Choosing A Surface Realiser:
Exploring the Differences in Using
KPML/NIGEL and FUF/SURGE

Victor R. Essers and Robert Dale

Microsoft Research Institute,
Macquarie University,
Sydney Nsw Australia

Abstract

Natural language generation (NLG) is a complex process, concerned with issues of both
deciding what to say, and determining how best to express that content. One sub-task
in NLG is to map a specification of the content of a sentence to a grammatically correct
surface sentential form. This linguistic realisation task is addressed by a number of existing
software packages developed within the research community, but each embodies subtly
different assumptions about the nature of the task. Faced with a choice between these
packages, this makes it difficult to determine which is best used in a given situation.

This paper presents an experiment which is part of a larger research program concerned
with questions of modularity in the development of NLG systems. In the experiment,
the two most well-known packages, KPML/NIGEL and FUF/SURGE, were used to provide
realisation capabilities in the WEATHERREPORTER system, which generates short multi-
sentential weather summaries.

We explore the differences in using the two realisers and conclude that, of the two sys-
tems, FUF/SURGE uses a more syntactically motivated approach to rhetorical constructs,
so that the microplanning stage prior to surface realisation must determine appropri-
ate ways to realise a rhetorical construct. On the other hand, KkPML/NIGEL needs more
access to external knowledge sources such as generalised and domain ontologies. We
comment on the problem of imperfect grammatical coverage, and when semantically- or
syntactically-appropriate constructs can be used in sentence plans. Finally, we conclude
that KPML/NIGEL requires its user to have a better acquaintance than FUF/SURGE with
the grammatical theory underlying the system, with mixed ramifications.

1 Introduction

The task of building a complete natural language generation (NLG) system is difficult and
complex. Rather than start from scratch, it makes sense to make use of whatever reusable
components are available, just as someone building a complete natural language analysis system
would be likely to make use of an existing parser for syntactic analysis. In the context of NLG,
the state of the art is such that a number of reusable components are available for that sub-task
in the NLG process generally referred to as LINGUISTIC REALISATION.

The two most well known realisers are KOMET-PENMAN MULTILINGUAL (KPML) (Penman
Natural Language Generation Group, 1989; Bateman, 1996) along with its associated grammar
of English, NIGEL (Mann and Matthiessen, 1983), and the Functional Unification Formalism
(ruF) (Elhadad, 1992; Elhadad, 1993) along with its associated grammar of English, SURGE (El-
hadad and Robin, 1996).! Each realiser is a program which combines a broad coverage gram-
mar of English with a mechanism for mapping from an input specification of a sentence (or

LAlthough in each case the realiser and its associated grammar are distinct components, we will for conve-



sub-sentential unit) to a surface form expressed as a text string that realises the sentence (or
sub-sentential unit).

This brief description belies the differences between the two systems. Each uses a quite
different processing mechanism to move from a sentence specification to a sentence: ideally,
of course, this much should be invisible to the user who wishes to treat a realiser as a black
box. There are also inevitable differences in grammatical coverage, reflecting the particular
developmental paths the systems have taken. Much more importantly, however, even a cursory
examination of the two systems shows that the inputs they expect are substantively different:
each encompasses a different view as to the real nature of the linguistic realisation task. To our
knowledge, these differences, and their impact on system construction, have not been explored
overtly in the literature.?

This paper presents some work that is part of a larger program aimed at exploring possible
modularities for processing in a natural language generation system: this larger research en-
deavour is an important one if we are to move towards genuine reusability in the field. Here,
our most immediate concern is to identify arguments and justifications for what should be in-
corporated in the task of linguistic realisation and what should not. In order to explore this
question, we have been using the two linguistic realisation packages mentioned above within
the context of the same overall generation task, so that we can better compare the advantages
and disadvantages that come with adopting either system’s view of the linguistic realisation
task. The aim of our experiment is to make it easier for other researchers faced with a choice
between these two systems to determine which is most appropriate in their situation. This is
not to say that one system is better than the other: which is best is likely to depend on many
aspects of the context of use. Our work is intended as a step towards identifying just what
those aspects of the context of use are, so that decisions can be made in a reasoned way.

