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Abstract In this paper we give a symbolic concurrent semantics for network of
timed automata (NTA) in terms afxtended symbolic netSymbolic nets are
standard occurrence nets extended withd arcsand symbolic constraint®n
places and transitions. We prove that theredésaplete finite prefifor any NTA

that contains at least the information of the simulation graph of the NTAdwej k
explicit the notions of concurrency and causality of the network.

1 Introduction

Concurrent Semantics for Finite State Systemghe analysis oflistributedor concur-
rent finite state systems has been dramatically improved thangartial-order meth-
ods (see e.g. [31]) that take advantage of ittdependencéetween actions, and to
the unfoldingbased methods [16,25] that improve the partial order methydaking
advantage of thiocality of actions.

Timed SystemsThe main models that include timing information and are usegpec-
ify distributed timed systems are networkstmhed automata (NTA) [2,19], antime
Petri nets (TPN) [26]. There are a number of theoreticallteaibbout NTA and TPN and
efficient tools to analyze them have been developped ([32120,8,18]). Nevertheless
the analysis of these models is always based on the exploratia graph which is a
single large automaton that produces the same behaviotiie &TA or the TPN; this
induces an exponential blow up in the size of the system tobalysed.

Related Work. In [21,27], the authors define an alternative semantics fbk Nased
on local time elapsing. The efficiency of this method depesrdsvo opposite factors:
local time semantics generate more states but the indepeadelation restricts the
exploration. In [24] (a generalization of [32]), the indepence between transitions
in a TA is exploited in a different way: the key observatiorthiat the occurrences of
two independent transitions do no need to be ordered aneéquoastly nor do the oc-
currences of the clock resets. The relative drawback of thénaod is that, before their
exploration, the symbolic states include more variablas the clock variables. Partial
order methods for TPNs are studied in [29], where the autheneralize the concept
of stubborn seto time Petri nets, calling & ready setThey apply it to thestate class



graph construction of [7]. The efficiency of the method depends drwtiver the (dy-
namical) timing coupling between transitions is weak or. wbtfortunately the urgent
semantics of this model entails a strong timing couplinge Pheviouspartial order
methods only take advantage of the independence of actimh®@t of any locality
property. We are interested intaue concurrent semantider NTA and this has not
been developped in the aforementioned work.

Process semantidsr time Petri nets which is a generalization of the unfoipdgeman-
tics for time Petri nets has been developed by differentarebers. From a semantical
point of view, Aura and Lilius have studied in [28] tiealizability problemof a non
branching process in a TPN. They build an unfolding of thénuedl Petri net under-
lying a safe TPN, and addonstraintson the dates of occurrence of the events. It is
then possible to check thattemed configuratioris valid or not. In [17] the authors
consider bounded TPN and a discrete time domain: the eaps$ione time unit is a
special transition of the net. Thus the global synchromnatelated to this transition
heavily decreases the locality property of the unfoldingrtitermore, when the inter-
vals associated with the transitions involve large integétis method suffers the usual
combinatorial explosion related to the discrete time appino

Section 3 of this paper can be viewed as the counterpart ofitink of Aura and
Lilius [28] in the framework of NTA: we define similar notiorier NTA and build a
symbolic unfoldingvhich is asymbolic netWe have to extend the results of Aura and
Lilius because there is nargencyfor firing a transitiort in a NTA. As stated in [28]
those unfoldings are satisfactory fioee choice neta/hich are a strict subclass of TPN.
Our NTA are not free choice nets and in section 4 we refine ambsyic unfolding to
obtain arextended symbolic unfoldighich is a symbolic net withead arcs

Following our recent approach using the notion of symbolifolding to capture
the partial order behaviors of TPN [14], we propose in thisgraa similar notion for
NTA, but we cannot directly apply the framework of [14]. letETA and TPN have
different expressive powers ([6,13]) and as stated eaNiBk do not have the nice
urgencyfeatures that TPN have.

Up to our knowledge, this is the first attempt to equip NTA watltoncurrent se-
mantics, which can be finitely represented by a prefix of aoldirg. In this paper we
answer the following questions:

1. What can be a good model forcancurrent semanticsf NTA ? The result is an
extension of the model of symbolic nets we have proposedd] [1

2. How to define @oncurrent semantider NTA, i.e.how to define aymbolic unfold-
ing that captures the essential properties of a NTA while puésgrconcurrency
information? This is achieved in two steps: first build a symbdgpice)-unfolding
and use this object to build a proper extended symbolic dirfglof the NTA. By
“proper” unfolding, we mean a symbolic Petri net on which vesm check that a
local configurationis valid using only theextended causailast of an event.

3. Is there a&omplete finite prefifor NTA ? This result is rather easy to obtain on the
pre-unfoldingobject and carries over to the symbolic unfolding.

! invariantsandguardscan be independent and a transition is not bound to fire before its dead-
line given by theguard



About point 3 above, we are not addressing the problem oflimgjlsuch a prefix
efficientlybut our work is concerned with identifying the key issuedhia tonstruction
of a prefix for NTA. The solution proposed in [14] builds a cdetp finite prefix for
safe TPNs, but with no guarantee that this prefix is one of thallest, which is a
very difficult problem to solve. Based on this work, we addresre basic questions
about NTA, which are in a sense easier to study than safe TBt#Ibe the concurrent
structure is explicit.

