x ) = 1 ∧ ν(tϕx ) = c)

(4)∀ϕ = (x ≤ c) ∈ Inv(ℓ), v ∈[[ϕ]] ⇐⇒

M(Pϕ
x ) = 1∨

(M(urgϕ) = 1 ∧ ν(tϕx ) = c)

(III)

Let us notice that item 2 of this equation is true even when the transition tϕx is

not enabled.

Proposition 3. The relation ≈ of equation (III) is a weak timed bisimulation

relation.

Proof. We prove that ≈ is a weak timed bisimulation between A and ∆(A):
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1. final and repeated states: by definition of ∆+(A) and the definition of ≈;

2. initial states: it is clear that (M0,0) ≈ (l0,0),

3. continuous transitions: let (ℓ, v)
d
−→ (ℓ, v + d). Take (M, ν) such that

(ℓ, v) ≈ (M, ν). For ϕ = (x ≤ c) ∈ Inv(ℓ), we have v ∈[[ϕ]], and v + d ∈[[

ϕ]]. According to ν(tx) = v(x), we have ν(tx) + d = v(x) + d ≤ c then

M(urgϕ) = 0 and time d can elapse in Nϕ. In ∆+(A), from (M, ν), there

is a run : (M, ν)
d
−→ε (M

′, ν′) with M(Pℓ) = M ′(Pℓ) = 1 and the following

evolutions of widgets :

For ϕ = (x ≤ c) ∈ Inv(ℓ),

• If v(x) + d = ν(tϕx ) + d < c then M ′(urgϕ) = 0.

• If v(x) + d = ν(tϕx ) + d = c then we obtain either M(urgϕ) = 1 or

M(urgϕ) = 0 and v′(x) = ν′(tϕx ) = c. The transition I
ϕ
ℓ is enabled

or will be enabled after the immediate firing of tx, thus blocking time

as long as M(Pℓ) = 1.

For ϕ = (x ≥ c),

• v ∈[[ϕ]] and v + d ∈[[ϕ]]. If M(γϕ
tt) = 1 time d can elapse in Nϕ. If

M(γϕ
tt) = 0 then M(Pϕ

x ) = 1 and (as d > 0) tϕx is fired before the

total elapsing of d.

• v 6∈[[ϕ]] and v + d ∈[[ϕ]], iff there is d′ ≤ d s.t. transition tx must be

fired at d′. Transition tx is fired and let d− d′ elapse.

• v 6∈[[ϕ]] and v + d 6∈[[ϕ]] iff time d elapse and leave a token in Px.

For ϕ = (x ≤ c) 6∈ Inv(ℓ), according to the subclass of TA we consider, ϕ

is a constraint which will not be used any more before the next reset of x.

• v 6∈[[ϕ]] and then v + d 6∈[[ϕ]]. Then M(urgϕ) = 1 but there is no

transition I
ϕ
ℓ and for all possible transition I

ϕ
ℓ′ , we have M(Pℓ′) = 0

and a time d can elapsed.

• v+d 6∈[[ϕ]]. If M(urgϕ) = 1 then a time d can elapsed. If M(urgϕ) =

0 then there is d′ ≤ d s.t. transition tϕx must be fired at d′. Transition

tϕx is fired and let d− d′ elapse.
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• v ∈[[ϕ]] and v + d ∈[[ϕ]]. This case is similar to ϕ ∈ Inv(ℓ) but there

is no transition I
ϕ
ℓ .

This way for each constraint, there is a run ρϕ = (M, ν)
d
−→ε (Mϕ, νϕ)

s.t. (Mϕ, νϕ) satisfies requirements (2) and (3) of equation (III). For all

interleavings of previous runs ρϕ we obtain a run ρ = (M, ν)
d
−→ε (M

′, ν′)

s.t. (ℓ, v) ≈ (M ′, ν′).