The paper is structured as follows. In Section 2 we provide some background context,
describing the WEATHERREPORTER system and its architectural assumptions. In Section 3
we provide a brief overview of KPML/NIGEL and FUF/SURGE, the two realisation packages we
have used in this experiment. In Section 4 we sketch in general terms the issues that have to
be considered in integrating an existing realiser into an NLG system like WEATHERREPORTER,
and in Section 5 we look at the specific concerns that are raised when integrating KPML/NIGEL
and FUF/SURCE in particular. Finally, in Section 6 we draw some conclusions and make some
observations with regard to what needs to be done next.

2 Background: The WEATHERREPORTER System

2.1 The WEATHERREPORTER Architecture

WEATHERREPORTER is being developed by the authors as a relatively simple NLG system that
produces natural language text from an underlying database of numerical meteorological data
collected automatically by weather-sensing devices. The idea of generating text from a numeric
data source, as opposed to a sophisticated knowledge base, is not new and has been explored in a
number of existing systems.® An important practical benefit of such systems is that many large
numeric data sets are available, and could benefit from natural language reporting; whereas, at
the current time, sophisticated large-scale knowledge bases are somewhat rare. Our aim in the
WEATHERREPORTER system is to explore issues of modularity that permit the easy transfer
of NLG components from one domain of application to another.

nience frame our discussion in terms of realiser-grammar pairs, since this in practice is the way they are used.
Although it is possible to provide the realisers with alternative grammars, most users are likely to make use of
the grammars provided with the systems.

2At least, not by third parties: the developers of both systems have on various occasions made reference to
specific points of contrast.

3 Among these systems are ANA (Kukich, 1983), SEMTEX (Rosner, 1987), FOG (Bourbeau et al., 1990), Lrs (Ior-
danskaja et al., 1992), pLaNDOC (Kukich et al., 1993), STREAK (Robin, 1994), and SUMGEN (Maybury, 1995).



The system views natural language generation as being composed of three distinct sub-
tasks, as Figure 1 illustrates. The DOCUMENT PLANNER is concerned with determining both

Goal

l

Document
Planner

l

Document Plan

|

Microplanner

l

Text Specification

l

Surface
Realiser

l

Surface Text

Figure 1: NLG System Architecture.

the content and the overall structure of the text to be generated. In the case of WEATHER-
REPORTER, this means selecting relevant information from the underlying numeric data source
and packaging this into MESSAGES, a form of data representation we will return to below. These
messages are placed by the document planner in a structure we call a DOCUMENT PLAN, which
indicates any discourse relationships that hold between the messages.

The MICROPLANNER is concerned with mapping fragments of the document plan into struc-
tures that can be used as input to the SURFACE REALISER. In practice this means making
decisions about how information should be packaged into sentence-sized chunks—the messages
in the document plan do not necessarily correspond one-to-one to sentences—and also selecting
appropriate lexical items and referring expressions to realise conceptual content in a contex-
tually appropriate manner. The result is a tree structure called a TEXT SPECIFICATION which
provides sufficient information for the final component in the process, the surface realiser, to
produce well-formed output texts. Each leaf node in this structure is what we will refer to here
as a SENTENCE PLAN. The point here is that we want to avoid, as far as is possible, having the
microplanner reason about idiosyncracies of the particular natural language being generated;
by encapsulating these idiosyncracies within the realisation component, we may begin to move
towards a sensible modularity of the knowledge sources required in the generation task.

As is by now probably obvious, our interest in the present paper is to explore how the
KPML/NIGEL and FUF/SURGE realisers can serve in the role of surface realisation components
in this architecture.

2.2 Microplanning in WEATHERREPORTER

To focus our discussion, we will concentrate on one sentence within a larger text to be generated.
Figure 2 shows a collection of three messages which have been constructed from data selected
from the underlying information source by the document planner. Each message corresponds to
a unit of information which could be, but won’t necessarily be, realised as a separate sentence;



Figure 2 provides English glosses of what the resulting sentences might be if we pursued such
a one-to-one mapping. The reason for maintaining a degree of abstraction between messages
and sentence content is precisely to allow the microplanner to make decisions about the best
way to package this information into sentence-sized chunks.