Key Issues.In this section we present informally the problem and theiksyes raised
by the three previous questions. In the case of networks it¢ frutomatafinite com-
plete prefixegxist. For example, for the network of Fig. 1(a), a finite coetg prefix

is given on Fig. 1(b). Finite complete prefixes contain fafbirmation about the reach-
able states of the network and about the set of events théasiblein the network.
A set of events (labels) is feasible if it can be generated hynaof the network. For

(a) The NTAN; (b) Symbolic unfolding for the network/;

Figure 1. A NTA and its Symbolic Unfolding

example,{t; } is not a feasible set of events in the netwdvk, because; must be
preceded by,. And this appears in the unfolding as evepf(labelled byt;) must be
preceeded by, (labelled byt,). In an unfolding, a set of evenfs is aconfigurationif
there is a reachable marking obtained by firing each eveht.ifor example{ L, e; }
is a configuration{ L, e1, es} as well, but{ L, e3} is not ase3 must be preceded hy
before it occurs. The minimal set of events necessary fovante to occur is called
the causal past(or local configuration of e. Note that by definition a@onfiguration

2 The automata synchronize on common labels. Labels of the events amd pépresent the
corresponding location and transition in the network of automata. Theraorts appearing
near each node are explained later and can be ignored at this stage.



contains the causal past of each of the eventoApleteprefix is an unfolding that
satisfies propertyP): a set of events is feasible in the NTA iff it is a configuratioin
the unfolding. This property of unfoldings is the key point in the untimease and
allows one to do model-checking on the complete finite prdfiis unfolding can also
be used fofault diagnosigpurposes which is a very important application area.

In the case of networks ¢ifned automatawe deal withtimed eventsvhich are pairs
(e,d) whereé € Rxq. To decide whether a set of timed events is feasible in a m&two
of timed automata, we can build symbolic unfoldingFor this, we add aymbolic
timing constraintg(e) to each event of the previous unfolding. For example, with

we can associate the constraie;) def de; — 01 < 5, whered, is the variable that
represents the date of occurrence oA set of timed event$(ey,d;), - - , (ex, di)} is
atimed configurationf {e1,es, -+ e} is a configuration and the constraif(ie; ) A
.-+ A g(ex) is satisfied when replacing eaéh by d;. For example{(_L,0), (e1,4)} is

a timed configuration witly(_L) def 0, = 0. Thus the property we would like to have
for symbolic unfoldings is ®’): {(e1,d1), -, (ex,dr)} is feasible iff it is a timed
configuration.

In the untimed case, one can check that an event is fireabteinrifolding using
only the causal past of the event. We want this property td faylthe timed unfoldings
as well and then a formula associated with an evestitould only involve variables that
are associated with events in the causal past @lfie local configuration oé). Now
assume we want to decide whetKéd, 0), (e1,d1), (e2, d2)} is a timed configuration.
It is actually if d; — dy < 2. But this cannot be captured by any conjunctigd.) A
g(e1) N g(es) because; is not in the causal past eh andey not in the causal past
of e;. A symbolic unfolding built by associating constraintshvitach event, with the
property that each constraigite) uses only variables in the causal pastpfloes not
always contain enough information for prope(#y’) to hold. In this paper we show 1)
how to build an unfolding that contains enough informationtteat(P’) holds; 2) how
to build a finite and complete prefix of the unfolding satisfy{ P’).

Organization of the Paper.The paper is organized as follows. Section 2 presents the
model of NTA and its usual sequential semantics. Sectiow&sga concurrent seman-
tics for NTA in terms ofsymbolic branching processéSBP) and proves the existence
of complete finite prefixes. The SBP is a first step towards gobete finite prefix hav-

ing property(P’). In section 4, we show how to build @xtende®BP, usingead-arcs
which is a complete finite prefix satisfying prope(t#’). Section 5 gives a summary

of the paper and directions for future work. The proofs ofttrenrems are omitted and
can be found in the extended version of the paper [12].

2 Networks of timed automata

Notations . Let X = {x1,--- ,z,} be afinite set oflockvariables. Avaluationv is a
mapping fromX toR>(. Let X’ C X. The valuation/[X '] is defined byv[X'](z) = 0
if € X" andv[X'](z) = v(x) otherwise.| . is the restriction (projection) af to

3 Actually we should write “it is a labeling” of a configuration of the unfolding.



X" and is defined by, x/ (z) = v(x) for z € X'. We denote the valuation defined by
0(z) = 0 for eachz € X. Ford € R, v + ¢ is the valuation defined by + §)(x) =
v(z)+6.C(X) is defined to be the set of conjunctions of terms of the formaz’ > ¢
orz < cforz,z’ € X andc € Nandie {<,<,=,>,>}. C(X) is called the set of
diagonal constraint®ver X. The set ofectangularconstraintsC, (X) is the subset of
C(X) where only constraints of the form ¢ appear. Given a formula € C(X) and
a valuationv € R, we usep[z/v(z)] for ¢ wherex is replaced by/(z). we denote
o(v) € {tt, ff} the truth value ofp[z/v(z)]. We let[p]= {v € R>o|p(v) = tt}. A
subsetZ of RY,, is a zone ifZ =]y ] for somey, € C(X). Note that the intersection
of two zones is a zone. Two operators are defined on zonesntasuccessavperator,
77 ={v+6|v € Z,6 € Rso} and theR-resetoperatorZ[R] = {v| I’ € Z s.t.v =
v'[R]}. BothZ~" andZ[R] are zones iZ is a zone. Asimple substitution is a mapping
s: X — diff(Y), where difilY) = {y — ¢’ | y, v’ € Y} that satisfies: i(x) =y — ¢/
ands(z’) = z—z' thenz = y. ¢[s] stands for the formulg in which each occurrence of
avariabler € X is replaced by(z). Thus ifp € C(X) ands is a simple substitution,

©[s] € C(Y).

