
A Framework for Complex Tokenisation and its Application to
Newspaper Text

Robert Dale

Language Technology Group
Microsoft Research Institute

School of MPCE
Macquarie University

New South Wales 2109 Australia

Robert.Dale@mq.edu.au

Abstract

A word is more than a sequence of characters
between two spaces. This fact has generally
been ignored in research on natural language
processing; but recognising the complexity of
what it is to be a word is of crucial importance
if we are to add sophisticated natural language
processing techniques to existing document
processing applications to make them more
language-sensitive.

This paper describes a framework for the tokeni-
sation of text that tries to address this problem by
providing a parameterisable approach to the tokeni-
sation task, so that nlp components can be provided
with a richer analysis of real texts. We demonstrate
the ideas with application to the wide variety of
word forms that appear in newspaper text.

Keywords: tokenisation, intelligent text pro-

cessing, natural language processing

1 Introduction

Typical text processing tools such as word proces-

sors and text formatting tools embody very simple

notions of what constitutes a word: generally, in

such systems, a word is any sequence of characters

bounded by spaces, or sometimes by other punc-

tuation marks. These characterisations of word-

hood are useful and appropriate where the kinds of

operations that are to be performed on words are

simple: for example, deleting a word, moving the

cursor forwards or backwards a word, or deciding

whether there is su�cient space to place a word on

the current output line.

As the systems we build try to do more sophisti-

cated things with text, these simple characterisa-

tions begin to break down. In particular, as we try

Proceedings of the Second Australian Docu-

ment Computing Symposium, Melbourne, Aus-

tralia, April 5, 1997.

to make use of techniques and ideas from research

in natural language processing, we need to develop

more sophisticated notions of what constitutes a

word, and we need to recognise that words have in-

ternal structure that can be usefully manipulated.

We say that a system embodies language sensi-

tivity if it views text as more than just a sequence

of characters, and takes on board linguistically mo-

tivated characterisations of the data: so, individ-

ual characters are combined into words; words are

combined into sentences, perhaps with some in-

termediate levels of structure to indicate syntactic

constituency; and sentences are combined together

into paragraphs. Many current applications pos-

sess what may appear to be language sensitivity,

but in general this is an illusion: it is usually the

case that simple heuristics substitute for a deeper

understanding.

An obvious place to look for the kinds of

information and generalisations that we need

for language sensitivity is in the area of natural

language processing: this broad term covers

technologies concerned with morphology, syntax,

semantics and pragmatics, all key notions in

dealing with text more intelligently. Unfortunately,

much of the work in these areas is far from broad

application; and more importantly from the point

of view of this paper, there is a missing link

that still needs to be developed. We mentioned

above that words have internal structure that

can be usefully manipulated. For much work in

linguistics, this structure is characterised in terms

of morphology: for example, the word churches has
a base form church and a plural ending es. A great

deal of work has been done in this area, and much

of it is useful in the development of intelligent

text processing systems; however, even before we

begin to examine a word's morphology, we need

to recognise that not all words are so simple, and

that real texts are not as neat and tidy and well-

behaved as those discussed in linguistics textbooks

or used as examples in laboratory prototypes of

natural language processing systems. Quite apart

from important issues such as breadth of coverage,

problems raise themselves much earlier.

This is an important realisation, and one that has

only recently been accepted as an issue for work in

natural language processing. It has been provoked

by the increasing amount of nlp research that

tries to use large corpora of real texts as data;

this work makes it hard to ignore the realities of

text. As a result, in the last few years we have

begun to see research from a natural language

processing perspective that tries to say something

about the characteristics of real written language:

notable work in this area is Nunberg's [1990]

linguistically-motivated analysis of punctuation,

Grefenstette's [1994] work on tokenisation, and

Palmer and Hearst's [1994] work on sentence

segmentation.

The work described in this paper is in the same

spirit. The topic the paper addresses is one of

the �rst problems that has to be faced in build-

ing a bridge between text processing and natural

language processing: what is a word? If we are

to combine text processing techniques and natu-

ral language processing techniques for maximum

e�ectiveness, it is precisely here that the crucial

interface lies, and so it is important that we develop

as robust a model of what constitutes a word as

possible. The goal of the research described here

is to develop an easily customisable tokeniser that

can handle arbitrary text �les as input, producing

whatever output a client natural language process-

ing system prefers to see.