Message #1 The month was warmer than average

((message-id 1)

(message-type monthlytemperature)

(period ((month 6) (year 1994)))

(absolute-or-relative relative-to-average)

(relative-difference ((magnitude ((unit degrees) (number 3.0)))
(direction +))))

Message #2 The month was wetter than average

((message-id 2)

(message-type monthlyrainfall)

(period ((month 6) (year 1994)))

(absolute-or-relative relative-to-average)

(relative-difference ((magnitude ((unit millimetres) (number 10.0)))
(direction +))))

Message #3 The month had a dry spell from the 2™% to the 5t*

((message-id 3)
(message-type rainspellmsg)
(period ((begin ((day 2) (month 6) (year 1994)))
(end ((day 5) (month 6) (year 1994)))))
(duration ((unit days) (number 5)))
(amount ((unit millimetres) (number 0.0))))

Figure 2: The input WEATHERREPORTER messages for the generation example.

The microplanner is assisted in this task by other information provided by the document
planner. The output of the document planner is not just a bag of messages; as mentioned
above, it is a tree structure that shows the discourse structural relationships that hold between
these messages. For the purposes of the experiment described in this paper, we will assume that
the document planner has already determined that the messages in Figure 2 are structurally
related in the manner shown in Figure 3.

NARRATIVE-SEQUENCE

S

Message #1 CONTRAST
Message #2 Message #3

Figure 3: A document plan produced by WEATHERREPORTER from the three input messages
in Figure 2.

Thus, the microplanner knows that Message #1 and Message #2 are related by a discourse
relationship of NARRATIVE-SEQUENCE, reflecting a domain convention that the two pieces of in-



formation in these messages are generally expressed in sequence; and that Message #3 provides
information that is in CONTRAST to that provided in Message #2.4

We will assume that the microplanner has decided that this fragment of the document plan
should be realised by means of a single sentence; in so doing we are glossing over many of the
issues that arise in the determining the most appropriate aggregation of messages, but these
questions are independent of our current concerns. Given this fragment of the document plan
as input, the goal of the microplanner is to produce a sentence plan which, when provided to
the surface realisation component, will result in the following sentence:

June was warmer and wetter than average, although there was a dry spell from the 2" to
the 5",

In the remainder of this paper, we look more closely at what is involved in achieving this result
using the two surface realisation components introduced above.

3 Two Surface Realisers

3.1 KPML/NIGEL

A multilingual extension of the PENMAN system (Penman Natural Language Generation Group,
1989) developed by the Penman Project at 1S1/UsC,” KOMET-PENMAN MULTILINGUAL (Bate-
man, 1996) is based on SYSTEMIC FUNCTIONAL GRAMMAR (Halliday, 1985). There is insuffi-
cient space here to detail the internal workings of KPML, or to discuss the details of how the
grammatical description is encoded: the reader is referred to the source literature for this infor-
mation. In brief, the grammar is encoded as a SYSTEM NETWORK: an interconnected series of
fine-grained choices specified in terms of communicative functions, whereby each choice made
leads to other more specific choices, and each choice optionally adds a piece of surface grammat-
ical description to constrain the final output sentence. KPML traverses such a grammar from left
to right, considering questions and decision points of increasing detail. The end result is a set
of REALISATION STATEMENTS—fine-grained constraints on the surface form—that characterise
the particular sentence to be generated.

As Section 1 states, we choose to work with the NIGEL (Mann and Matthiessen, 1983)
grammar for English, which is commonly used with KPML to generate English text. Input to
KPML can be provided in the form of sentence plans in sPL (Kasper, 1989), the SENTENCE
Pran LaNcUAGE (Kasper, 1989) developed for this purpose. Figure 4 shows an SPL expression
that corresponds to our target sentence.

3.2 FUF/SURGE

The FUNCTIONAL UNIFICATION FORMALISM (FUF: see Elhadad’s Ph.D. thesis (Elhadad, 1992)
and the FUF User Manual (Elhadad, 1993)) has its origins in FUNCTIONAL UNIFICATION GRAM-
MAR (Kay, 1979), and uses graph unification to combine an input structure that corresponds
to a sentence specification with a grammar of the output natural language, the result being
a syntactically-specified structure which is then linearised to produce the required sentence.
Both the input specification and the grammar itself are expressed as FUNCTIONAL DESCRIP-
TIONS (FDs), these being recursive attribute-value matrices whose expressive vocabulary per-
mits the encoding of functionally-motivated elements; FUF shares with KPML the notion that
in generation one is concerned with mapping from function to form.