4. discrete transitions : Let (ℓ, v)
a
−→ (ℓ′, v′) and (ℓ, v) ≈ (M, ν). There

is an edge e = (ℓ, γ, a, R, ℓ′) ∈ E s.t. γ = ∧i=1,nϕi, n ≥ 0 where ϕi

is an atomic constraint. According to the subclass of TA we consider,

invariants of ℓ′ can be ignored for allowing the firing of a as (by definition)

they are true if invariants of ℓ are true. From the semantics of timed

automata (definition 12), v ∈[[ϕi]] for 1 ≤ i ≤ n. From the definition of the

bisimulation relation ≈ we have then, either M(γϕi

tt ) = 1, or M(γϕi

tt ) = 0

and transition tϕi
x is immediately firable leading to M(γϕi

tt ) = 1. Thus,

transition fr(a, [0,∞[) is fired in widget Ne leading to (M ′, ν′). We have

then M ′(Pℓ) = 0 and M ′(P ′
ℓ) = 1. Then for all the widgets in the scope

of R, we have M ′(Pϕ
x ) = 1 and ν′(tϕx ) = v′(x) = 0. Moreover, for all

clocks x 6∈ R, the truth values of the constraints involving x, as well as the

corresponding widgets, stay unchanged. Thus we have (ℓ′, v′) ≈ (M ′, ν′).

This completes the proof that ∆+(A) ≈ A. �

From the previous results we can state the following corollaries:

Corollary 7. TAsyn
ε (≤,≥) is a syntactical subclass of TAε equally expres-

sive to B-TPNε(≤,≥) w.r.t. weak timed bisimilarity, i.e. TAsyn
ε (≤,≥) =W

B-TPNε(≤,≥).

Proof. Let A ∈ TAsyn
ε (≤,≥) . From the previous construction and propo-

sition 3, page 41, we obtain ∆+
1 (A) ∈ B-TPNε(≤,≥) with A =W ∆+

1 (A).

Let N ∈ B-TPNε(≤,≥), from theorem 1 or theorem 2, we obtain ∆+
2 (N ) ∈

TAsyn
ε (≤,≥) with N =W ∆+

2 (N ). �
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Corollary 8. The classes 1-B-TPNε(≤,≥), B-TPNε(≤,≥) and B-GTPNε(≤,≥)

are equally expressive w.r.t. weak timed bisimilarity i.e. 1-B-TPNε(≤,≥) =W

B-TPNε(≤,≥) =W B-GTPNε(≤,≥).

Proof. Let N ∈ B-GTPNε(≤,≥), thanks to the translation of Section 4 and

to theorem 2, there exists a TA AN ∈ TAsyn
ε (≤,≥) s.t. N =W AN which

can effectively be built. From the previous construction and proposition 3, we

obtain ∆+(AN ) ∈ 1-B-TPNε s.t. AN =W ∆+(AN ) then N =W ∆+(AN ). �

Corollary 9. Self-modification, read, logical inhibitor and reset arcs do not add

expressiveness to bounded TPNs “à la Merlin” w.r.t. weak timed bisimilarity.

Proof. As shown in Section 3.1.3, bounded self-modifying TPNs “à la Merlin”

with read, logical inhibitor and reset arcs is a subclass of B-GTPNε(≤,≥) which

is equally expressive as 1-B-TPNε(≤,≥) and as B-TPNε(≤,≥) (i.e. bounded

TPNs “à la Merlin”). �

Corollary 10. Atomic and intermediate semantics are equally expressive for

bounded TPNs “à la Merlin” w.r.t. weak timed bisimilarity.

Proof. In [33] there is a translation from TPNs with intermediate semantics to

TPNs with atomic semantics which preserves bisimilarity when the net is 1-safe.

Moreover, as shown in Section 3.1.2, GTPNs allow to express intermediate as

well as atomic semantics of TPNs. Thus, a bounded TPN “à la Merlin” with

atomic semantics is in B-GTPNε(≤,≥) and then, thanks to corollary 8, can

be translated into a bisimilar net in 1-B-GTPNε(≤,≥) i.e. a 1-safe (and then

bounded) TPN “à la Merlin” with intermediate semantics. �

8. Conclusion

In this paper, we have investigated different questions related to the expres-

siveness of TPNs and GTPNs.

We have first presented a structural translation from bounded generalised

TPNs (encompassing read, logical inhibitor and reset arcs, self-modification and
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strict constraints) to TA preserving isomorphism of the underlying timed tran-

sitions systems. We have shown that TA, bounded TPNs and bounded GTPNs

are equivalent w.r.t. timed language acceptance. We have also provided an ef-

fective construction of a 1-safe TPN equivalent to a TA. Finally, we have given

a syntactic subclass of TA expressively equivalent to TPNs “à la Merlin” w.r.t.

timed bisimilarity. This enables us to obtain new results for TPNs summarised

in Table 2, page 5. Moreover these results lead to a classification of the expres-

siveness of different subclasses of GTPNs and TA given in Fig. 1.
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