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Abstract In this paper we give a symbolic concurrent semantics for network of
timed automata (NTA) in terms ofextended symbolic nets. Symbolic nets are
standard occurrence nets extended withread arcsandsymbolic constraintson
places and transitions. We prove that there is acomplete finite prefixfor any NTA
that contains at least the information of the simulation graph of the NTA but keep
explicit the notions of concurrency and causality of the network.

1 Introduction

Concurrent Semantics for Finite State Systems.The analysis ofdistributedor concur-
rent finite state systems has been dramatically improved thanks to partial-order meth-
ods (see e.g. [31]) that take advantage of theindependencebetween actions, and to
theunfoldingbased methods [16,25] that improve the partial order methods by taking
advantage of thelocality of actions.

Timed Systems.The main models that include timing information and are usedto spec-
ify distributed timed systems are networks oftimedautomata (NTA) [2,19], andtime
Petri nets (TPN) [26]. There are a number of theoretical results about NTA and TPN and
efficient tools to analyze them have been developped ([3,10,22,20,8,18]). Nevertheless
the analysis of these models is always based on the exploration of a graph which is a
single large automaton that produces the same behaviours asthe NTA or the TPN; this
induces an exponential blow up in the size of the system to be analysed.

Related Work. In [21,27], the authors define an alternative semantics for NTA based
on local time elapsing. The efficiency of this method dependson two opposite factors:
local time semantics generate more states but the independence relation restricts the
exploration. In [24] (a generalization of [32]), the independence between transitions
in a TA is exploited in a different way: the key observation isthat the occurrences of
two independent transitions do no need to be ordered and consequently nor do the oc-
currences of the clock resets. The relative drawback of the method is that, before their
exploration, the symbolic states include more variables than the clock variables. Partial
order methods for TPNs are studied in [29], where the authorsgeneralize the concept
of stubborn setto time Petri nets, calling ita ready set. They apply it to thestate class



graph construction of [7]. The efficiency of the method depends on whether the (dy-
namical) timing coupling between transitions is weak or not. Unfortunately the urgent
semantics of this model entails a strong timing coupling. The previouspartial order
methods only take advantage of the independence of actions and not of any locality
property. We are interested in atrue concurrent semanticsfor NTA and this has not
been developped in the aforementioned work.

Process semanticsfor time Petri nets which is a generalization of the unfolding seman-
tics for time Petri nets has been developed by different researchers. From a semantical
point of view, Aura and Lilius have studied in [28] therealizability problemof a non
branching process in a TPN. They build an unfolding of the untimed Petri net under-
lying a safe TPN, and addconstraintson the dates of occurrence of the events. It is
then possible to check that atimed configurationis valid or not. In [17] the authors
consider bounded TPN and a discrete time domain: the elapsing of one time unit is a
special transition of the net. Thus the global synchronization related to this transition
heavily decreases the locality property of the unfolding. Furthermore, when the inter-
vals associated with the transitions involve large integers, this method suffers the usual
combinatorial explosion related to the discrete time approach.

Section 3 of this paper can be viewed as the counterpart of thework of Aura and
Lilius [28] in the framework of NTA: we define similar notionsfor NTA and build a
symbolic unfoldingwhich is asymbolic net. We have to extend the results of Aura and
Lilius because there is nourgencyfor firing a transition1 in a NTA. As stated in [28]
those unfoldings are satisfactory forfree choice netswhich are a strict subclass of TPN.
Our NTA are not free choice nets and in section 4 we refine our symbolic unfolding to
obtain anextended symbolic unfoldingwhich is a symbolic net withread arcs.

Following our recent approach using the notion of symbolic unfolding to capture
the partial order behaviors of TPN [14], we propose in this paper a similar notion for
NTA, but we cannot directly apply the framework of [14]. Indeed TA and TPN have
different expressive powers ([6,13]) and as stated earlierNTA do not have the nice
urgencyfeatures that TPN have.

Up to our knowledge, this is the first attempt to equip NTA witha concurrent se-
mantics, which can be finitely represented by a prefix of an unfolding. In this paper we
answer the following questions:

1. What can be a good model for aconcurrent semanticsof NTA ? The result is an
extension of the model of symbolic nets we have proposed in [14];

2. How to define aconcurrent semanticsfor NTA, i.e.how to define asymbolic unfold-
ing that captures the essential properties of a NTA while preserving concurrency
information? This is achieved in two steps: first build a symbolic(pre)-unfolding
and use this object to build a proper extended symbolic unfolding of the NTA. By
“proper” unfolding, we mean a symbolic Petri net on which we can check that a
local configurationis valid using only theextended causalpast of an event.

3. Is there acomplete finite prefixfor NTA ? This result is rather easy to obtain on the
pre-unfoldingobject and carries over to the symbolic unfolding.

1 invariantsandguardscan be independent and a transition is not bound to fire before its dead-
line given by theguard.
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About point 3 above, we are not addressing the problem of building such a prefix
efficientlybut our work is concerned with identifying the key issues in the construction
of a prefix for NTA. The solution proposed in [14] builds a complete finite prefix for
safe TPNs, but with no guarantee that this prefix is one of the smallest, which is a
very difficult problem to solve. Based on this work, we address more basic questions
about NTA, which are in a sense easier to study than safe TPNs because the concurrent
structure is explicit.

Key Issues.In this section we present informally the problem and the keyissues raised
by the three previous questions. In the case of networks of finite automata,finite com-
plete prefixesexist. For example, for the network of Fig. 1(a), a finite complete prefix2

is given on Fig. 1(b). Finite complete prefixes contain full information about the reach-
able states of the network and about the set of events that arefeasiblein the network.
A set of events (labels) is feasible if it can be generated by arun of the network. For
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Figure 1. A NTA and its Symbolic Unfolding

example,{t1} is not a feasible set of events in the networkN1, becauset1 must be
preceded byt2. And this appears in the unfolding as evente3 (labelled byt1) must be
preceeded bye2 (labelled byt2). In an unfolding, a set of eventsK is aconfigurationif
there is a reachable marking obtained by firing each event inK. For example{⊥, e1}
is a configuration,{⊥, e1, e2} as well, but{⊥, e3} is not ase3 must be preceded bye2

before it occurs. The minimal set of events necessary for an evente to occur is called
the causal past(or local configuration) of e. Note that by definition aconfiguration

2 The automata synchronize on common labels. Labels of the events and places represent the
corresponding location and transition in the network of automata. The constraints appearing
near each node are explained later and can be ignored at this stage.
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contains the causal past of each of the event. Acompleteprefix is an unfolding that
satisfies property(P ): a set of events is feasible in the NTA iff it is a configurationof
the unfolding3. This property of unfoldings is the key point in the untimed case and
allows one to do model-checking on the complete finite prefix.This unfolding can also
be used forfault diagnosispurposes which is a very important application area.