4The form of analysis here is clearly influenced by work in Rhetorical Structure Theory (RsT; (Mann and
Thompson, 1988)). We have suggested here that Message #3 is presented in contrast to Message #2; however,
an analysis that mirrors more closely the structure of the sentence to be generated would suggest that Message
#3 is presented in contrast to Messages #1 and #2 combined. The differences between these two analyses are
irrelevant to the present discussion.

5The Information Sciences Institute at the University of Southern California



(rst / rst-concessive
:domain
(1 / greater-than-comparison
:tense past
rexceed-q (1 a) exceed
:domain (m / one-or-two-d-time :name June)
:standard (a / quality :lex average :determiner zero)
:range ((wa / sense-and-measure-quality :lex warm)
(we / sense-and-measure-quality :lex wet)))
:range
(sp / existence
:tense past
:domain (s / abstraction
:lex spell
:determiner a
:property-ascription (d / quality :lex dry))
:source (2nd / one-or-two-d-time
:lex 2nd
:determiner the
:destination (5th / one-or-two-d-time
:lex 5th
:determiner the))))

Figure 4: An SPL expression used as input to KPML/NIGEL.

As Section 1 states, we choose to work with the SURGE grammar for English, a grammar
organised along systemic functional grammar lines, but which also borrows from HPsG (Pollard
and Sag, 1994) and descriptive linguistic works (Quirk et al., 1985). Figure 5 shows an input
FD that can be used by FUF/SURGE to produce our target output sentence.

4 Interfacing to the Realisers

4.1 General Issues in Microplanning

The role of the microplanner in our architecture is to provide an interface between the document
planner’s output and the realiser’s input. In general terms this means the microplanner has to
do three things:

e It performs aggregation, identifying situations where messages can be combined to pro-
duce more fluent text than would result if these messages were realised one-per-sentence.

e It performs lexicalisation, determining which lexical items should be used to realise con-
cepts that appear in the messages.

e It performs referring expression generation, determining the appropriate noun phrase
content required to identify entities in the domain.

All three functions must be carried out, irrespective of which of the two realisers is used. To
make these activities clearer, we will indicate instances of each that occur in the generation of
our target sentence.

Given the messages we have to work with as input, there are two instances of aggregation
involved in producing the target sentence. First, the microplanner has to decide that all three
messages will be realised within one sentence: in our discussion so far we have taken this
for granted, but it is important to bear in mind that it does not just happen automatically.
Second, the microplanner has to recognise that Messages #1 and #2 are sufficiently similar
in structure that they can be expressed within one clause using a predicate that conjoins the
two properties to be expressed. Aggregation operations of the latter kind are common in the



((cat clause)
(tense past)
(proc ((type ascriptive) (mode attributive)))
(partic
((carrier ((cat proper) (lex "June")))
(attribute
((cat ap)
(complex conjunction)
(common ((cat ap) (comparative yes)))
(distinct ~“(((lex "warm")) ((lex "wet"))))
(qualifier ((cat pp) (prep === "than")
(np ((cat common)
(lex "average")
(definite yes)
(denotation no-determiner)))))))))
(circum
((concession
((cat clause)
(position end)
(binder ((lex "although")))
(tense past)
(proc ((type existential)))
(partic
((located
((cat common)
(lex "spell")
(describer ((cat ap) (lex "dry")))
(definite no)

(qualifier ((cat pp) (prep === "from")
(np ((cat common)
(lex "2nd")
(definite yes)
(qualifier
((cat pp) (prep === "to")
(np ((cat common)
(lex "5th")

(definite yes)))))))))))))))N))

Figure 5: A SURGE-compatible FD used as input to FUF.

literature; operations of the first kind, which we might think of as ‘sentence scoping’, are less
widely discussed. The two operations require the use of knowledge about how to build good
sentences: this is an area where much research remains to be done.