The work described here derives from some experi-

mental systems we have developed over the last few

years; see in particular [Dale 1990; Matheson and

Dale 1993; Dale and Douglas 1996]. On the basis

of this research we have become convinced that

there is, perhaps not surprisingly, no one answer

to what should count as a word; it all depends, of

course, on what task is being carried out. What we

require, then, is a truly
exible approach where we

can experiment with and develop di�erent notions

of wordhood. This paper describes the framework

we are developing to explore these questions.

The paper is structured as follows. In Section 2,

we sketch our overall approach to the problem of

tokenisation. In Sections 3 and 4, we go beyond

the simple notion that a word is a sequence of

characters bounded by spaces and describe a frame-

work for what we call `universal tokenisation'; and

in Sections 5 and 6 we go on to exemplify this

framework in the context of an analysis of a small

amount of newspaper text. Section 8 provides some

concluding remarks.

2 Our Approach to Tokenisation

We begin by taking the view that a text is made

up of what we will call tokens, and that tokens

can be of two types, which we call word tokens and

punct (for punctuation) tokens. A word token is

used to represent, naturally, a word, along with any

punctuation which is properly part of that word

(lexical punctuation). A punct token is used to

represent any contiguous sequence of (non-lexical)

punctuation characters in the text.

Unfortunately, the ascii character set does not di-

vide straightforwardly into those characters which

form words and those which form puncts: some

characters can belong to either, depending on the

context. There are a number of these ambiguous

characters, the full stop or period being the most

common, since it can appear as a sentence termi-

nator (in which case it is part of a punct) or as

punctuation within an abbreviation (in which case

it is part of a word). So, in example (1) below, the

character string rhino(s) would be represented by

a single word token, as would the string eventually;
the open parenthesis immediately before the �rst

e in eventually is not part of a word token, but is

part of a punct token, consisting of a space and an

open parenthesis and falling between the two word

tokens.

(1) The rhino(s) (eventually) ate the cake.

A number of heuristics can be used in order to

decide how to tokenise a text which contains am-

biguous characters; when higher level knowledge is

available from lexical sources and syntactic context,

this can be used to disambiguate cases where there

is doubt.

To enable higher-level linguistic processing to be

applied to individual tokens or sequences of tokens,

it proves useful to represent each token as an ob-

ject that maintains information derived from the

analysis of the word or punctuation sequence it

corresponds to. For a given token, this structure

might contain the following information:

� information regarding the syntactic category

of the token, and its root form if this is di�er-

ent from the token itself, along with syntactic

features such as number;

� information relating to the semantic type of

the token, derived from a lexicon if one is avail-

able: in the context of style-checking, for ex-

ample, it might be useful to know whether the

word is the name of a month, or a unit of

measure;

� information about the typographic form of the

token: in particular, the casing of the word is

Type Example

mixed-case-word PhD

alphanumeric DEC10

abbreviation i.e.

B.B.C.

Ph.D.

ordinal-number 23rd

date 23rd December 1992

23-12-92

os-pathname /home/user3/fred

real-number 23.4

measurement 23.4 kg

latex-object \documentstyle{article}

.

Figure 1: Some complex tokens

of signi�cance, and other features such as the

typeface used are important in the context of

text processing.

So, for example, the �rst word in the sentence Is
this the best solution? would be analysed as having

the root be, with the syntactic features of present

tense and singular number, and the typographic

feature of capitalised casing.

This much is straightforward. It turns out, how-

ever, that real tokens can be quite complicated ob-

jects, with considerable internal structure beyond

the morphological structure that standard natural

language processing techniques can identify. Fig-

ure 1 shows some examples of the kinds of tokens

we have to consider if we are to reliably process

real text. Note that we have included here some

tokens, such as the �rst example of a date token,

that consist of more than one word: these are tex-

tual entities which correspond to the Text Encod-

ing Initiative's notion of a crystal, and which for

some text processing purposes are best viewed as

single tokens. There is clearly a hazy line between

tokenhood in this sense and the notion of syntactic

constituent that we �nd in the linguistics literature.

3 The Framework

To be able to process texts that contain tokens

like those we have just described, it is important

that we take on board the complexities of the data.

After much experimentation, our current view is

that tokenisation is best performed by a process

that uses two separate stages.