In the case of networks oftimed automata, we deal withtimed eventswhich are pairs
(e, δ) whereδ ∈ R≥0. To decide whether a set of timed events is feasible in a network
of timed automata, we can build asymbolic unfolding. For this, we add asymbolic
timing constraintg(e) to each event of the previous unfolding. For example, withe1

we can associate the constraintg(e1)
def
= δe1

− δ⊥ ≤ 5, whereδe is the variable that
represents the date of occurrence ofe. A set of timed events{(e1, d1), · · · , (ek, dk)} is
a timed configurationif {e1, e2, · · · , ek} is a configuration and the constraintg(e1) ∧
· · · ∧ g(ek) is satisfied when replacing eachδei

by di. For example{(⊥, 0), (e1, 4)} is

a timed configuration withg(⊥)
def
= δ⊥ = 0. Thus the property we would like to have

for symbolic unfoldings is (P ′): {(e1, d1), · · · , (ek, dk)} is feasible iff it is a timed
configuration.

In the untimed case, one can check that an event is fireable in the unfolding using
only the causal past of the event. We want this property to hold for the timed unfoldings
as well and then a formula associated with an evente should only involve variables that
are associated with events in the causal past ofe (the local configuration ofe). Now
assume we want to decide whether{(⊥, 0), (e1, d1), (e2, d2)} is a timed configuration.
It is actually if d1 − d2 ≤ 2. But this cannot be captured by any conjunctiong(⊥) ∧
g(e1) ∧ g(e2) becausee1 is not in the causal past ofe2 ande2 not in the causal past
of e1. A symbolic unfolding built by associating constraints with each evente, with the
property that each constraintg(e) uses only variables in the causal past ofe, does not
always contain enough information for property(P ′) to hold. In this paper we show 1)
how to build an unfolding that contains enough information so that(P ′) holds; 2) how
to build a finite and complete prefix of the unfolding satisfying (P ′).

Organization of the Paper.The paper is organized as follows. Section 2 presents the
model of NTA and its usual sequential semantics. Section 3 gives a concurrent seman-
tics for NTA in terms ofsymbolic branching processes(SBP) and proves the existence
of complete finite prefixes. The SBP is a first step towards a complete finite prefix hav-
ing property(P ′). In section 4, we show how to build anextendedSBP, usingread-arcs,
which is a complete finite prefix satisfying property(P ′). Section 5 gives a summary
of the paper and directions for future work. The proofs of thetheorems are omitted and
can be found in the extended version of the paper [12].

2 Networks of timed automata

Notations . Let X = {x1, · · · , xn} be a finite set ofclockvariables. Avaluationν is a
mapping fromX toR≥0. LetX ′ ⊆ X. The valuationν[X ′] is defined by:ν[X ′](x) = 0
if x ∈ X ′ andν[X ′](x) = ν(x) otherwise.ν|X′ is the restriction (projection) ofν to

3 Actually we should write “it is a labeling” of a configuration of the unfolding.
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X ′ and is defined byν|X′(x) = ν(x) for x ∈ X ′. We denote0 the valuation defined by
0(x) = 0 for eachx ∈ X. For δ ∈ R, ν + δ is the valuation defined by(ν + δ)(x) =
ν(x) + δ. C(X) is defined to be the set of conjunctions of terms of the formx− x′ ⊲⊳ c
or x ⊲⊳ c for x, x′ ∈ X andc ∈ N and⊲⊳∈ {<,≤,=,≥, >}. C(X) is called the set of
diagonal constraintsoverX. The set ofrectangularconstraints,Cr(X) is the subset of
C(X) where only constraints of the formx ⊲⊳ c appear. Given a formulaϕ ∈ C(X) and
a valuationν ∈ R

X
≥0, we useϕ[x/ν(x)] for ϕ wherex is replaced byν(x). we denote

ϕ(ν) ∈ {tt, ff} the truth value ofϕ[x/ν(x)]. We let [[ϕ]]= {ν ∈ R≥0 |ϕ(ν) = tt}. A
subsetZ of R

X
≥0 is a zone ifZ =[[ϕZ]] for someϕZ ∈ C(X). Note that the intersection

of two zones is a zone. Two operators are defined on zones: thetime successoroperator,
Zր = {v+δ | v ∈ Z, δ ∈ R≥0} and theR-resetoperator,Z[R] = {v | ∃v′ ∈ Z s.t.v =
v′[R]}. BothZր andZ[R] are zones ifZ is a zone. Asimple substitutions is a mapping
s : X → diff(Y ), where diff(Y ) = {y − y′ | y, y′ ∈ Y } that satisfies: ifs(x) = y − y′

ands(x′) = z−z′ thenz = y. ϕ[s] stands for the formulaϕ in which each occurrence of
a variablex ∈ X is replaced bys(x). Thus ifϕ ∈ C(X) ands is a simple substitution,
ϕ[s] ∈ C(Y ).

Timed Automata. Timed automatawere introduced in [2] to model systems which
combinediscreteandcontinuousevolutions.

Definition 1. A timed automatonA is a tuple(L, ℓ0, Σ,X, T, INV) where:L is a finite
set of locations; ℓ0 is the initial location; Σ is a finite set ofdiscreteactions;X =
{x1, · · · , xn} is a finite set of (positive real-valued)clocks; T ⊆ L × Cr(X) × Σ ×
2X × L is a finite set oftransitions: (ℓ, g, a,R, ℓ′) ∈ T represents a transition from
the locationℓ to ℓ′, labeled bya, with the guardg and the reset setR ⊆ X; we write
SRC(t) = ℓ, TGT(t) = ℓ′, GUARD(t) = g, λ(t) = a and RESET(t) = R. INV ∈
Cr(X)L assigns aninvariantto any location. We require thatINV be a conjunction of
terms of the formx ⊲⊳ c with ⊲⊳∈ {<,≤} andc ∈ N.