The microplanner also has to determine which lexical items will be used to realise the
concepts in the messages: this means making use of knowledge that, in our present example,
indicates that a situation with more rain is referred to as being wetter whereas a situation with
a greater temperature is referred to as being warmer. This requires the microplanner to have
access to appropriate domain knowledge.

Finally, the microplanner has to decide to refer to the month being described as June
rather than as last month, the sizth month of the year, or some other equally true description.
This requires the microplanner to make use of knowledge of the discourse context, so that, for
example, it can choose to use a pronoun to refer to an entity when this is an appropriate thing
to do.

4.2 An Aside on Grammatical Coverage

It is a reality of using packages like KPML/NIGEL and FUF/SURGE that, inevitably, one finds
that there are gaps in the systems’ grammatical coverage: there will always be grammatical
structures that one wishes to build that are not catered for by the existing grammars. This is,



of course, no different to the situation that occurs with the use of existing grammars for parsing:
no matter how broad coverage such a resource is, one always finds there are structures that it
does not cater for. From this point of view, it is best to take the view that the SURGE and
NIGEL grammars are still under development. We have found the developers of both systems
extremely helpful in assistance with the making of grammatical extensions, but clearly this
kind of support is not sustainable on a wider basis unless resources are specifically allocated to
the task.®

Generation grammars also share with parsing grammars the property that, if one wishes to
extend the grammar to cover the new phenomenon in question, this really needs to be done
with a proper understanding of the theory underlying the model of grammar used; otherwise,
the result will be at best something of an ad hoc solution, and at worst may result in unforeseen
interactions with elements of the existing grammar. In order to avoid the latter problem, one
needs a familiarity with the entire existing grammar: this is probably too much to ask of an end
user of the system, and so until grammars such as NIGEL and SURGE reach a level of coverage
where lacunae are relatively rare, this is a serious obstacle to genuine reuse of these resources.

In our experiments with these systems, we found grammatical limitations in both cases.
By definition, the extent to which others find this problem will depend on how much their
required grammatical coverage differs from that already provided in the systems, and again
this is unpredictable without a reasonable familiarity with the systems’ existing grammatical
resources. Some of the apparent oddities in the sentence plans shown in Figures 4 and 5 are
due to these limitations; most notably, it is not possible in NIGEL to express a time range. We
are thus forced to use SPL’s :source and :destination keywords to treat the start time and
end time as a source and destination respectively, as in the final lines of Figure 4. The SURGE
grammar has a similar limitation, in that temporal ranges are not yet expressible, and so we
simply treat the start and end times of the range as prepositional phrases with the prepositions
from and to, as in the last lines of Figure 5.

A simpler but related problem is that of limitations in lexical coverage. This is generally
easier to fix than limitations in syntactic coverage; below we indicate how new lexical items can
be introduced.

5 Comparing the Realisers

In this section we consider a number of specific phenomena that need to be handled in the
microplanner’s output in order to provide appropriate input for the two realisers, and comment
upon the consequences this has for the microplanning process. These phenomena include the
following;:

e Rhetorical structures, e.g. contrast, concession, etc.

e Conjunctions of predicates and other constituents.

Distinguishing proper names from common noun phrases.

Creating new lexical items when required.

Working around gaps in grammatical coverage.

5.1 Mapping Rhetorical Structure into Sentence Plans

The first two input messages of Figure 2 specify temperature and rainfall properties of the
month in question, and the last message modifies the second by describing a dry spell over a
certain time range. If we realise the information in the first two messages as the sentence

6Making serious use of either of these systems enforces an initially steep learning curve upon any user. Both
surface realisation systems suffer from a lack of descriptive documentation on their respective grammars, the
existing documentation for these grammars being mainly example-based. This tends to make the construction
of inputs for the systems a predominantly trial-and-error based process.



June was warmer and wetter than average.

then the caveat that Message 3 represents is best expressed as a circumstantial adjunct to this
sentence, with the surface form

however there was a dry spell from the 27? to the 5t".