Timed Automata. Timed automatavere introduced in [2] to model systems which
combinediscreteandcontinuousevolutions.

Definition 1. Atimed automatord is a tuple(L, ¢y, X, X, T, INV) where: L is a finite
set of locations ¢ is theinitial location; X' is a finite set ofdiscreteactions; X =
{z1,--- ,x,} is a finite set of (positive real-valued)ocks T C L x C.(X) x X' x
2X x L is a finite set oftransitions (¢, g,a, R,¢') € T represents a transition from
the location/ to ¢, labeled bya, with the guardg and the reset sek C X; we write
SRAt) = ¢, TGT(t) = ¢, GUARD(t) = ¢, A(t) = a and RESET(t) = R. INV €
C,(X)E assigns arinvariantto any location. We require thaNv be a conjunction of
terms of the form < ¢ with<e {<, <} andc € N.

A stateof a timed automaton is a pdif, v) € L x RX,. A timed automaton isounded

if there exists a constaite N s.t. foreacll € L, INV(£) C[0 < a3 <k A--- A0 <

x, < k]. Examples of timed automata are given in Fig. 1(a). In theiskege require
that for any valuatiom and any transition = (¢, g,a, R, ¢'), g(v) = INV(¢)(v[R]).
An automaton satisfying this property is said todaple This assumption simplifies
condition i) of Def. 2 below, and also the proofs of the maiadfems, because we can
decide whethet can be fired using GARD(t). Note that it does not restrict the model
as for each transition= (¢, g, a, R, ¢') we can compute a new guagtis.t. replacingy

by ¢’ in t satisfies this property and the semantics of the automatingivis the same
as withg.

Definition 2. The semantics of a timed automatdn= (L, ¢y, ¥, X, T, Inv) is a la-
beled timed transition systesiy = (Q, g0, T U R>q,—) with Q = L x (R<o)¥,

q0 = (£p,0) is the initial state and— consists of the discrete and continuous transition
relations: i) the discrete transition relation is defined &l ¢ € T by: (¢,v) LN (¢,
— 3t = ({,9,a,R¥') € Tstgl) =1tt,v = v[R — 0] (we do not need to
add I'nv(¢')(v") = tt because we assume our automaton is simple); ii) the conimuo



transition relation is defined for alf € R by: (¢,v) 2, () iffe=0,v=v+4¢
andv0 < ¢ <4, Inv(¢)(v+ d6') = tt. Arunof a timed automatord is a path inS 4
starting ingo where continuous and discrete transitions alterriaféhe set of runs aofl
is denoted by.A]. A stateg is reachablén A if there is a run fromy, to . REACH(.A)
is the set of reachable states.df A timed wordw € (T' x R>¢)* is acceptedy A is
there is a runp €[A4] s.t. the trace op is w.

The analysis [1,5,9,30,11] of timed automata is based oaxplration of a (finite)
graph, thesimulation graphwhere the nodes asymbolic statesA symbolic state is a
pair (¢, Z) where( is a location andZ azoneover the seR<,.

Definition 3. Thesimulation graph5G(.A) of a timed automatot is given by: i) the

set of states is the set of symbolic states of the fdird) whereZ is a zone; ii) the

initial state is (¢, Zo) with Zy = 0N [INV(£o)]; i) (¢,2) = (¢,Z') if there

is a transition(¢, g, a, R, ¢') in A s.t. ZN [g]# 0 (this ensuresZ’ is not empty) and
/

Z'=((Z0 [g])[R])” N [INv(£)].

We assume that the timed automata are bouridedn each locatior?, Inv(¢) is
bounded. In this case the number of zones of the simulation graphite fi23,9].

Product of Timed Automata.We use the classical composition notion based syra
chronization functiora la Arnold-Nivat. LetA;, ..., A, ben timed automata with
Ai = (Li,lio, X, X;, T;, Inv;). We assume that for each# j, L; N L; = () and
X; N X; = 0. Given a sef3 we useB* for the setB U {¢} (assuming ¢ B).

A synchronization constrainf is a subset of2§ x X5 x X\ (g,--- ,e).
The (synchronization) vectors of a synchronization castr! indicate which ac-
tions synchronize. Iz = (ay, -+ ,a,) € I we write z[j] for the j-th component
a;. For (tl, s ,tn) € Tf X oeee TZ we write )\(tl, s ,tn) = (/\1(251), s 7/\n(tn))
with \;(¢) = e. Forz € I, we definex=1(z) = {t € Tf x ---T: | \(t) = 2} and
A~1(I) to be the union of the sets af !(z) for z € I. A~1(I) indicates how the tran-
sitions synchronize. Far € A~1(I), we let: SRc*(t) = {l € SRA[i]) |t[i] # €},
TGT*(t) = {l € TGT(t[i]) |t[i] # €}, RESET(t) = {z |z € RESET(t[i]) and t[i] #
£}, GUARD(t) = A¢[;2e GUARD(t]i]).

Definition 4. The synchronous produét4,|...|A,); is the timed automatois
(L,l(),ZW,)(,T’7 |NV) defined byL =Ly X+ XLy 1g = (£170,"' 7671,,0)’ X =
Yyx oo x Xy, X = U, Xy (Lg,a,RY) € Tiff 3t € NH(I) st (1) ift[i] # ¢
thenl; = srqQ(t[¢]) and otherwisd’; = TGT(t[i]), (2) a = A(t), g = GUARD(¢) and
R = ReseT(t) andINV (1) = AP INV, (&) if 1= (01, -, p).