A stateof a timed automaton is a pair(ℓ, v) ∈ L×R
X
≥0. A timed automaton isbounded

if there exists a constantk ∈ N s.t. for eachℓ ∈ L, INV(ℓ) ⊆[[0 ≤ x1 ≤ k ∧ · · · ∧ 0 ≤
xn ≤ k]]. Examples of timed automata are given in Fig. 1(a). In the sequel we require
that for any valuationv and any transitiont = (ℓ, g, a,R, ℓ′), g(v) =⇒ INV(ℓ′)(v[R]).
An automaton satisfying this property is said to besimple. This assumption simplifies
condition i) of Def. 2 below, and also the proofs of the main theorems, because we can
decide whethert can be fired using GUARD(t). Note that it does not restrict the model
as for each transitiont = (ℓ, g, a,R, ℓ′) we can compute a new guardg′ s.t. replacingg
by g′ in t satisfies this property and the semantics of the automaton with g′ is the same
as withg.

Definition 2. The semantics of a timed automatonA = (L, ℓ0, Σ,X, T, Inv) is a la-
beled timed transition systemSA = (Q, q0, T ∪ R≥0,→) with Q = L × (R≤0)

X ,
q0 = (ℓ0,0) is the initial state and→ consists of the discrete and continuous transition

relations: i) the discrete transition relation is defined for all t ∈ T by: (ℓ, v)
t
−→ (ℓ′, v′)

⇐⇒ ∃ t = (ℓ, g, a,R, ℓ′) ∈ T s.t. g(v) = tt, v′ = v[R 7→ 0] (we do not need to
addInv(ℓ′)(v′) = tt because we assume our automaton is simple); ii) the continuous
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transition relation is defined for allδ ∈ R≥0 by: (ℓ, v)
δ
−→ (ℓ′, v′) iff ℓ = ℓ′, v′ = v + δ

and∀ 0 ≤ δ′ ≤ δ, Inv(ℓ)(v + δ′) = tt. A run of a timed automatonA is a path inSA

starting inq0 where continuous and discrete transitions alternate4. The set of runs ofA
is denoted by[[A]]. A stateq is reachablein A if there is a run fromq0 to q. REACH(A)
is the set of reachable states ofA. A timed wordw ∈ (T × R≥0)

∗ is acceptedbyA is
there is a runρ ∈[[A]] s.t. the trace ofρ is w.

The analysis [1,5,9,30,11] of timed automata is based on theexploration of a (finite)
graph, thesimulation graph, where the nodes aresymbolic states. A symbolic state is a
pair (ℓ, Z) whereℓ is a location andZ azoneover the setRX

≥0.

Definition 3. Thesimulation graphSG(A) of a timed automatonA is given by: i) the
set of states is the set of symbolic states of the form(ℓ, Z) whereZ is a zone; ii) the
initial state is (ℓ0, Z0) with Z0 = 0

ր∩ [[ INV(ℓ0) ]]; iii) (ℓ, Z)
a
−→ (ℓ′, Z ′) if there

is a transition(ℓ, g, a,R, ℓ′) in A s.t. Z∩ [[g ]]6= ∅ (this ensuresZ ′ is not empty) and

Z ′ =
(

(Z∩ [[g]])[R]
)ր

∩ [[INV(ℓ′)]].

We assume that the timed automata are boundedi.e. in each locationℓ, Inv(ℓ) is
bounded5. In this case the number of zones of the simulation graph is finite [23,9].

Product of Timed Automata.We use the classical composition notion based on asyn-
chronization functioǹa la Arnold-Nivat. LetA1, . . . , An be n timed automata with
Ai = (Li, li,0, Σi,Xi, Ti, Invi). We assume that for eachi 6= j, Li ∩ Lj = ∅ and
Xi ∩ Xj = ∅. Given a setB we useBε for the setB ∪ {ε} (assumingε 6∈ B).

A synchronization constraintI is a subset ofΣε
1 × Σε

2 · · · × Σε
n \ (ε, · · · , ε).

The (synchronization) vectors of a synchronization constraint I indicate which ac-
tions synchronize. Ifz = (a1, · · · , an) ∈ I we write z[j] for the j-th component
aj . For (t1, · · · , tn) ∈ T ε

1 × · · ·T ε
n we write λ(t1, · · · , tn) = (λ1(t1), · · · , λn(tn))

with λi(ε) = ε. For z ∈ I, we defineλ−1(z) = {t ∈ T ε
1 × · · ·T ε

n |λ(t) = z} and
λ−1(I) to be the union of the sets ofλ−1(z) for z ∈ I. λ−1(I) indicates how the tran-
sitions synchronize. Fort ∈ λ−1(I), we let: SRC∗(t) = {l ∈ SRC(t[i]) | t[i] 6= ε},
TGT∗(t) = {l ∈ TGT(t[i]) | t[i] 6= ε}, RESET(t) = {x |x ∈ RESET(t[i]) and t[i] 6=
ε}, GUARD(t) = ∧t[i] 6=εGUARD(t[i]).

Definition 4. The synchronous product(A1| . . . |An)I is the timed automatonB =
(L, l0, Σ,X, T, INV) defined by:L = L1 × · · · × Ln, l0 = (ℓ1,0, · · · , ℓn,0), Σ =
Σ1 × · · · × Σn, X = ∪n

i=1Xi; (l, g, a,R, l′) ∈ T iff ∃t ∈ λ−1(I) s.t.: (1) if t[i] 6= ε
thenli = SRC(t[i]) and otherwisel′i = TGT(t[i]), (2) a = λ(t), g = GUARD(t) and
R = RESET(t) and INV(l) = ∧n

i=1INVi(ℓi) if l = (ℓ1, · · · , ℓn).

This definition implies that if eachAi is bounded (resp. simple) then the product is
bounded (resp. simple).

4 In our definition runs are labeled by transitions.
5 Any timed automaton can be transformed into an equivalent (behaviours) bounded automa-

ton [4].
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3 Symbolic Unfolding for Network of Timed Automata

In this section we define the symbolic semantics of a NTA in terms ofsymbolic branch-
ing processes. Those processes contain timing constraints both on placesand events.
The definitions ofoccurrence nets, branching processes, together with the notions
of co-sets, cuts, conflict are taken from [15] and recalled in appendix A. We denote
(E,P, •(), ()

•
) an occurrence net. Given a setB we denoteδ(B) the set of (fresh)

variables{δb | b ∈ B}. ⌈x⌉ denotes the causal past ofx.