The two realisers use very different methods to express this type of adjunct. The KPML/NIGEL
system relates the adjunct to the matrix clause via the rhetorical construct rst-concessive,
where the top-level :domain keyword’s value is the matrix clause and the top-level :range
keyword’s value is the circumstantial adjunct (as in the SPL expression in Figure 4). The
FUF/SURGE system, on the other hand, represents such rhetorical constructs as circumstantial
adjuncts to the matrix clause: a top-level attribute circum (‘circumstantial’; in addition to
the proc = ‘process’ and partic = ‘participants’ attributes) has as its value the attribute
concession with the FD corresponding to the circumstantial adjunct as its value (see Figure 5).

5.2 Representing Conjoined Predicates in Sentence Plans

In combining Messages #1 and #2, the microplanner recognises that there is shared structure:
both messages compare a property of the month’s weather to the average for that month.

In the sPL expression of Figure 4, we use the top-level semantic type GREATER-THAN-
COMPARISON (as both the temperature and rainfall are greater than their respective averages),
and fold the warmness and wetness expressions into a conjunction which is the value of the
:range keyword, as below:

:range ((wa / sense-and-measure-quality :lex warm)
(we / sense-and-measure-quality :lex wet))

In the surge FD of Figure 5, the same information is expressed as a conjunction of adjective
phrases, with the slight difference from the KPML/NIGEL approach being that features common
to all conjuncts, such as (cat ap) and (comparative yes), may be extracted and listed once
only:

((cat ap)
(complex conjunction)
(common ((cat ap) (comparative yes)))
(distinct “(((lex "warm")) ((lex "wet")))))

5.3 Introducing Proper Names

We must specify in our inputs to both realisers that we require that the month be a proper
name (which implies that no determiner precede it). This is done in an SPL expression (see
Figure 4) with the :name June keyword-value pair, while in a SURGE FD (see Figure 5) we
explicitly specify the type of the noun with the sub-FD ((cat proper) (lex "June")).

With these decisions made, the sub-part of the SPL expression corresponding to the topic
becomes

:domain (m / one-or-two-d-time :name June)
and the corresponding sub-FD for SURGE becomes
(carrier ((cat proper) (lex "June")))

The distinction between these two approaches is that we must specify a semantic type for
‘June’ in the SPL expression, but a syntactic type in the SURGE FD.”

7Although we must also specify a syntactic type for ‘June’ in its lexical entry.



5.4 Adding New Lexical Items

The two realisers differ substantially in their approach to lexical items. The KPML/NIGEL
system requires an entry in the lexicon for all words traditionally considered content words,
and for some function words also. In addition, the lexical item is necessarily associated with
a semantic type in the SPL expression. The FUF/SURGE system, however, requires that we
explicitly include all lexical items in the SURGE FD for FUF to process, as this system does not
have a lexicon in the same sense as KPML.®

An example declaration of a lexical item for KPML/NIGEL is the following, for the sentence
topic:

(lexical-item :name June :spelling "June"
:features (noun countable ...))

5.5 Working Around Incomplete Grammatical Coverage

As Section 4.2 discusses, the coverage of the NIGEL and SURGE grammars is less than perfect,
the lack of expressibility of a time range exemplifying this.

An ideal surface realiser would facilitate grammatical coverage ‘workarounds’, by allowing
us to specify features within the sentence plan independent of the grammar associated with
the realiser. A few comments on how the KPML/NIGEL and FUF/SURGE systems deal with this
problem follow, but specific examples of grammatical coverage limitations are left to Section 5.

There are two mechanisms available to both realisers to facilitate working around grammat-
ical coverage limitations:

Generalised phrases: FUF/SURGE allows to specify phrases of a non-specific category and
a lex feature containing the desired phrase, while KPML/NIGEL allows phrasal lexical
entries, which however must be of a specific phrase type licensed by the NIGEL grammar.

Templates: If we combine the use of generalised phrases in FUF/SURGE with use of the pattern
attribute, we effectively have a template mechanism. In KPML/NIGEL, templates are
formalised in the SPL specification with a :template keyword.

The distinction between the FUF/SURGE approach and the KPML/NIGEL approach to partially
template-driven generation is that the former inserts general strings between typed constituents,
whereas the latter inserts typed constituents into positions in a general string.