This definition implies that if eacbhd; is bounded (resp. simple) then the product is
bounded (resp. simple).

% In our definition runs are labeled by transitions.
5 Any timed automaton can be transformed into an equivalent (behayibamded automa-
ton [4].



3 Symbolic Unfolding for Network of Timed Automata

In this section we define the symbolic semantics of a NTA imsofsymbolic branch-
ing processesThose processes contain timing constraints both on pkcesvents.
The definitions ofoccurrence netsbranching processegogether with the notions
of co-sets cuts conflict are taken from [15] and recalled in appendix A. We denote
(E,P,*(),()*) an occurrence net. Given a sBtwe denotes(B) the set of (fresh)
variables{é, | b € B}. [z] denotes the causal pastaf

Definition 5. A symbolic occurrence nef is a tuple (E,P,*(),()*,v) where
(E,P,*(),()*) is an occurrence net, angl : EU P — C(X) with X = §(E U P).

We require that i) for eachk € E U P, y(z) contains only variables id([z]), and ii)

~v(L) def (6. = 0). We refer to the netE, P,*(), ()*) as theunderlying neof 7.

An example of a symbolic net is given in Fig. 1(b).

Definition 6. (M, ®) is a symbolic co-sebf T if: 1) M is a co-set of the underlying
net, 2)o = @1 (M) A Do(M) A P3(M) A D4 (M) with:

D1 (M) = /\ v(x) (1) P3(M) = /\ (0ep <) (3
ze[M] peM

@Q(M) = /\ (/\pe‘e(sp = 56) (2) ¢4(M) = ( /\ 51’ = 51’,) (4)
ee[MNE pp'eM

(M, ®) is a symboliccutis M is a cut of the underlying net.

The meaning of formula (2) is that the more recent dgtat which a token was ip is
the time at which an event removed a tokemiri3) imposes that if a token is jmand
p is in a co-set, the current time jnwhich isd,, is larger than the date of occurrence of
the event that put a token i Finally (4) requires that all the places in the co-set have
reached the same global time. The reason why we need to uablearassociated with
places is because there is no urgency in NTA. Notice thatdimaifla® of a symbolic
co-set is entirely determined by the co-détand unique; we denote it bf,,. Let M
be a co-set : 6([M]) — Rx>o. (M,v) is atimed co-setf v €[P,,]. Consequently
(M, [®41]) is the set of timed co-sets associated with (M, v) is atimed cutif M is
acutand M, v) is a timed co-set.

Let (A4]...]A,)r be a synchronous product of TA. Tgmbolic branching pro-
cessegSBPs) of(A4,] ... |.A, ) are symbolic occurrence nets built over two seend
P defined inductively by: i)l € &,ii)if e € £ ands € L then(e, s) € P,iii)if SC P
andt € I then(S,t) € £. On those two sets we define the mappifgs ()°: for &,
*L =0,andife = (S,t), °e = S; ande® = {s| (e, s) € P}, for P: *(e,s) = e and
(e,5)* = {e|*e N s # 0}. By definition of E and P a SBP is completely determined
by E ansP as®- and-* are implicitly defined(E, P,~) with E C £ andP C P, is
a SBP of(A;|...|A,); if v satisfies conditions (i—ii) of Def. 5. We use the following
notations:

— fore =(S,t) € £\ {L}, A(e) = t; we say that is ani-event ift[i] # ¢;



— for (e, s) € P, loc(e, s) = s, Loc(Y') = Uyeyloc(y). (e, s) is ani-place ifs € L;;

— RESET(e) = RESET(\A(e)), and by convention RSET(_L) = X.

—if z € X and K is a configuration of a SBP, thevent of last reset of in K is
Z7°(z) = min{e € K|z € RESET(e)}. A minimal element always exist as
resets each variable. The unicity of this element will fallfisom the fact that each
variable belongs to one automaton and that the events ofsedicmaton are totally
ordered.

Definition 7. The set of symbolic finite branching processesf a network
(A4]...|Ap)r is defined inductively as follows:
— ({1} (L ho), (L 10) 4 (Ly o) 1o y) With 7(L) =61 = 0, 5(L, Lig) £
INV (1;,0)[s:], with the simple substitutios; defined bys;(z) = (., ) for each
z € X;,isaSBP O(.A1| ... |.An)[;
— if (E,P,v)isaSBP of(A,|...|A,),t € I, C C Pisaco-sets.t L) =
SRC*(¢), then
(Eu{e},PU{(e,s)|s e TGT(t)},7)

is a SBP of(A;|...|A,)r, withe = (C,t), 7\/EUP = v, v(e) = GUARD(t)[n],
n:x— e — 52:[:0(% (@) Y€ 8) = Inv(s)[n'], 0" s &+ Oes) — 6Zﬁ0(m) (note that
n andn’ are simple substitutions.)

If e ¢ E, e is apossible extensioof (E, P).

A SBP of a network is completely determined iy and P as the mappingy is
completely determined by and P. By definition of the SBP, each symbolic cut
(M, ®yy) is such thatby, € C(6([M])). By construction, a symbolic branching pro-
cess satisfies conditions (i—ii) of Definition 5. An exampfeaocsymbolic branching
process is given on Fig. 1(b)We can define the union of two symbolic branch-
ing processesE1, P1,v1) and (Es, P»,7y2) component-wise on events and places
(E1 U Ey, P U Py, ), and ~(x) = ~;(z) if € E; U P;. We also accept as sym-
bolic branching processes countable unions of finite briagchrocesses, which are
infinite symbolic branching processes. Then symbolic brargcprocesses are closed
under countable union and we can define sgmbolic unfoldingTBP(A;] ... |Ax)1,

of (Ay]...]A,)s to be the maximal symbolic branching process. Our SBPs anglsi
extensions obranching processeas defined in [15]. The discrete structure of a SBP
is a BP. Also the constraints on the nodes can oe$frict the reachable marking of
the BP underlying a SBP. Hence the next two properties carey fsom the results
of ([15]).