Definition 5. A symbolic occurrence netT is a tuple (E,P, •(), ()
•
, γ) where

(E,P, •(), ()
•
) is an occurrence net, andγ : E ∪ P → C(X) with X = δ(E ∪ P ).

We require that i) for eachx ∈ E ∪ P , γ(x) contains only variables inδ(⌈x⌉), and ii)

γ(⊥)
def
= (δ⊥ = 0). We refer to the net(E,P, •(), ()

•
) as theunderlying netof T .

An example of a symbolic net is given in Fig. 1(b).

Definition 6. (M,Φ) is a symbolic co-setof T if: 1) M is a co-set of the underlying
net, 2)Φ = Φ1(M) ∧ Φ2(M) ∧ Φ3(M) ∧ Φ4(M) with:

Φ1(M) =
∧

x∈⌈M⌉

γ(x) (1)

Φ2(M) =
∧

e∈⌈M⌉∩E

(

∧p∈•eδp = δe

)

(2)

Φ3(M) =
∧

p∈M

(

δ•p ≤ δp

)

(3)

Φ4(M) =
(

∧

p,p′∈M

δp = δp′

)

(4)

(M,Φ) is a symboliccut is M is a cut of the underlying net.

The meaning of formula (2) is that the more recent dateδp at which a token was inp is
the time at which an event removed a token inp. (3) imposes that if a token is inp and
p is in a co-set, the current time inp which isδp is larger than the date of occurrence of
the event that put a token inp. Finally (4) requires that all the places in the co-set have
reached the same global time. The reason why we need to use variables associated with
places is because there is no urgency in NTA. Notice that the formulaΦ of a symbolic
co-set is entirely determined by the co-setM and unique; we denote it byΦM . Let M
be a co-setν : δ(⌈M⌉) → R≥0. (M,ν) is a timed co-setif ν ∈[[ΦM ]]. Consequently
(M, [[ΦM ]]) is the set of timed co-sets associated withM . (M,ν) is a timed cutif M is
a cut and(M,ν) is a timed co-set.

Let (A1| . . . |An)I be a synchronous product of TA. Thesymbolic branching pro-
cesses(SBPs) of(A1| . . . |An)I are symbolic occurrence nets built over two setsE and
P defined inductively by: i)⊥ ∈ E , ii) if e ∈ E ands ∈ L then(e, s) ∈ P, iii) if S ⊆ P
andt ∈ I then(S, t) ∈ E . On those two sets we define the mappings•(), ()

•: for E ,
•⊥ = ∅, and if e = (S, t), •e = S; ande• = {s | (e, s) ∈ P}; for P: •(e, s) = e and
(e, s)

•
= {e | •e ∩ s 6= ∅}. By definition ofE andP a SBP is completely determined

by E ansP as•· and·• are implicitly defined.(E,P, γ) with E ⊆ E andP ⊆ P, is
a SBP of(A1| . . . |An)I if γ satisfies conditions (i–ii) of Def. 5. We use the following
notations:

– for e = (S, t) ∈ E \ {⊥}, λ(e) = t; we say thate is ani-event ift[i] 6= ε;
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– for (e, s) ∈ P, loc(e, s) = s, Loc(Y ) = ∪y∈Y loc(y). (e, s) is ani-place ifs ∈ Li;
– RESET(e) = RESET(λ(e)), and by convention RESET(⊥) = X.
– if x ∈ X andK is a configuration of a SBP, theevent of last reset ofx in K is

Z :=0

K (x) = min{e ∈ K |x ∈ RESET(e)}. A minimal element always exist as⊥
resets each variable. The unicity of this element will follow from the fact that each
variable belongs to one automaton and that the events of eachautomaton are totally
ordered.

Definition 7. The set of symbolic finite branching processesof a network
(A1| . . . |An)I is defined inductively as follows:

– ({⊥}, {(⊥, l1,0), (⊥, l2,0), · · · , (⊥, ln,0)}, γ) with γ(⊥)
def
= δ⊥ = 0, γ(⊥, li,0)

def
=

INV(li,0)[si], with the simple substitutionsi defined bysi(x) = δ(⊥,li,0) for each
x ∈ Xi, is a SBP of(A1| . . . |An)I ;

– if (E,P, γ) is a SBP of(A1| . . . |An)I , t ∈ I, C ⊆ P is a co-set s.t. Loc(C) =
SRC∗(t), then

(E ∪ {e}, P ∪ {(e, s) | s ∈ TGT∗(t)}, γ′)

is a SBP of(A1| . . . |An)I , with e = (C, t), γ′
|E∪P = γ, γ(e) = GUARD(t)[η],

η : x 7→ δe − δZ:=0

⌈C⌉
(x), γ(e, s) = Inv(s)[η′], η′ : x 7→ δ(e,s) − δZ:=0

⌈e⌉
(x) (note that

η andη′ are simple substitutions.)

If e 6∈ E, e is apossible extensionof (E,P ).

A SBP of a network is completely determined byE and P as the mappingγ is
completely determined byE and P . By definition of the SBP, each symbolic cut
(M,ΦM ) is such thatΦM ∈ C(δ(⌈M⌉)). By construction, a symbolic branching pro-
cess satisfies conditions (i–ii) of Definition 5. An example of a symbolic branching
process is given on Fig. 1(b)6. We can define the union of two symbolic branch-
ing processes(E1, P1, γ1) and (E2, P2, γ2) component-wise on events and places
(E1 ∪ E2, P1 ∪ P2, γ), and7 γ(x) = γi(x) if x ∈ Ei ∪ Pi. We also accept as sym-
bolic branching processes countable unions of finite branching processes, which are
infinite symbolic branching processes. Then symbolic branching processes are closed
under countable union and we can define thesymbolic unfolding, TBP(A1| . . . |An)I ,
of (A1| . . . |An)I to be the maximal symbolic branching process. Our SBPs are simple
extensions ofbranching processesas defined in [15]. The discrete structure of a SBP
is a BP. Also the constraints on the nodes can onlyrestrict the reachable marking of
the BP underlying a SBP. Hence the next two properties carry over from the results
of ([15]).

Proposition 1. Twoi-nodes of a SBP are either causally related or in conflict.

Proposition 2. Letc be a cut of a SBP. Thenc contains onei-place for each1 ≤ i ≤ n.

6 The label on the side of a placep is loc(p). The constraintγ(p) appears on the side. For an
event, the labelλ(e) appears on the side along with the constraintγ(e).