6 Conclusion

Even a cursory inspection of the inputs required by the two systems makes it clear that they each
assume the inputs provided to be at different levels of abstraction. Our analysis of the example
presented in this paper, as well as others explored during this work, enables us to comment
rather more specifically on the practical effects of this difference. We can categorise the effects
in terms of what they mean for the microplanner in three domains: discourse structure, the
lexicon, and grammatical structure.

Discourse Structure: In our architecture, the document planner is responsible for deter-
mining which discourse relations hold between the elements that make up the text to
be generated. The microplanner is then concerned with how these structures correlate
with decisions about paragraph and sentence content. As we saw in Section 5.1, the
two systems require the microplanner to do quite different amounts of work. In the case
of KPML/NIGEL, the microplanner simply decides that some discourse relation will be
expressed within the bounds of a sentence, and leaves the realiser to determine how to

8The FUF system does however have some rudimentary morphological information, maintaining a list of
morphological variations of noun plurals and irregular verbs.

10



realise that discourse relation in terms of syntactic structure and lexical choice. In the
case of FUF/SURGE, the microplanner must do more work, and as we saw in the extended
example, must specify the particular syntactic constructs to be used to carry the ele-
ments related within the discourse structure. FUF/SURGE thus requires the microplanner
to have more knowledge of how to realise discourse relations than KPML/NIGEL appears
to require.

The Lexicon: The different approaches the realisers take to lexical representation we dis-
cussed in Section 5.4, noting that the main distinction between the two systems is that
KPML/NIGEL requires us to specify lexical items separately from the sentence plan. More
importantly, to facilitate KPML’s traversals through the NIGEL grammar, KPML requires
us to attach a semantic type to the lexical item in the sentence plan. This is a consequence
of the fact that, in this system, the lexicon is more closely related to the grammar than
it is in FUF/SURGE.

This difference in approaches to specifying lexical information is symptomatic of a more
general point: FUF/SURGE is a more self-contained system, while KPML/NIGEL allows
the user to connect lexical concepts to external knowledge sources such as the UPPER
MoDEL (Bateman et al., 1990), a linguistically-motivated ontology, so that and a lexicon.
The positive side of this requirement is that the information inherited from the UPPER
MoDEL and lexicon facilitates KPML’s traversals through the NIGEL grammar, so that we
need to specify less information in the input sentence plan.

Grammatical Structure: Section 5.5 discussed the methods each realiser uses to offset the
problem of imperfect grammatical coverage, Section 4.2 exemplifying this by illustrating
how we represented the concept of a time range with each realiser. Representing a start
and end time as a source and destination, respectively, is semantically inappropriate;
representing a start and end time as prepositional phrases, while making no concessions
to the semantic nature of the entities, is at least syntactically appropriate. This may be
preferable to using semantically inappropriate terms (or needing to update the grammar
before being able to generate surface text expressing time ranges).

Generalising across these three areas, it is clear that the more abstract semantically-oriented
input KPML/NIGEL requires implies that the microplanner has to do less work in building
sentence plans, whereas the more syntactically-oriented input required by FUF/SURGE implies
that the microplanner must know something about syntactic possibilities and must be able to
map elements of the document plan into these. This may seem like a distinct disadvantage
to using FUF/SURGE; on the other hand, using a higher level of abstraction for input means
that one has to be familiar with the vocabulary of that representation. This was perhaps most
obvious in our discussion of realising the temporal range construct in our target sentence: there,
a limitation in grammatical coverage meant that we had to subvert the proper use of semantic
constructs in KPML/NIGEL in order to achieve the results we required. Doing this, of course,
requires knowing what the syntactic effects of using those semantic constructs will be, whereas
in FUF/SURGE we can adopt a workaround which is more directly grammatical in nature.

In summary, both systems are excellent resources for anyone who needs to incorporate a sur-
face realiser into a natural language generation system. Both, however, suffer from limitations
in coverage which require the user to know something of their internal behaviour so as to be able
to develop workarounds. In the case of KPML/NIGEL, the more abstract nature of the input
representation appears to require a greater commitment to the underlying theory. Whether
this is acceptable depends largely on the nature of the host system: in many simpler generation
systems, there is already a tendency at the document planning and microplanning stages to talk
in terms of syntactically-motivated informational elements, so the abstractions made available
by KPML/SURGE may be unnecessary. In systems which reason in more conceptually-oriented
structures, however, the advantages that come from being able to utilise the Upper Model mean
that the microplanner needs to do less work than is needed to produce inputs appropriate for
FUF/SURGE.