Proposition 1. Twoi-nodes of a SBP are either causally related or in conflict.
Proposition 2. Letc be a cut of a SBP. Thercontains oné-place for each < i < n.

® The label on the side of a plageis loc(p). The constrainty(p) appears on the side. For an
event, the label(e) appears on the side along with the constraifa).

" As v is uniquely defined for any € E; U P, if z € E1 N E> we must havey; (z) = ~2(x);
the same holds foP; U Ps.



This enables us to associate with each configuraiiom symbolic state. Let Cr(K)

be the cut associated wifki. Because of Proposition 2 above, we can associate a unique
discrete staté of (A,]...|A,)r with CuT(K): 1is the “vector” representation of the
set LogCuT(K)). Now consider the formulg = &cyr(x) defined in Definition 6.
This formula is inC(6([CUT(K)])). Assumev €[f]. Definev, € RE, by3: v, (z) =
v(CUT(K)) — u(ézﬁ(o1 () We letZg = {v,|v €[ f]}. The symbolic global state
associated with is GSK) = (Loc(CuT(K)), Zk ). Note thatZ, can be the empty
set.7TBP(A,]. .. |A,)r contains correct and complete information w.r.t. the satiah
graph of(A4|...|A,)r:

Theorem 1. If K is a configuration oftBP(A4|...|A4,)r s.t. GS(K) # ) then a)
GS(K) = (1, Z) for some(l, Z) reachable inSG((A4] ... |A,)r), and b) if K U{e} is

a configuration and®eyr(xc) A ¥(€) A(Apeeedy = 0.)15 O then(l, z) 2L (1, 27)

andGS(K U {e}) = (I, Z').

As a consequence of Theorem 1, we obtain that égghis a zone for a config-
uration K. Moreover this zone can be computed effectively (see [RPorollary of
Theorem 1is:

Corollary 1. Let K = {ej,--- ,e;} be a configuration and : [CUT(K)] — R
s.t.v €[Pcyr(k)]# 0. Then there exists a one-to-one mappjhg[1..;] — [1..5] s.t.
(Meray), vlepay) -~ (Meggy), v(eyp)) is atimed word accepted Wy, | ... | Ay ) 1.

Corollary 1 states that if the formula associated withTCK) is satisfiable then there
is a way of ordering the events i such that they produce a timed word of the NTA.

Theorem 2. Let (1, Z) be a reachable symbolic state in the simulation graph of
(Ai]...]An) 1. There is a configuratiok” of the underlying net ofBP(A;] ... |A,)s

st a)GS(K) = (L, Z) and, b)if(1, Z) SN (I, Z") there is a configuratior’ U {e},
with A(e) = tandGS(K U {e}) = (I, Z").

Corollary 2. Let (w;,d;)(wa,ds) - (wg,d;) be a timed word accepted by
(Aq]...|An)1. Then, there exists a configuratiodd = {ey,---,ex} of

TBP(Ay]...[An)r andv : [CUT(K)| — Rxo, v €[Peur(k)], St D A(es) = w;
and 2)v(d,) = d;.

If a TBP 7 satisfies the conditions of Theorem 2, we say thas complete The-
orem 1, corresponds to@rrectnesgproperty. For network of finite automata, com-
plete (and correct) finite branching processes exist, amadaledcomplete finite pre-
fixes[25,15]. In the case of network of timed automata we can coosbf finite com-
plete prefix that preserves the reachability informatiorth&f simulation graph. The
reason for the existence of such a finite prefix is that eachhelimcut corresponds
to a symbolic state in the simulation graph of the networkioetl automata and the
number of symbolic states is finite (the timed automata ammted). This implies that
to construct a symbolic complete finite prefix that contairleast as much information

8 Equation (4) implies that for eagh p’ € CUT(K), v(6,) = v(d,,) and we denote this value
v(CUT(K)).



as the simulation graph, we can re-use the algorithms ofdh#]the notion otut-off
events an@dequate ordersAdequate orders are defined in [15] and we refer the reader
to this article for a comprehensive definition and list of pheperties of these orders.

As a consequence symbolic complete prefixes exist for né&twadr timed
automata and can be computed using the efficient algorithind1s]. We
let PREF((A4|...|A,)r) be the complete symbolic finite prefix obtained from
(A1]...|An)r- The example of Fig. 4 in appendix C, page 18 has an infiniteldimg
(synchronization is on common labels). A complete finitdigris given on Fig. 4.(a),
page 18.

The unfolding of Fig. 1(b) is trivially a complete finite prefbecause it is a finite
unfolding. As pointed out in the introduction, our SBP doesalways satisfy property
(P"). In the next section we refine the SBP to obtainextendedSBP that satisfies
property(P’).

4 Extended Finite Complete Prefixes

In the case of finite automata, any cut containing a co-sétethables an event, still
enables the same event. This is not the case for network efitemtomata as can be
seen on the example of Fig. 1(b).df has not firede; can fire because nothing can
prevent it from doing soe is not enabled). The fact that has not fired can be inferred
from the fact that either placé or U contains a token. But this implies that the date
at whiche; fires satisfies., < 3. If e5 has fired ab.,, es ande; are in conflict. Thus
e1 can only occur at a date when a token can bB,jine. to fire we must havég = d.,
and the constraint on the date at which a token can E&which iség — 6., < 2. This
impliesd., — d., < 2. Thus the timing constraints associated withare not the same
in the cuts(0, 4, U) and(0, B, V') although they are both cuts that cont&in.