7 As γ is uniquely defined for anyx ∈ Ei ∪ Pi, if x ∈ E1 ∩ E2 we must haveγ1(x) = γ2(x);
the same holds forP1 ∪ P2.
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This enables us to associate with each configurationK, a symbolic state. Let CUT(K)
be the cut associated withK. Because of Proposition 2 above, we can associate a unique
discrete statel of (A1| . . . |An)I with CUT(K): l is the “vector” representation of the
set Loc(CUT(K)). Now consider the formulaf = ΦCUT(K) defined in Definition 6.
This formula is inC(δ(⌈CUT(K)⌉)). Assumeν ∈[[f ]]. Definevν ∈ R

X
≥0 by8: vν(x) =

ν(CUT(K)) − ν(δZ:=0

⌈K⌉
(x)). We letZK = {vν | ν ∈[[f ]]}. The symbolic global state

associated withK is GS(K) = (Loc(CUT(K)), ZK). Note thatZK can be the empty
set.TBP(A1| . . . |An)I contains correct and complete information w.r.t. the simulation
graph of(A1| . . . |An)I :

Theorem 1. If K is a configuration ofTBP(A1| . . . |An)I s.t. GS(K) 6= ∅ then a)
GS(K) = (l, Z) for some(l, Z) reachable inSG((A1| . . . |An)I), and b) ifK ∪{e} is

a configuration and[[ΦCUT(K) ∧ γ(e)
∧

(

∧p∈•eδp = δe

)

]]6= ∅ then(l, Z)
λ(e)
−−−→ (l′, Z ′)

andGS(K ∪ {e}) = (l′, Z ′).

As a consequence of Theorem 1, we obtain that eachZK is a zone for a config-
urationK. Moreover this zone can be computed effectively (see [12]).A corollary of
Theorem 1 is:

Corollary 1. Let K = {e1, · · · , ej} be a configuration andν : ⌈CUT(K)⌉ → R≥0

s.t.ν ∈[[ΦCUT(K)]]6= ∅. Then there exists a one-to-one mappingf : [1..j] → [1..j] s.t.
(λ(ef(1)), ν(ef(1)) · · · (λ(ef(j)), ν(ef(j)) is a timed word accepted by(A1| . . . |An)I .

Corollary 1 states that if the formula associated with CUT(K) is satisfiable then there
is a way of ordering the events inK such that they produce a timed word of the NTA.

Theorem 2. Let (l, Z) be a reachable symbolic state in the simulation graph of
(A1| . . . |An)I . There is a configurationK of the underlying net ofTBP(A1| . . . |An)I

s.t.: a) GS(K) = (l, Z) and, b)if(l, Z)
t
−→ (l′, Z ′) there is a configurationK ∪ {e},

with λ(e) = t andGS(K ∪ {e}) = (l′, Z ′).

Corollary 2. Let (w1, d1)(w2, d2) · · · (wk, dk) be a timed word accepted by
(A1| . . . |An)I . Then, there exists a configurationK = {e1, · · · , ek} of
TBP(A1| . . . |An)I and ν : ⌈CUT(K)⌉ → R≥0, ν ∈[[ΦCUT(K) ]], s.t. 1)λ(ei) = wi

and 2)ν(δei
) = di.

If a TBP T satisfies the conditions of Theorem 2, we say thatT is complete. The-
orem 1, corresponds to acorrectnessproperty. For network of finite automata, com-
plete (and correct) finite branching processes exist, and are calledcomplete finite pre-
fixes[25,15]. In the case of network of timed automata we can construct of finite com-
plete prefix that preserves the reachability information ofthe simulation graph. The
reason for the existence of such a finite prefix is that each symbolic cut corresponds
to a symbolic state in the simulation graph of the network of timed automata and the
number of symbolic states is finite (the timed automata are bounded). This implies that
to construct a symbolic complete finite prefix that contains at least as much information

8 Equation (4) implies that for eachp, p′ ∈ CUT(K), ν(δp) = ν(δp′) and we denote this value
ν(CUT(K)).
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as the simulation graph, we can re-use the algorithms of [15]and the notion ofcut-off
events andadequate orders. Adequate orders are defined in [15] and we refer the reader
to this article for a comprehensive definition and list of theproperties of these orders.

As a consequence symbolic complete prefixes exist for network of timed
automata and can be computed using the efficient algorithms of [15]. We
let PREF((A1| . . . |An)I) be the complete symbolic finite prefix obtained from
(A1| . . . |An)I . The example of Fig. 4 in appendix C, page 18 has an infinite unfolding
(synchronization is on common labels). A complete finite prefix is given on Fig. 4.(a),
page 18.

The unfolding of Fig. 1(b) is trivially a complete finite prefix because it is a finite
unfolding. As pointed out in the introduction, our SBP does not always satisfy property
(P ′). In the next section we refine the SBP to obtain anextendedSBP that satisfies
property(P ′).

4 Extended Finite Complete Prefixes

In the case of finite automata, any cut containing a co-set that enables an event, still
enables the same event. This is not the case for network of timed automata as can be
seen on the example of Fig. 1(b). Ife2 has not fired,e1 can fire because nothing can
prevent it from doing so (e3 is not enabled). The fact thate2 has not fired can be inferred
from the fact that either placeA or U contains a token. But this implies that the dateδe1

at whiche1 fires satisfiesδe1
≤ 3. If e2 has fired atδe2

, e3 ande1 are in conflict. Thus
e1 can only occur at a date when a token can be inB, i.e. to fire we must haveδB = δe1

and the constraint on the date at which a token can be inB which isδB − δe2
≤ 2. This

impliesδe1
− δe2

≤ 2. Thus the timing constraints associated withe1 are not the same
in the cuts(0, A, U) and(0, B, V ) although they are both cuts that contain•e1.

To encode this timing dependency structurally we can use symbolic occurrence nets
with read arcs. For instance the symbolic net of Fig. 1(b) can be “transformed” into the
symbolic extended net of Fig. 2 (a read arc is a dash line). Read arcs enable us to point
to the missing timing information in the net that is needed toensure an event can fire.
This also means that we duplicate the evente1 into e1 ande′1 because the constraints
are different depending on whethere2 has occurred or not. Read arcs enlarge thecausal
pastof the events. In the extended occurrence net, the constraint between the dates of
occurrence ofe1 ande2 can be inferred from the past ofe1: indeed, to fire, we must
haveδe1

= δB and thusδe1
− δe2

≤ 2. Read arcs enable us to differentiate the two cuts
(0, A, U) and(0, B, V ) that generate different timing constraints one1 ande2.