The overall architecture is shown in Figure 2; here,

everything inside the dotted line is part of the to-

keniser. The basic idea is that a stream of char-

acters is read into the tokeniser from some exter-

nal source, and then successively processed through

the di�erent internal components to produce some

stream of higher level objects, which we will call

tokens, that can be used by some client|this

could be a parser, or some component of an in-

formation retrieval system, for example.

The system is broken down into the modules shown

to provide customisability at a number of di�erent

levels where the ability to customise seems like a

useful thing to have. The individual components

have the following functionalities.

The Bundler: The Bundler is the simplest and

least intelligent part of the tokeniser. It

knows only how to map the characters in the

character set used into a prede�ned set of

character classes; each character is in only

one class. The character�!character class

mapping is de�ned by a control �le, and

so is easily changed; the Bundler uses this

information to segment the input stream

into bundles, which we'll also call simple

tokens. A bundle or simple token is simply

a sequence of one or more characters from the

same character class: so, for example, given

appropriate de�nitions in the control �le,

any sequence of alphabetic characters might

constitute a bundle, and each space character

might constitute a bundle.

The Compounder: The Compounder takes as input

the simple tokens provided by the Bundler and

decides whether any of these simple tokens

need to be collected together into what we

will call complex tokens. Exactly what

counts as a complex token is determined by

the Compounder's control �le: for example, an

simple alphabetic token followed by a simple

numeric token might be put together to form a

complex token. There are also what we might

think of as multi-word complex tokens, or

after the tei, crystals. These are sequences

of words and symbols, such as dates and

names, that are constructed in a regular way

but which are typically not catered for by a

conventional natural language parser. The job

of the Compounder is to build complex tokens

corresponding to these crystals, packaging

them up and annotating them in such a way

that the client parser need not be concerned

with their internal details but can still make

use of them.

The Interface: If we want our tokeniser to be gen-

erally useful to a wide range of clients, then we

cannot assume too much about the nature of

the input expected by these clients. The job of

the Interface is to convert from the tokeniser's

internal structures into the form of input ex-

pected by a particular client; again this trans-

Compounder

Interface

Bundler

Client

?

?

?

Figure 2: The overall architecture of the tokeniser

formation is carried out using rules speci�ed in

a control �le. Thus we might expect di�erent

control �les to allow the generation of lists of

Lisp symbols, lists of Prolog atoms, or complex

feature structures, as required. This aspect of

the tokeniser's behaviour will not be discussed

further in the present paper; we will focus in-

stead on the internal aspects of tokenisation.

4 The Individual Components

4.1 The Bundler

In what follows we will assume that the input char-

acters are ascii, although there is no reason why

other character sets should not be used.

4.1.1 Specifying Bundling Rules

The means of character class speci�cation should

make it as easy as possible to specify the mapping

from each character in the character set to its class.

Each character class corresponds to a token type.

The speci�cation also needs to have some way of

saying whether a token of a particular type contains

only one character or many: for example, any se-

quence of numeric characters constitutes a numeric

token, but a open-paren token consists of a single

open-parenthesis: if we �nd two open-parentheses

in a row, we need to be able to specify that they

should be separate tokens if that is the most useful

way to view them.

Character Class Iterable?

A upper-alpha Yes
...

...
...

a lower-alpha Yes
...

...
...

0 numeric Yes
...

...
...

 spaces Yes

% percent No
...

...
...

Figure 3: A character class table

We can specify the character to character class

mapping by means of a table like that in Figure 3;

this is e�ectively a short-hand notation for a set of

rules of the following form:

(2) a. lower-alpha �! [a-Z]+

b. open-paren �! (

Here, the left hand side of the rule is a speci�cation

of the name of the character class (and therefore

token type) in question; the right hand side of the

rule is a regular expression speci�cation of the con-

tents of tokens of this type. These rules can then be

compiled into an appropriate �nite-state machine;

such a compilation procedure would also carry out

appropriate error checking and ensure, for example,

that no character has been assigned to two di�erent

classes.1

One possible complete character�!character class

mapping is shown in Figure 4.2 Note that these

bundling rules have the following consequences:

1. Any word which begins with an initial capital

letter followed by a sequence of lower-case let-

ters will be viewed as a sequence of two simple

tokens.

2. All non-alphanumeric characters except

spaces, line feeds, tabs and hyphens are

viewed as single-character tokens.