To encode this timing dependency structurally we can usédselimoccurrence nets
with read arcs For instance the symbolic net of Fig. 1(b) can be “transtmfrinto the
symbolic extended net of Fig. 2 (a read arc is a dash line)dRezs enable us to point
to the missing timing information in the net that is needednsure an event can fire.
This also means that we duplicate the eveninto e; ande) because the constraints
are different depending on whetherhas occurred or not. Read arcs enlargectngsal
pastof the events. In the extended occurrence net, the conshraiween the dates of
occurrence ok; ande; can be inferred from the past ef: indeed, to fire, we must
haved., = ép and thus., — J., < 2. Read arcs enable us to differentiate the two cuts
(0, A,U) and(0, B, V) that generate different timing constraintsqrandes.

Extended netare nets extended with read arcs. Symbolic extended netsxare
tended nets with constraints on the places and events. Timalfdefinition of extended
symbolic nets together with the new notions of conflict, aonency and causality are
given in appendix B.

The Extendedsymbolic branching processes (ESBP) of a network are defised
in section 3: the only change we need to do is to define the sevaits so that it
includes the places ife. To this end, ifS, S’ C P andt € T, (S,5,t) isin £ and if
e=(S,5t),°e=9".
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Figure 2. Extended symbolic unfolding for the example of Fig. 1(a)

Time Lock Freedom. Thetime lock freedonassumption, asserts that no automaton in
the NTA can prevent time from elapsing. Under this assumpiifoan evente is not

in conflict with any other event’ in TBP((A4]...|4,)r), the timing constraint ol
obtained by .. is sufficient to ensure thatcan fire at timej.. Indeed, the only way
an evente can be prevented from happening at time because either i) an event in
conflict with it occurred at time’ < ¢, or ii) the NTA cannot reach time Under the
assumption of time lock freedom, ii) cannot happen and apnesetly if e is not in
conflict with anye’, the constraints ofi*e]| are sufficient to ensurecan fire.

If we don't have this assumption, the level of concurrencyhi@ unfolding is re-
duced as witnessed by the examples of appendix D.

The NTA of Fig. 1(a) does not satisfy the time lock freedonmuagstion (automa-
ton 2 can prevent time from elapsing in locati®). Nevertheless evert, cannot be
prevented from firing by the first automaton and thus we canamesafely fires, if the
places in*e; have a token as the first automata can not prevent time fraosiakp

Safe Co-sets.Let ENABLE(e) denote theenabling cutsof e # L in a finite sym-
bolic branching process/: ENABLE(e) = {C'| *e C C andCisacutof\V}. As a
running example we take the prefi% builtin Fig. 1(b) and’ is always replaced by
(zero). For this example the enabling cuts arsaBLE (e;) = {(0, 4,U), (0, B,V)},
ENABLE(e2) = {(0,4,U),(1,A,U)}, ENABLE(e3) = {(0, B,V)}.

Now assume an eveats in conflict with another evert in the symbolic unfolding.
As we pointed out at the end of section 3, the timing condsajiven by[®e] on the
firing time of e do not always contain enough information to ensure evesdn fire:
evente; in N can fire if a)es has not fired (this must be at tinde< 3), or b) e has
fired, and the time elapsed since it has occurred is less thiameunits {.e. at timed
with § — d., < 2), or ¢) ex has been disabled by another event in conflict with it and
cannot occur in the future. To ensurean fire, we should add to the conditions®in
some information about the events in conflict witiT his is the purpose cfafe co-sets

11



They extend the co-sets of the symbolic unfolding with sonferimation about the
conflicting events. In terms of occurrence nets, a safe ttesan event will be the
set of placese, extended with a setr@ad onlyplaces’e. The information contained
in a safe co-set should be such that, if the timing conssaibtained byb. . .. are
satisfied by, thene can fire at time), (see Def. 8 below).

For any cutC', the formula® (Definition 6, equations (1)—(4)) is a formula over
0(C U ([C] N E)). Indeed all the intermediate placgsnot in the cut, are constrained
by a formula of the form. = §, because of equation 2 of Definition 6. For instance
QS(O,B,V) =g —562 < 2/\0§(582 <3AdB 2(562 ANdg=dp = dy.

Also because of the termy, if we use an extra variablé and the formulgé =
§,) A ®c for any’ p € C, we obtain a formula oveF([C] N E) U {§}: § stands for
the current global time (since the system started) and thst@int ond in ¢ defines
the set of instants for which the cGtis reachable. We writéZ, for the projection on
([C1NE)u{s} of the formuladc A (§ = 6,). In our example@?oA’m =06 <3,
P apy = 0y S3N0ey <0< 3andd gy =06~ 0, <2A0 <5, <
3NGS > 6., We letO(e) = {®%,|C € ENABLE(e)}. In our example, we obtain:
Oler) = {@[(SO,A,U)’@?O,B,V)}’ O(e2) = {QS?O,A,U)’@[(SLA,U)}’ O(es) = {‘p?o,B,V)}
O(e) represents the set of different constraints that can bergeteby all the enabling
cuts of evente. We also need to define the set of places from which we can lee sur
that an event will not fire (because an event in conflict withhas occurred). We
let DEAD(e) be the set defined byi € DeAD(e) iff for each configurationk’, p €
[CUT(K)] impliese ¢ K. Inwords, if a configuration is such that plaeéas received
a token, there cannot occur any more as no configuration contairiagdp exists.