Extended netsare nets extended with read arcs. Symbolic extended nets areex-
tended nets with constraints on the places and events. The formal definition of extended
symbolic nets together with the new notions of conflict, concurrency and causality are
given in appendix B.

The Extendedsymbolic branching processes (ESBP) of a network are definedas
in section 3: the only change we need to do is to define the set ofevents so that it
includes the places in◦e. To this end, ifS, S′ ⊆ P andt ∈ T , (S, S′, t) is in E and if
e = (S, S′, t), ◦e = S′.
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Figure 2. Extended symbolic unfolding for the example of Fig. 1(a)

Time Lock Freedom.The time lock freedomassumption, asserts that no automaton in
the NTA can prevent time from elapsing. Under this assumption, if an evente is not
in conflict with any other evente′ in TBP((A1| . . . |An)I), the timing constraint onδe

obtained byΦ(•e) is sufficient to ensure thate can fire at timeδe. Indeed, the only way
an evente can be prevented from happening at timet is because either i) an event in
conflict with it occurred at timet′ < t, or ii) the NTA cannot reach timet. Under the
assumption of time lock freedom, ii) cannot happen and consequently if e is not in
conflict with anye′, the constraints on⌈•e⌉ are sufficient to ensuree can fire.

If we don’t have this assumption, the level of concurrency inthe unfolding is re-
duced as witnessed by the examples of appendix D.

The NTA of Fig. 1(a) does not satisfy the time lock freedom assumption (automa-
ton 2 can prevent time from elapsing in locationB). Nevertheless evente2 cannot be
prevented from firing by the first automaton and thus we can we can safely firee2 if the
places in•e2 have a token as the first automata can not prevent time from elapsing.

Safe Co-sets.Let ENABLE(e) denote theenabling cutsof e 6= ⊥ in a finite sym-
bolic branching processN : ENABLE(e) = {C | •e ⊆ C andC is a cut ofN}. As a
running example we take the prefixN1 built in Fig. 1(b) andδ⊥ is always replaced by0
(zero). For this example the enabling cuts are: ENABLE(e1) = {(0, A, U), (0, B, V )},
ENABLE(e2) = {(0, A, U), (1, A, U)}, ENABLE(e3) = {(0, B, V )}.

Now assume an evente is in conflict with another evente′ in the symbolic unfolding.
As we pointed out at the end of section 3, the timing constraints given by⌈•e⌉ on the
firing time of e do not always contain enough information to ensure evente can fire:
evente1 in N1 can fire if a)e2 has not fired (this must be at timeδ ≤ 3), or b) e2 has
fired, and the time elapsed since it has occurred is less than 2time units (i.e. at timeδ
with δ − δe2

≤ 2), or c) e2 has been disabled by another event in conflict with it and
cannot occur in the future. To ensuree can fire, we should add to the conditions in•e
some information about the events in conflict withe. This is the purpose ofsafe co-sets.
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They extend the co-sets of the symbolic unfolding with some information about the
conflicting events. In terms of occurrence nets, a safe co-set for an evente will be the
set of places•e, extended with a set aread onlyplaces,◦e. The information contained
in a safe co-set should be such that, if the timing constraints obtained byΦ•e∪◦e are
satisfied byδe, thene can fire at timeδe (see Def. 8 below).

For any cutC, the formulaΦC (Definition 6, equations (1)–(4)) is a formula over
δ(C ∪ (⌈C⌉ ∩ E)). Indeed all the intermediate placesp, not in the cut, are constrained
by a formula of the formδe = δp because of equation 2 of Definition 6. For instance
Φ(0,B,V ) = δB − δe2

≤ 2 ∧ 0 ≤ δe2
≤ 3 ∧ δB ≥ δe2

∧ δ0 = δB = δV .
Also because of the termΦ4, if we use an extra variableδ and the formula(δ =

δp) ∧ ΦC for any9 p ∈ C, we obtain a formula overδ(⌈C⌉ ∩ E) ∪ {δ}: δ stands for
the current global time (since the system started) and the constraint onδ in ΦC defines
the set of instants for which the cutC is reachable. We writeΦδ

C for the projection on
(⌈C⌉ ∩ E) ∪ {δ} of the formulaΦC ∧ (δ = δp). In our example,Φδ

(0,A,U) = δ ≤ 3,

Φδ
(1,A,U) = δe1

≤ 3 ∧ δe1
≤ δ ≤ 3 andΦδ

(0,B,V ) = δ − δe2
≤ 2 ∧ 0 ≤ δe2

≤

3 ∧ δ ≥ δe2
. We let Θ(e) = {Φδ

C |C ∈ ENABLE(e)}. In our example, we obtain:
Θ(e1) = {Φδ

(0,A,U), Φ
δ
(0,B,V )}, Θ(e2) = {Φδ

(0,A,U), Φ
δ
(1,A,U)}, Θ(e3) = {Φδ

(0,B,V )}

Θ(e) represents the set of different constraints that can be generated by all the enabling
cuts of evente. We also need to define the set of places from which we can be sure
that an evente will not fire (because an event in conflict withe has occurred). We
let DEAD(e) be the set defined by:p ∈ DEAD(e) iff for each configurationK, p ∈
⌈CUT(K)⌉ impliese 6∈ K. In words, if a configuration is such that placep has received
a token, thene cannot occur any more as no configuration containinge andp exists.

Definition 8. A set of placesS is a safe representativeof e w.r.t. e’ if 1) •e ⊆ S and 2)
S∩⌈e′⌉ 6= ∅ or S∩DEAD(e′) 6= ∅ and 3)∀C ∈ ENABLE(e), S ⊆ C =⇒ [[Φδ

S]]=[[Φδ
C]].

S is a safe representative ofe if S is a safe representative ofe w.r.t e′ for anye′ s.t.e#e′.

If S is a safe representative ofe, thenS contains enough information to infer the con-
straints on the firing time ofe for any cutC s.t.S ⊆ C as[[Φδ

S ]]=[[Φδ
C ]]. For instance

(0, B) is a safe representative ofe1 (w.r.t. toe3, bute3 is the only event in conflict with
e1). (0, U) is a safe representative ofe1 as well as(0, A, U). (0, B) is a safe represen-
tative ofe3.