The important thing to note is that these

consequences are consequences of the particular

bundling rules we have speci�ed; a di�erent set of

1In our most recent work we have been using Yacc and

Lex to perform these processes, although in the general case

rather more
exible mechanisms are required.
2To explain the notational conventions employed here:

square brackets are used to indicate ranges; symbols inside

angle brackets name characters that are di�cult to show in

their regular form; and the use of a subscripted `+' indicates

that one or more instances of the preceding character

speci�cation are required.

lower-alpha �! [a-z]+

upper-alpha �! [A-Z]+

numeric �! [0-9]+

spaces �! +

line-feeds �! hLineFeedi+

tabs �! hTabi+

hyphens �! -+

open-paren �! (

close-paren �!)

open-square �! [

close-square �!]

open-curly �! [

close-curly �!]

open-angle �! <

close-angle �! >

slash �! /

backslash �! \

full-stop �! .

comma �! ,

colon �! :

semi-colon �! ;

exclamation-mark �! !

question-mark �! ?

dollar �! $

tilde �! ~

open-quote �! `

close-quote �! '

double-quote �! "

ampersand �! &

at-sign �! @

percent �! %

caret �! ^

asterisk �! *

underscore �! _

plus �! +

equals �! =

pipe �! |

Figure 4: A sample set of bundling rules

bundling rules can be used, without a�ecting the

overall approach to tokenisation.

4.1.2 Output Tokens

The tokens generated by the Bundler can be rep-

resented by feature structures like those shown be-

low:

(3) a.

2
664
token: simple

contents: ntidisestablishmentarianism

type: lower-alpha

3
775

b.

2
664
token: simple

contents: (

type: open-paren

3
775

Any simple token must have three �elds: a token

�eld with the value simple, a contents �eld that

contains a string consisting of the characters that

make up the token, and a type �eld that speci�es

the character class of the token.

4.2 The Compounder

4.2.1 Overview

The Compounder's job is to put together tokens to

make complex tokens: a typical instance is where

the bundler has decided that, in the string 23rd,
the 23 forms one simple token and the rd forms

another. The Compounder's rules will specify that

these two tokens can be combined to make a com-

plex token. So, from the tokens in examples (4a)

and (4b) the Compounder might build the token in

example (5).

(4) a.

2
664
token: simple

contents: 23

type: numeric

3
775

b.

2
664
token: simple

contents: rd

type: lower-alpha

3
775

(5)

2
66666666666666666664

token: complex

parts:

2
66666666666664

1:

2
664
token: simple

contents: 23

type: numeric

3
775

2:

2
664
token: simple

contents: rd

type: lower-alpha

3
775

3
77777777777775

type: ordinal-number

3
77777777777777777775

Whereas no ambiguity was possible in the Bundler's

ouptut, we now get the possibility that there may

be di�erent sequences of complex tokens: for ex-

ample, a full stop might be combined with the

preceding simple token to make some kind of ab-

breviation, but might equally be considered to be

a sentence-terminating token. This requires the

Compounder to make an intelligent decision on the

basis of whatever sources of knowledge it has access

to. In di�erent tokenisation experiments we have

used di�erent solutions to this problem. In both

the BibEdit [Matheson and Dale 1993] and Editor's
Assistant [Dale and Douglas 1996] work, our to-

keniser would examine the contents of surrounding

tokens in order to make a decision: for example, on

encountering a simple token that corresponds to a

full stop, the compounding stage may check to see

if the immediately preceding token is potentially

part of an abbreviation, or whether the immedi-

ately following token could be the �rst word in a

new sentence. A more linguistically sophisticated

system might try to make use of whatever syntactic

and semantic knowledge is available, but realisti-

cally such sources of information are beyond the

capabilities of current systems. Another strategy,

and probably the best in the longer term, is to take

the view that it is not the job of the Compounder to

decide what the correct answer is: instead, multiple

parses should be produced. Also, it is possible that

a number of tokens may be combined in the same

way but given multiple possible interpretations: so,

for example, the complex token above might also

be considered to be a computer name.

