Generating Natural Language Descriptions of
Project Plans

Margaret Wasko and Robert Dale

Language Technology Group
Division of Information and Communication Sciences
Macquarie University, Sydney, Nsw 2109
Australia
{mwasko|rdale}@ics.mq.edu.au

Abstract. We often resort to graphical means in order to describe non-
linear structures, such as task dependencies in project planning. There
are many contexts, however, where graphical means of presentation are
not appropriate, and delivery either via text or spoken language is to be
preferred. In this work, we take some first steps towards the development
of natural language generation techniques that seek the most appropriate
means of expressing non-linear structures using the linear medium of
language.

1 Introduction

Natural language generation—the use of natural language processing techniques
to create textual or spoken output from some underlying non-linguistic informa-
tion source—is an area of practical language technology that shows great poten-
tial. Various natural language generation (NLG) systems have been constructed
which produce textual output from underlying data sources of varying kinds: for
example, the FOG system [3] generates textual weather forecasts from numer-
ical weather simulations; IDAS [5] produces online hypertext help messages for
users of complex machinery, using information stored in a knowledge base that
describes this machinery; MODELEXPLAINER [4] generates textual descriptions
of information in models of object-oriented software; and PEBA [7] interactively
describes entities in a taxonomic knowledge base via the dynamic generation of
hypertext documents, presented as World Wide Web pages.

The present work represents the first steps in exploring how NLG techniques
can be used to present the information in complex, non-linear data structures.
In particular, we focus on project plans of the kind that might be constructed
in an application such as Microsoft Project. These software tools make it easy
to present the content of project plans via a number of graphical means, such
as PERT and Gantt charts. However, they do not provide any capability for
presenting the information in project plans via natural language. We pursue this
possibility for two reasons.

Firstly, we are interested in exploring the extent to which language can be
used to express complex non-linear structures. We might hypothesise that lan-
guage is not a good means for expressing this kind of information, since language

requires us to linearise the presentation of the material to be expressed. How-
ever, some recent work in NLG has explored the use of mixed mode output,
where graphics and text are combined; see, for example, [1]. A key question,
then, is how best to apportion material between the two modalities. We intend
to build on some of this recent research to see what kinds of information are best
conveyed using language, and what elements are best conveyed graphically. We
also aim to explore how sophisticated use of typography—indented structures,
graphs containing textual annotations, and so on—can overcome some of the
inherent limitations in purely ‘linear’ text.

Secondly, we are interested in determining the extent to which the informa-
tion in a project plan might be conveyed to a user via speech. Suppose a project
manager is driving to a meeting, and needs a report on the current status of some
project whose internal structure is complex. Assuming that we do not have so-
phisticated heads-up displays or other similar presentation technologies, there
is no possibility here that the information can be presented visually. In such a
context, speech is the most plausible medium for information delivery, and so
we are particularly interested in how the information available in a non-linear
structure can most effectively be presented in a linear speech stream. Similarly,
speech may be the delivery medium of choice for users who are vision-impaired.

In this paper, we present some first steps towards achieving these goals. Our
focus here is on a specific but particularly important sub-problem: how do we
produce descriptions of parallel structures in such a way as to avoid ambiguity in
interpretation? We have implemented a simple NLG system, PLANPRESENTER,
that takes project plan information as input, and produces from this informa-
tion a text that describes the dependencies between the project plan elements.
Section 2 presents an overview of the system, describing the key components. Sec-
tion 3 shows how PLANPRESENTER generates text from a simple input project
plan, and Section 4 shows how a more complex example is dealt with using our
intermediate level of representation to allow the required flexibility in the gen-
eration process. Section 5 summarises the state of the work so far and sketches
our next steps in this research.

2 System Overview

The system we describe here takes as its starting point earlier work described in
[6], but departs from the system described there by adopting more recent ideas
regarding the decomposition of the natural language generation process and the
intermediate levels of representation that are required, as described in [8]. The
input to our system is approximately equivalent to the information that can be
extracted from a combination of the interchange formats provided by Microsoft
Project, and which is likely to be available for any such project management tool.
More particularly, we assume that we will be provided with a set of constructs
corresponding to the basic undecomposable tasks in the plan—we will call these
ATOMIC ACTIONS—and a set of dependency links that indicate which tasks must
be completed before other tasks.

Buy the tickets

3 [ra
Find interested peaple Choose a movie Wed 6/30/2¢ Thu 7/1/99 Meet at the mesting Go into the cinema
place

1 [2d 2 3 [od
Mon E/28/9¢| Tue £/28/99 \Wed B0/ Wed 5308E ~— p[Arange a meeting place [Thu 74199 [Thu 77159 Thu 7189 _[Thu 7/1/89

4 [ra
WWed EEEI/BE‘Thu 7/1/99

Fig. 1. A project plan for going to see a movie

It is likely that most project management systems will also make available
information about other aspects of a project plan, such as the resources allocated
to specific tasks, and hard constraints over temporal attributes such as start
and end dates and task durations. In some contexts, we may also have access to
information regarding the hierarchical relationships between plan components.
We intend to make use of these elements of data as our work on project plan
description proceeds; at this early stage, however, our primary concern is the
linearisation of the information present in this essentially non-linear, networked
structure.

The PLANPRESENTER system consists of three principal components:

— an INFORMATION STRUCTURER, which reconstructs the given plan informa-
tion in a form more suited to textual description;

— a DESCRIPTION STRUCTURER, which assigns specific structural categories to
all components of the plan; and

— a SURFACE REALISER, which works out how to express the content of the
description structure linguistically.