Definition 9. A setS is a complete setof safe representatives fore if: 1) eachS ⊆ S
is a safe representative ofe and 2) for each cutC ∈ ENABLE(e), there is someS ∈ S
s.t.S ⊆ C.

As each cutC ∈ ENABLE(e) is a safe representative of itself, there is at least one
complete set of safe representatives which is ENABLE(e). We can state a theorem which
is a variant of Theorem 1 using only safe representatives of an event (item b of the
theorem):

Theorem 3. If K is a configuration ofTBP(A1| . . . |An)I s.t. GS(K) 6= ∅ then a)
GS(K) = (l, Z) for some(l, Z) reachable inSG((A1| . . . |An)I), and b) ifK ∪{e} is

9 As equation (4) already imposesδp′ = δp for p, p′ ∈ C we can addδ = δp for anyp in C.
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a configuration andS is a safe representative ofe s.t.[[ΦS∧γ(e)
∧

(

∧p∈•eδp = δe

)

]]6= ∅

then(l, Z)
λ(e)
−−−→ (l′, Z ′) andGS(K ∪ {e}) = (l′, Z ′).

This theorem states that a safe representative fore contains enough information to de-
cide whether evente can be fired or not. As a consequence, if whenever we attach a new
evente to a finite branching process of a NTA(A1| . . . |An)I , we addread-arcsto the
places of a safe representative ofe, then⌈e⌉ (including the read arcs) gives the accurate
constraints on the dateδe at whiche can fire.

To build an extended complete finite prefix for a NTA we can proceed as follows:
1) build the symbolic net defined in section 3; this enables usto obtain the safe co-sets
for each event; 2) build an extended net by adding an event to the unfolding using safe
co-sets instead of simple co-sets. On the example of Fig. 1 this gives the unfolding of
Fig. 2:

1. start with places0, A, U and event⊥;
2. to add an event labelledt0 use a safe co-set: we choose(0, U) and add evente′1

with a read arc toU ;
3. adde2 ande3;
4. now a new safe co-set has appeared:(0, B); we can add an evente1 labelled byt0

with a read arc from placeB.

This construction can be formally defined (see [12]). The result is a symbolic extended
finite complete prefix EPREF((A1| . . . |An)I) that satisfies property(P ′). Formally, we
definesymbolic configurations:

Definition 10. (K,Ψ) is a symbolic configurationof T if: 1) K is a configuration of
the underlying net, and 2)Ψ = Ψ1(K) ∧ Ψ2(K) whereΦi(M), 1 ≤ i ≤ 2 are defined
by:

Ψ1(K) =
∧

e∈⌈K⌉

γ(e) (5) and Ψ2(K) =
∧

e∈K

(

∧p∈•eδp = δe

)

(6)

Notice thatΨ(K) uses only information in the past ofK. Let ν : K → R≥0. (K, ν) is
a timed configurationif ν ∈ Ψ(K). (P ′) holds because we can now re-write Theorem 3
as follows:

Theorem 4. If K is a configuration ofEPREF((A1| . . . |An)I) s.t.[[Ψ(K)]]6= ∅ then: 1)
GS(K) = (l, Z) for some(l, Z) reachable inSG((A1| . . . |An)I), and 2) ifK ∪{e} is

a configuration and[[Ψ(K ∪ {e})]]6= ∅ then(l, Z)
λ(e)
−−−→ (l′, Z ′) andGS(K ∪ {e}) =

(l′, Z ′).

On the example of Fig. 1(a),{(⊥, 0), (e1, δe1
), (e2, δe2

)} is a timed configuration iff
δe1

− δe2
≤ 2 andδe2

≤ 3. {(⊥, 0), (e1, δe1
)} is a symbolic configuration iffδe1

≤ 3.

Minimality for Safe Co-sets.The purpose of unfoldings is to keep explicit the concur-
rency of events. In the case of untimed network of automata,•e is sufficient to ensuree
can fire. For NTA, we have to use read arcs, but we should be concerned about the num-
ber of the new dependencies: for instance, if we use ENABLE(e) as complete set of safe
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representatives for eache, we require that the global state of the network is known each
time we want to firee. This means we do not keep explicit any concurrency in the un-
folding. It is thus important to try and reduce the number of read arcs from each event.
To this extent we define a notion ofminimalityfor complete sets of safe representatives.

First, a complete set of safe representativesS = {S1, S2, · · · , Sk} for e is
non redundantif each cutC ∈ ENABLE(e) is represented at most once:∀C ∈
ENABLE(e), C ⊆ Si andC ⊆ Sj =⇒ i = j. ENABLE(e) is a non redundant
complete set of safe representatives. Each non redundant set S induces a partitioning of
ENABLE(e) denoted ENABLE(e)/S . The class of an elementS ∈ S is denoted[S].

Let S1 andS2 be two non redundant sets. We define the (partial) order⊑ by: S1 ⊑
S2 if ENABLE(e)/S1

= ENABLE(e)/S2
and for eachS ∈ S1, S

′ ∈ S2 s.t. [S] = [S′]
we have|S| ≤ |S′|.

Givene ∈ E, SAFE(e) denotes a minimal complete set of safe representatives for
all the C ∈ ENABLE(e). In the example forN1 we can take the sets: SAFE(e1) =
{(0, U), (0, B)}, SAFE(e2) = {(A,U)}, SAFE(e3) = {(0, B)}. Notice that if an event
e is not in conflict with any other event (likee2 in N1), •e is a minimal complete
set of safe representatives10. Also, the minimality criterion we have defined does not
give a unique set of complete safe representatives. A consequence is that there is no
smallest complete finite prefix for a NTA but rather a set of setof minimal complete
finite prefixes.

Checking Validity of Timed Configuration.To complete the construction and provide
a solution to the problem of checking whether a timed configuration is valid, we can
define the constraintΓ (e) associated with an evente by: Γ (e) = Ψ(⌈e⌉)|⌈e⌉∩E . This
constraint gathers the constraints of all the past events. The branching process obtained
this way is areducedbranching process with only constraints on events. For the network
of timed automata of Fig. 1(a), the reduced branching process is given on Fig. 3.

5 Conclusion

In this paper we have defined a model,symbolic extended nets, to define the concurrent
semantics of timed systems. We have also proved that each NTAadmits afinite complete
prefix which is a symbolic extended net, and we have given an algorithm to compute
such a prefix. Other interesting results are:

– there is no unique complete finite prefix for a NTA but rather a set of complete
finite prefixes;

– building asmall(optimal) complete finite prefix is very expensive as it requires the
computation of information spread across the network;

– we have pointed out the difficulties arising in the construction of such a prefix,
namely the need forsafe co-setsand theTime Lock Freedomaspects.