Notice also that the rules used by the Compounder

are potentially quite complex: ideally, in the exam-

ple above, the rule needs to have some way of dis-

tinguishing ordinal-number tokens from other kinds

of alphanumeric tokens. So, for example, one rule

for alphanumerics might look like the following:

(6) X0 �! X1 X2

hX0 typei = alphanumeric

hX1 typei = alphabetic

hX2 typei = numeric

Of course, this is not as expressive as we would

like it to be: using this limited formalism for ex-

pressing compounding rules would mean that we'd

need a very large number of rules to cover all the

possibilities.3

A rule for ordinal-numbers might look like the fol-

lowing:

(7) X0 �! X1 X2

3The formalism used here is very deliberately based

on that used in the uni�cation-based grammar formalisms

popular in the natural language processing community; see,

for example, Sheiber [1986].

hX0 typei = ordinal-number

hX1 typei = alphabetic

hX2 typei = numeric

hX2 contentsi isa ordinal-ending

Here we have added the notion of contents-�eld

type checking by means of a new operator, isa;

this has the same net e�ect as performing lexical

lookup. Ultimately, it becomes necessary to de-

velop a type hierarchy, where types are more or

less speci�c: so, for example, we might have al-

phabetic, alphanumeric and punctuated as sub-types

of compound tokens, and os-pathname, hyphenated-

word and date as subtypes of punctuated tokens.

5 Applying Tokenisation to Newspa-
per Text

We have described above some fairly complex ma-

chinery for breaking a text into tokens. A valid

question to ask is whether this complexity is really

required. This section looks at the results of an

analysis of newspaper text (in particular, one issue

of The Guardian) to identify the real variety of

tokens that we have to consider. After this analysis,

we provide a grammar for compounding that covers

this data.

A signi�cant proportion of the tokens found in

newspaper text consist of the simple alphabetic

forms; but there are a number of more complex

token types too, enumerated below.

5.1 Hyphenated Compounds

A hyphenated compound is a token consisting of

smaller tokens connected together by a hyphen.

Identifying this structure can be important for car-

rying out any intelligent processing that is required.

Figures 5 and 6 show two categories of hyphenated

compounds found in the analysed text; in each

case we have reproduced the entire sets detected

in order to demonstrate the wide range of semantic

constructs that appear, although we do not at the

moment have much to say about speci�c semantic

analyses that would be appropriate; the point is

that, if we do want to perform intelligent processing

of these `words', then we do need to have available

some analysis of their internal structure.

5.2 Apostrophed Words

Apostrophed words are relatively straightforward,

but once more we have to be able to decompose

them appropriately to carry out appropriate pro-

cessing tasks.

Possessives: royal's, year's, Citizen's, BBC2's,
MPs' and nurses'; a very large proportion

three-day

two-thirds

ex-inmates

ex-millionaire

short-sighted

short-termism

well-received

sister-in-law

editor-in-chief

milk-and-water

million-year-old

three-year-old

Anglo-American

Caiger-Smith

Churchill-Coleman

Hindu-Muslim

Coca-Cola

Johnny-Come-Latelys

Serb-controlled

Italian-style

Biblical-style

Co-operation

B-Specials

UN-sponsored

US-led

al-Hariri

anti-Barre

counter-IRA

outer-London

pro-MPLA

Figure 5: Alphabetic hyphenated-compounds

of these are possessives of proper names.

A case to watch out for is the apostrophed

abbreviation, as in Inc.'s.

Contractions: 'cos, aren't, couldn't, didn't, Every-
where's, He's, I'm, It'll, It's, we'll, and We've.

5.3 Number Compounds

Numbers are more than simple sequences of digits.

To cater for this fact, it is useful to have a notion

of number compound. As it happens, in the

analysed text these are more common than simple

numerics. The di�erent subtypes we have identi�ed

are as follows:

� comma-punctuated numerics as in 250,000

� decimals as in 3.1 and 61.67

� currency amounts, as in $400, $289, $10,000,
$1.8, $23.7, $12.20, and $116.5.

11-14

5-2

200-400

1994-95

12-year

15-day

24-hour

100-strong

80-yard

72-year-old

18-21-year-olds

10,000-word

33,000-strong

12th-century

pre-20th

Start-2

AK-47s

MiG-23

$26-27

$100,000-plus

$1,874-a-week

Figure 6: Other hyphenated-compounds

5.4 Less Common Compounds

There are a number of other less common kinds

of compound tokens. We have found the following

categories to be in evidence:

alphanumerics: True simple alphanumerics|tokens

consisting only of alphabetic characters and

digits|are quite rare. Apart from the

predictable 17th, 61st and 194th, we also get

1960s, DM150, M15, 28min, 01sec, 5ft, and
5ins.

mixed-case: Again, these are much less common

than one might have thought. Examples:

MPs, CDs, McAvennie, USAir, and DoE.

slashed-compounds: These are very rare: Heath/Walker,
AIRMIC/broker, and 1993/94.

full-stopped-tokens: These are very rare: A., Inc.,
and C.J..