Definition 8. A set of places is asafe representativef e w.r.t. ¢’ if 1) *e C S and 2)
SNe'l # 0 or SNDEAD(e’) # and 3)VC € ENABLE(e), S C C = [05]=[P%].
S is a safe representative off S is a safe representative efwv.r.te’ for anye’ s.t.e#e’.

If S is a safe representative efthenS contains enough information to infer the con-
straints on the firing time of for any cutC s.t. S C C as[#%]=[®2]. For instance
(0, B) is a safe representative of (w.r.t. toes, butes is the only event in conflict with
e1). (0,U) is a safe representative ef as well as0, A, U). (0, B) is a safe represen-
tative ofes.

Definition 9. A setS is acomplete sebf safe representatives ferif: 1) eachS C S
is a safe representative efand 2) for each cu€' € ENABLE(e), there is som& € S
st.SCC.

As each cutC’ € ENABLE(e) is a safe representative of itself, there is at least one
complete set of safe representatives whichNaELE (¢). We can state a theorem which
is a variant of Theorem 1 using only safe representativesnafvent (item b of the
theorem):

Theorem 3. If K is a configuration oftBP(A4|...|A4,)r s.t. GS(K) #  then a)
GS(K) = (1, Z) for some(l, Z) reachable inSG((A4] ... |A,)r), and b) if K U{e} is

% As equation (4) already imposés = &, for p,p’ € C we can add = 4, for anypin C.
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a configuration and is a safe representative o6.t. [Ps Ay(e) A (Apesed, = 66)}]7& 0
then(L, 2) 2L (1, 2') and GS(K U {e}) = (I, Z/).
This theorem states that a safe representative émntains enough information to de-
cide whether eventcan be fired or not. As a consequence, if whenever we attack a ne
evente to a finite branching process of a NTA,| ... |A4,,)r, we addread-arcsto the
places of a safe representativeepthen[e] (including the read arcs) gives the accurate
constraints on the date at whiche can fire.

To build an extended complete finite prefix for a NTA we can pestas follows:
1) build the symbolic net defined in section 3; this enableoubtain the safe co-sets
for each event; 2) build an extended net by adding an evehetartfolding using safe
co-sets instead of simple co-sets. On the example of Figsigthes the unfolding of
Fig. 2

1. start with place$, A, U and eventlL;

2. to add an event labelleg use a safe co-set: we choogeU) and add event}
with a read arc t@/;

3. adde; andes;

4. now a new safe co-set has appeat@dB); we can add an evenj labelled byt
with a read arc from placg.

This construction can be formally defined (see [12]). Theltés a symbolic extended
finite complete prefix EREF((A;] . .. |4, ) ) that satisfies propertyP’). Formally, we
definesymbolic configurations

Definition 10. (K, V¥) is asymbolic configuratiorof 7 if: 1) K is a configuration of
the underlying net, and 2y = ¥, (K) A W(K) whered;(M),1 < i < 2 are defined
by:

nK)= N\ ) 6 and  wy(K)= A (Apesed, =0)  (6)

ec[K] ecK

Notice that? (K') uses only information in the past &f. Letv : K — Rxq. (K,v) is
atimed configurationf v € ¥(K). (P’) holds because we can now re-write Theorem 3
as follows:

Theorem 4. If K is a configuration oEPREF((A,]| ... |A,)r) s.t.[¥(K)]# 0 then: 1)
GS(K) = (1, Z) for some(l, Z) reachable inSG((A4] ... |A)r), and 2) if K U {e} is

a configuration and¥ (K U {e})]# 0 then(l, Z) 2, (I',Z")andGS(K U {e}) =

v, 7.

On the example of Fig. 1(a),(L,0), (e1,de, ), (e2,0¢,)} is @ timed configuration iff
Oe; — ey, < 2andd., < 3.{(L,0),(e1,d,)} is a symbolic configuration iff., < 3.

Minimality for Safe Co-sets.The purpose of unfoldings is to keep explicit the concur-
rency of events. In the case of untimed network of autontates sufficient to ensure
can fire. For NTA, we have to use read arcs, but we should beecoed about the num-
ber of the new dependencies: for instance, if we useHt E (¢) as complete set of safe
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representatives for eaehwe require that the global state of the network is known each
time we want to firee. This means we do not keep explicit any concurrency in the un-
folding. It is thus important to try and reduce the numberezfd arcs from each event.
To this extent we define a notion ofinimalityfor complete sets of safe representatives.

First, a complete set of safe representatifes= {S;,S5,---,Sk} for e is
non redundantif each cutC € ENABLE(e) is represented at most onceC ¢
ENABLE(e),C C S;andC C S; = ¢ = j. ENABLE(e) is a non redundant
complete set of safe representatives. Each non redundahirs#uces a partitioning of
ENABLE (e) denoted BABLE(e),s. The class of an elemestec S is denotedsS].

Let S; andSs be two non redundant sets. We define the (partial) ordby: S; C
S; if ENABLE(e),s, = ENABLE(e),s, and for eachS € §;,5" € Sy s.t.[S] = [9']
we havelS| < |57|.

Givene € E, SAFE(e) denotes a minimal complete set of safe representatives for
all the C € ENABLE(e). In the example forV; we can take the sets:A8E(e;) =
{(0,U), (0, B)}, SAFE(e2) = {(A,U)}, SaFe(es) = {(0, B)}. Notice that if an event
e is not in conflict with any other event (like; in A7), *e is a minimal complete
set of safe representativ@sAlso, the minimality criterion we have defined does not
give a unique set of complete safe representatives. A coeseq is that there is no
smallest complete finite prefix for a NTA but rather a set ofafaninimal complete
finite prefixes.