11



References

Bateman, J. A. (1996). KPML Development Environment. Technical report,
IPSI, GMD, Darmstadt, Germany. Documentation on this system is at
http://www.stir.ac.uk/english/communication/Computational-tools/kpml.html.

Bateman, J. A., Kasper, R. T., Moore, J. D., and Whitney, R. A. (1990). A general organiza-
tion of knowledge for natural language processing: the PENMAN upper model. Technical report,
USC/Information Sciences Institute, Marina del Rey, California.

Bourbeau, L., Carcagno, D., Goldberg, E., Kittredge, T., and Polguere, A. (1990). Bilingual gener-
ation of weather forecasts in an operations environment. In 18th International Conference on
Computational Linguistics, COLING-90.

Elhadad, M. (1992). Using Argumentation to Control Lezical Choice: A Functional Unification Imple-
mentation. Ph.D. Dissertation, Graduate School of Arts and Sciences, Columbia University.
Elhadad, M. (1993). FUF: The Universal Unifier. The User Manual Version 5.2. Department of

Computer Science, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel.

Elhadad, M. and Robin, J. (1996). An overview of SURGE: a reusable comprehensive syntactic real-
ization component. In Demonstrations and Posters of the 8th International Workshop on Natural
Language Generation (INLG-96), pages 1-4, Herstmonceux, England.

Halliday, M. A. K. (1985). An Introduction to Functional Grammar. Edward Arnold, London.

Tordanskaja, L., Kim, M., Kittredge, R., Lavoie, B., and Polyguere, A. (1992). Generation of ex-
tended bilingual statistical reports. In 14th International Conference on Computational Linguis-
tics, COLING-92.

Kasper, R. T. (1989). A flexible interface for linking applications to Penman’s sentence generator. In
Proceedings of the DARPA Workshop on Speech and Natural Language, USC/Information Sciences
Institute, Marina del Rey, CA, USA.

Kay, M. (1979). Functional grammar. In Proceedings of the 5th meeting of the Berkeley Linguistics
Society, pages 142-158. Berkeley Linguistics Society.

Kukich, K. (1983). Knowledge-based report generation: A knowledge-engineering approach to natural
language report generation. Ph.D. Dissertation, University of Pittsburgh.

Kukich, K., McKeown, K., Morgan, N., Phillips, J., Shaw, J., and Lim, J. (1993). User needs and
analysis and design methodology for an automated documentation generator. In the Bellcore/BCC
Symposium on User-Centered Design: ’People and Technology’, Piscataway, N.J.

Mann, W. C. and Matthiessen, C. M. (1983). Nigel: A systemic grammar for text generation. Technical
Report ISI/RR-83-105, Information Sciences Institute. 4676 Admiralty Way, Marina del Rey,
California 90292-6695.

Mann, W. C. and Thompson, S. A. (1988). Rhetorical structure theory: Towards a functional theory
of text organization. Tezt, 8(3):243-281.

Maybury, M. T. (1995). Generating summaries from event data. Information Processing and Manage-
ment, 31(5).

Penman Natural Language Generation Group (1989). Penman Project. PENMAN documentation: The
Primer, the User Guide, the Reference Manual and the Nigel Manual. USC/Information Sciences
Institute, Marina del Rey, CA, USA.

Pollard, C. and Sag, I. A. (1994). Head-driven Phrase Structure Grammar. Studies in Contemporary
Linguistics (Ed. John Goldsmith, James D. McCawley and Jerrold M. Sadock). The University of
Chicago Press, Chicago and London.

Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1985). A comprehensive grammar of the English
language. Longman.

Robin, J. (1994). Rewvision-Based Generation of Natural Language Summaries Providing Historical
Background. Ph.D. Dissertation, Columbia University.

Rosner, D. (1987). The Automated News Agency: Semtex - A text generator for German. In Natu-
ral Language Generation: New Results in Artificial Intelligence, Psychology and Linguistics (G.
Kempen Ed.), pages 133-148. Martinus Nijhoff Publishers.

12