6 A Grammar for Compound
Tokens in Newspaper Text

In the previous section we have outlined the various

kinds of tokens found in our analysis of newspaper

text. In this section we present a grammar for

compound tokenisation that covers this data. Dif-

ferent compounding rules are likely to be required

for other genres of text. It should also be noted that

the rules were developed only to handle body text:

advertisements and sports results might produce

some additional token types.

We will make the assumption that a text consists of

a sequence of tokens, and we will require that a text

be an alternating sequence of wordand punct tokens.

This means our top level rule for the decomposition

of a text is as follows:

(8) text �! fpunctg word (punct word)�

fpunctg

6.1 A Grammar for Word Tokens

1. Words can be simple or complex, in the sense

that they may consist of only one bundle,

or they may consist of a number of bundles.

When a word consists of a number of bundles,

the alphabetic and numeric bundles may be

separated by punctuation characters; where

this is the case, each punctuation character

may appear only once in any given complex

word, with the exception of hyphens, which

can appear multiple times. To deal with this,

we de�ne word tokens at the top level as

follows:

(9) word �! nohyphen-word j hyphenated-

compound

2. A nohyphen-word is either simple or

compound:

(10) nohyphen-word �! simple-word

(11) nohyphen-word �! compound-word

3. Words which are simple-words are those

which contain only alphabetic or numeric

characters:

(12) simple-word �! lower-alpha j upper-

alpha j mixed-case j numeric j

alphanumeric

Of these types, only lower-alpha, upper-alpha,

and numeric are provided as primitives by

the Bundler rules speci�ed earlier. We also

therefore require the following rules:

(13) mixed-case �! (upper-alpha j lower-

alpha) (upper-alpha j lower-alpha)+

(14) alphanumeric �! numeric (lower-case j

upper-case)+

(15) alphanumeric �! (lower-case j upper-

case)+ numeric

It would be useful to have a rule for initcap-

rest-lowers tokens, but this requires more so-

phistication that the current rule speci�cations

permit (it requires reference to the length of

the bundles).

4. Words which are compound-words are of vari-

ous kinds.

(16) compound-word �! number-compound

(17) compound-word �! apostrophed-word

5. Apart from their appearance with alphabetic

characters in alphanumeric tokens, numbers

often appear in conjunction with other char-

acters. We capture all the interesting cases

with the following rules:

(18) number-compound �! fcurrency-

symbolg numeric fcomma numericg

ffull-stop numericg

(19) currency-symbol �! dollar

Note that currency amounts such as 140DM
will be identi�ed as alphanumeric tokens.

6. apostrophed-words are handled by the following

rules:

(20) apostrophed-word �! compound-word

close-quote fcompound-wordg

(21) apostrophed-word �! close-quote

compound-word

7. Finally, hyphenated-compounds are captured

by the following rule:

(22) hyphenated-compound �! nohyphen-

word (hyphens nohyphen-word)+

This gives a
at structure for multiply-

hyphenated compounds, and leaves to some

subsequent processing the question of whether

some hierarchy should be introduced within

this structure.

The complete grammar for word tokens is collected

together in Figure 7.

7 A Grammar for Punctuation To-
kens

Punctuation tokens are relatively straightforward.

The complete set of punct tokens we permit is de-

�ned by the grammar in Figure 8. We identify

three general types of punct tokens:

spacing: these are tokens whose primary purpose

is to separate words; they are typically made

up of combinations of space characters, but we

also allow the possibility for a spacing token to

consist simply of a sequence of hyphens.

constituent-delimiter: these are complex tokens

consisting of the punctuation characters which

terminate clauses and phrases, along with

their associated spacing tokens.

word �! nohyphen-word j hyphenated-compound

nohyphen-word �! simple-word

nohyphen-word �! compound-word

simple-word �! lower-alpha j upper-alpha j mixed-case j numeric j alphanumeric

mixed-case �! (upper-alpha j lower-alpha) (upper-alpha j lower-alpha)+

alphanumeric �! numeric (lower-case j upper-case)+

alphanumeric �! (lower-case j upper-case)+ numeric

compound-word �! number-compound

compound-word �! apostrophed-word

number-compound �! fcurrency-symbolg numeric fcomma numericg ffull-stop numericg

currency-symbol �! dollar

apostrophed-word �! compound-word close-quote fcompound-wordg

apostrophed-word �! close-quote compound-word

hyphenated-compound �! nohyphen-word (hyphens nohyphen-word)+

Figure 7: The grammar for word tokens

compound-punct: these are tokens made up of

parentheses along with some combination of

spacing and constituent-delimiter tokens. Note

that we don't consider constituent-delimiter

tokens to be compound-punct tokens in this

sense.