Checking Validity of Timed Configuration.To complete the construction and provide
a solution to the problem of checking whether a timed conéition is valid, we can
define the constrainf'(e) associated with an eventby: I'(e) = ¥([e])|fejnp- This
constraint gathers the constraints of all the past evehis bfanching process obtained
this way is aeducedbranching process with only constraints on events. Forgheark

of timed automata of Fig. 1(a), the reduced branching psoisegiven on Fig. 3.

5 Conclusion

In this paper we have defined a modsimbolic extended net® define the concurrent
semantics of timed systems. We have also proved that eaclaifits dinite complete
prefix which is a symbolic extended net, and we have given an algorib compute
such a prefix. Other interesting results are:

— there is no unique complete finite prefix for a NTA but ratheeadf complete
finite prefixes;

— building asmall(optimal) complete finite prefix is very expensive as it regsithe
computation of information spread across the network;

— we have pointed out the difficulties arising in the consiarctof such a prefix,
namely the need fasafe co-setand theTime Lock Freedoraspects.

Our future work will consist in:

10 Under the assumption of time lock freedom
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1.

Figure 3. Reduced Extended symbolic unfolding for the example of Fig. 1(a)

define heuristics to determine when an event can be ada@epradix of an unfold-
ing; this means having an efficient way of computing safeesgntatives, which
are no more guaranteed to be minimal.

when step 1 is more developed, we can define algorithmsettkgiroperties of the
NTA using the unfolding and assess the efficiency of theserigtgns;

we have given aymbolicpartial order semantics for NTA but have not defined
directly atimed partial order semantics. Such a definition could be intergsb
have a better understanding of the interaction between dimdeconcurrency, and
maybe helpful to improve the efficiency of Step 1. This is aiksye before we can
use this framework on real-case studies.
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A Occurrence Nets

Letz, y be two nodes (place or transitions)adfe *y ory € «® there is ararc fromz
to y and we writex — y. This enables us to refer to tlgected graph of a netvhich
is simply the grapi{ F U P, —). The reflexive and transitive closure of is denoted
<. z,y arecausally relatedf eitherx < y ory < z. x is in the (strict)causal pasof
yif z X yandx # y,i.e.z < y. z,y are inconflict notedz#y, if there is a place
p € Psuchthap — w =< z andp — u < y with v # w. x andy areconcurrentif
x andy are neither causally related nor in conflict.fis a set of events thefJ =
(Ueese®)\(Uees®€). Forasetl C EUP [J] = {¢’ € EUP |¢’ < e for somee € J}.
A set of events/ is causally closedf [J] = J. A setA is aco-setif any two elements
of A are concurrent. Aonfigurationof an occurrence néd = (E, P,*(),()°) is a set
of eventsK C FE which is causally closed and conflict-free.cit S C P is a set of
places which is a maximal co-set. To each configuraligrwe can associate a unique
cut 1K which is denoted OT(K).

B Extended Nets

An extended neV is a tuple(E, P,*(),()®,°()) where(E, P,*(),()®) is a net, and
°(): E — 2F.1f °e = () for eache € E then\ is a net. The s€te represents the input
places of an event that are to be read without removing a token

The causality relation is now defined by:— y if z € *yU°yory € z*. <Xis
the reflexive and transitive closure ef. Theweakcausality relation--+ is given by:
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x --+ y if eitherz — y or°z N *y # O (if x needs a token in one of the input place
of y this implies a causality relation, evenuifis not in the past of; in the sense of
—.). We letd the reflexive and transitive closure ofs. Two nodesr andy areweakly
causally relatedf eitherz < y ory < z. z andy are in conflict,x#y, if there is a
placep s.t. there existv andu, w # u, p € *uN*w andw < z andu < y. z andy are
concurrent if they are not weakly causally related nor inficnFor J C E U P, the
definitions of 1.7 and[J] are unchanged (we use the nef). A set of events is now
causally closed if J] = J. Co-sets are now defined with the extended concurrency
relation. Configurations and cuts are defined as before.

An extended symbolic netis a tupl&, P,*(), ()*,°(),v) with (E, P,*(),()*,°())

an extended nets angd has the properties of Definition 5 (using the néw). The
semantics of extended occurrence nets requires¢hate C M to fire evente.

C Finite Complete Prefix

We use the order; of [15] to generate this complete finite prefix, and events a
cut-off event.

(a) The unfolding (b) The network

Figure 4. A network with a loop
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D Time Lock Freedom

Assume we have the network of two automata defined by Fig. 3hé&gare indepen-

(a) Two Independent Automata (b) The Unfolding

Figure 5. A Network of two Independent Timed Automata

dent, it seems quite strange that a dependency on the otbenaa should be needed in
the unfolding, because unfoldings are supposed to takentaty@ of concurrent events.
Considering the network of Fig. 6, the reason why such rees\aould be necessary
becomes clearer: the two automata are not really indepébdenuse one of them can
cause a time lock. Consequently, we need to take into act¢bemhaximum time that
can elapse in the NTA and this implies for the automaton (&)i@f6 to firee; before
time 2 which is given by the place labelled in the unfolding. This is not necessary in
the NTA of example 5 because none of the two automata canrgréree from elaps-
ing but we do not know it in advance. This is why the time loa@efilom assumption is
crucial otherwise a lot of dependencies would appear, nfdeem are not needed.
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(a) Two Independent Automata (b) The Unfolding

Figure 6. An Example with a Time Lock
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