Our future work will consist in:

10 Under the assumption of time lock freedom
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Figure 3. Reduced Extended symbolic unfolding for the example of Fig. 1(a)

1. define heuristics to determine when an event can be added toa prefix of an unfold-
ing; this means having an efficient way of computing safe representatives, which
are no more guaranteed to be minimal.

2. when step 1 is more developed, we can define algorithms to check properties of the
NTA using the unfolding and assess the efficiency of these algorithms;

3. we have given asymbolicpartial order semantics for NTA but have not defined
directly a timedpartial order semantics. Such a definition could be interesting to
have a better understanding of the interaction between timeand concurrency, and
maybe helpful to improve the efficiency of Step 1. This is a keyissue before we can
use this framework on real-case studies.
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A Occurrence Nets

Let x, y be two nodes (place or transitions). Ifx ∈ •y or y ∈ x• there is anarc fromx
to y and we writex → y. This enables us to refer to thedirected graph of a netwhich
is simply the graph(E ∪ P,→). The reflexive and transitive closure of→ is denoted
�. x, y arecausally relatedif either x � y or y � x. x is in the (strict)causal pastof
y if x � y andx 6= y, i.e. x ≺ y. x, y are inconflict, notedx#y, if there is a place
p ∈ P such thatp → w � x andp → u � y with u 6= w. x andy areconcurrentif
x andy are neither causally related nor in conflict. IfJ is a set of events then↑J =
(

∪e∈Je•
)

\
(

∪e∈J
•e

)

. For a setJ ⊆ E∪P ⌈J⌉ = {e′ ∈ E∪P | e′ � e for somee ∈ J}.
A set of eventsJ is causally closedif ⌈J⌉ = J . A setA is aco-setif any two elements
of A are concurrent. Aconfigurationof an occurrence netO = (E,P, •(), ()

•
) is a set

of eventsK ⊆ E which is causally closed and conflict-free. Acut S ⊆ P is a set of
places which is a maximal co-set. To each configurationK, we can associate a unique
cut ↑K which is denoted CUT(K).

B Extended Nets

An extended netN is a tuple(E,P, •(), ()
•
, ◦()) where(E,P, •(), ()

•
) is a net, and

◦() : E → 2P . If ◦e = ∅ for eache ∈ E thenN is a net. The set◦e represents the input
places of an event that are to be read without removing a token.

The causality relation is now defined by:x → y if x ∈ •y ∪ ◦y or y ∈ x•. � is
the reflexive and transitive closure of→. Theweakcausality relation99K is given by:
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x 99K y if either x → y or ◦x ∩ •y 6= ∅ (if x needs a token in one of the input place
of y this implies a causality relation, even ifx is not in the past ofy in the sense of
→.). We letE the reflexive and transitive closure of99K. Two nodesx andy areweakly
causally relatedif either x E y or y E x. x andy are in conflict,x#y, if there is a
placep s.t. there existw andu, w 6= u, p ∈ •u ∩ •w andw E x andu E y. x andy are
concurrent if they are not weakly causally related nor in conflict. For J ⊆ E ∪ P , the
definitions of ↑J and⌈J⌉ are unchanged (we use the new�). A set of events is now
causally closed if⌈J⌉ = J . Co-sets are now defined with the extended concurrency
relation. Configurations and cuts are defined as before.

An extended symbolic net is a tuple(E,P, •(), ()
•
, ◦(), γ) with (E,P, •(), ()

•
, ◦())

an extended nets andγ has the properties of Definition 5 (using the new⌈·⌉). The
semantics of extended occurrence nets requires that•e ∪ ◦e ⊆ M to fire evente.

C Finite Complete Prefix

We use the order≺1 of [15] to generate this complete finite prefix, and evente4 is a
cut-off event.

⊥ δ⊥ = 0

0
δ0 − δ⊥ ≤ 3 A

δA − δ⊥ < 2

e1a, δe1
≥ 0 e2c, δe2

− δ⊥ ≥ 1

1δ1 − δ⊥ ≤ 5 BδB − δ⊥ < 2

e3b, δe3
≥ 0

0δ0 − δe3
≤ 3

e4a, δe4
≥ 0

1δ1 − δe3
≤ 5

e5α, δe5
≥ 0

2δ2 − δ⊥ ≤ 5 C
δC − δ⊥ < 2

e6b, δe6
− δ⊥ ≥ 2 e7b, δe7

− δ⊥ < 2

3 D

(a) The unfolding

0

x ≤ 5

1

x ≤ 5

2

x ≤ 5

3

a
b

x := 0

α

b, x ≥ 2

A
y < 2

B
y < 2

C
y < 2

D

c, y ≥ 1

α

d, y < 2

(b) The network

Figure 4. A network with a loop
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D Time Lock Freedom

Assume we have the network of two automata defined by Fig. 5. Asthey are indepen-

0
x ≤ 3

1

a; x ≤ 3

A
y ≤ 2

B

b; y ≤ 2

(a) Two Independent Automata

⊥ δ⊥ = 0

0 A

e2

b

δe2
≤ 2

B

e3 a, δe3
≤ 3

1

e1

a

δe1
≤ 2

1

(b) The Unfolding

Figure 5. A Network of two Independent Timed Automata

dent, it seems quite strange that a dependency on the other automata should be needed in
the unfolding, because unfoldings are supposed to take advantage of concurrent events.
Considering the network of Fig. 6, the reason why such read arcs would be necessary
becomes clearer: the two automata are not really independent because one of them can
cause a time lock. Consequently, we need to take into accountthe maximum time that
can elapse in the NTA and this implies for the automaton (a) ofFig. 6 to firee1 before
time2 which is given by the place labelledA in the unfolding. This is not necessary in
the NTA of example 5 because none of the two automata can prevent time from elaps-
ing but we do not know it in advance. This is why the time lock freedom assumption is
crucial otherwise a lot of dependencies would appear, most of them are not needed.
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0
x ≤ 3

1

a; x ≤ 3

A
y ≤ 2

(a) Two Independent Automata

⊥ δ⊥ = 0

0 A

e1

a

δe1
≤ 2

1

(b) The Unfolding

Figure 6. An Example with a Time Lock
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