Some points to note about the grammar in Fig-

ure 8:

1. It does not include punctuation tokens that

contain square, curly, or angle brackets: these

are omitted for simplicity, but would be

treated in the same way as the open-paren and

close-parens.

2. The treatment of open-parens allows the possi-

bility that the open-parenmay not be preceded

by a space; this is required in order to deal with

text-initial open-parens, but it has the con-

sequence that word-internal open-parens will

be labelled as non-word-internal; also, cases

where the space is missing by accident will not

cause the parser to fail. The same comments

apply to the treatment of close-parens, except

that in this case it is the following space that

may not be present.

3. For simplicity, we don't specify any rules that

cover backslash, tilde, at-sign, underscore, plus,

equals, pipe, caret, or asterisk; these characters

do not appear in the text we are using as our

example.

8 Conclusions

We have described a general architecture for the pa-

rameterisable tokenisation of free-form texts, and

provided details of the grammars required for one

particular text type we have analysed.

The key features of the approach described here are

as follows:

� The approach is completely parameterisable,

so that di�erent notions of what it is to be a

word can be adopted in di�erent contexts.

� Tokenisation is separated into two distinct

steps, referred to here as bundling and

compounding.

� This separation allows us to specify bundling

as a deterministic, �nite-state process that

is cheap to implement; any more context-

sensitive or intelligent processing is localised

in the compounding stage.

The results of such a process are then available

for further processing by more sophisticated tools,

whether these be document-processing based or

natural language processing-based. For example,

in some recent work carried out in conjunction

with the University of Sydney, we have attached

a freely available morphological analysis module

to a tokeniser based on the principles described

here; the results of tokenisation are then further

extended with morphological information.

The result is a considerably more sophisticated no-

tion of what it is to be a word, a step we believe

to be of paramount importance in bridging the di-

vide between text processing and natural language

processing.

Acknowledgements

The ideas expressed here have bene�tted from

discussions with Shona Douglas, Jason Johnston,

Chris Manning, and Colin Matheson; all errors

remain the author's own.

punct �! spacing j

constituent-delimiter j

compound-punct

spacing �! space j

line-feeds fspaceg j

tabs j

line-feeds ftabsg j

hyphens j

space hyphens space

constituent-delimiter �! (full-stop j comma j exclamation-mark j question-mark j

colon j semi-colon) spacing

compound-punct �! fspacingg (open-paren j open-quote)

compound-punct �! (close-paren j close-quote) f(spacing j constituent-delimiter)g

Figure 8: Rules for Punct tokens

References

R Dale (1990) A Rule-based approach to

Computer-Assisted Copy Editing. In

Computer Assisted Language Learning, 2,

pp59{67.

R Dale and S Douglas (1996) Two Investiga-

tions into Intelligent Text Processing. Pages

123{145 in The New Writing Environment,
edited by Mike Sharples and Thea van der

Geest. Springer, London.

G Grefenstette (1994) Explorations in
Automatic Thesaurus Discovery. Kluwer

Academic Publishers, Dordrecht.

C A Matheson and R Dale (1993) BibEdit:

A Knowledge-Based Copy Editing Tool

for Bibliographic Information. In E

S Atwell (ed), Knowledge at Work in
Universities: Proceedings of the Second
Annual Conference of the Higher Education
Funding Councils' Knowledge Based Systems
Initiative. Cambridge, December 1993.

G Nunberg (1990) The Linguistics of Punctua-
tion. CSLI/University of Chicago Press.

D Palmer and M Hearst (1994) Adaptive

sentence boundary disambiguation. In

Proceedings of 4th ACL Conference for
Applied Natural Language Processing,
Stuttgart, October 1994.

S M Shieber (1986) An Introduction to
Uni�cation-based Approaches to Grammar.
The University of Chicago Press, Chicago,

Illinois.