The result is a set of English instructions instructions for performing that plan,
written in such a way as to avoid ambiguities of understanding when parallelism
occurs in the plan. The system is implemented in Prolog.

3 A Simple Worked Example

In this section we present a simple worked example that shows how PLANPRE-
SENTER generates a description of a project plan from a symbolic representation
of that plan.

3.1 The Project Plan

Figure 1 shows a PERT chart that indicates the relationships between a number
of tasks within a larger project. In the example here, each task includes a start
date, an end date and a duration; we will not make use of these for the moment,
restricting ourselves to the standard elements of the temporal dependencies be-
tween the tasks.

The project is for a group of people to go to see a movie at the cinema
together. The plan consists of six atomic actions, labelled here al through a6:

action(al, [find,peoplel]).
action(a2, [choose,moviel]).

Find interested people.
Decide what movie to see.

action(a3, [buy,ticketsi]). % Buy the tickets.
action(a4, [arrange,placel]). % Arrange the meeting place.
action(ab, [meet,placell). % Meet at arranged place.
action(a6, [enter,cinemal]). % Go into the cinema.
precedes(al, a2). precedes (a2, a3). precedes (a2, a4).
precedes (a3, ab). precedes (a4, ab). precedes(ab, a6).

Fig. 2. The input representation corresponding to the project plan shown in Figure 1

first, we have to find the group of people who are interested in going, then we
have to decide which movie to see, then we have to buy the tickets and arrange
where to meet, and then we have to meet and go into the cinema. Note in
particular that the actions of buying the tickets and of arranging a place to
meet beforehand can be carried out in any order, or even in parallel.

The temporal dependencies here are indicated in the PERT chart by means of
arrows. This information is presented to our system as a collection of symbolic
constructs as shown in Figure 2. Here, for each action we have some additional
information that will be used in describing this action: this is a pair of the form
{(ActionType, Entity), where the ActionType is drawn from an inventory of actions
that the system knows how to express linguistically, and the Entity is a symbol
that corresponds to some entity in the domain.! Given inputs of this kind, then,
our goal is to generate a coherent text describing the plan in question.

3.2 Producing an Output Text

The present example is a very simple case of plan description; however, it allows
us to demonstrate some of the essential elements of our method.

Building the Information Structure: First, we transform the given symbolic
structures into a representation more suited to textual description. The key
observation here is that language provides us with a variety of mechanisms for
indicating both sequence and parallelism, so we re-express the input information
in a form that highlights these relationships. Applying this process to the input
data shown in Figure 2 results in the following structure:2

! There are clearly issues of specific versus non-specific reference here which complicate
matters; however, our present focus is on describing the overall structure of a plan,
so we will sidestep for the moment many of the issues regarding the fine-grained
modelling of the entities that participate in the plan.

2 There exist plans whose structure does not readily map to the form described here.
Consider for example Figure 7 with an arrow added from action 8 to action 5.
Generating descriptions of plans such as these is a topic of future work.

sequence ([number_elements: 5],
[elements: [[1, atomic, all,
[2 ,atomic, a2],
[3, simple_branch, [number_elements: 2],
[elements: [[1, atomic, a3],
[2, atomic, a4]]1]1],
[4, atomic, a5],
[5, atomic, a6]1]1]).

Fig. 3. Representing sequence and simple parallelism

sequence([al, a2, parallel([a3, a4]), ab, a6]).

It is easy to see how, in general terms, such a structure might be mapped directly
into a text:

— given a sequence of elements as in this case, we might simply express each
element in the sequence by means of a sentence;

— if an element in the sequence is a parallel structure, then we might indicate
explicitly that all the actions in this structure can be carried out in parallel.

Such a simple mapping mechanism will not, however, produce appropriate results
in the case of more complex plans. In particular, if we have parallel structures
that contain embedded parallelism or other complexities, then a direct mapping
approach along the lines just sketched will result in unwieldy sentences.

Building the Initial Description Structure: In order to overcome this prob-
lem, instead of mapping the plan structure directly into text, we construct an in-
termediate representation which we call a DESCRIPTION STRUCTURE. This serves
as an updateable repository for all the information we might need in making de-
cisions as to how best to describe the plan. We can then perform reasoning
operations over this structure to determine the best output, before committing
ourselves to text. In the remainder of this section we show how the description
structure is constructed and used in the present example; in Section 4 we show
how this accommodates a more complex case of parallelism.

Figure 3 shows the initial description structure for our plan. Notice that here
we have made explicit a number of properties of our original plan structure:

— We have explicitly indicated how many elements are present at each level in
the plan structure.

— We have explicitly numbered each constituent element.

— We have explicitly indicated whether substructures in the plan are made up
of atomic actions or are more complex in nature, as in the simple_branch
element.

It is by virtue of this last step that our approach provides us with more so-
phisticated control over the description process. In essence, we identify different

kinds of structural patterns in plans, where these different patterns correspond
to different mechanisms for description. Thus, a simple branching structure is
one where the elements within the parallelism are themselves atomic actions.
Such a structure is amenable to the direct-mapping form of description sug-
gested informally above, but more complex structures will require the use of
more sophisticated linguistic mechanisms.

Determining Semantic Content: We now have to augment this description
structure with additional information about the actions to be described. This is
carried out as a sequence of two related processing steps. First, we incorporate
information about how the actions themselves are to be described. The Action-
Type in our input representation corresponds to the semantics of the predicate
that will be used to describe that action, and the Entity serves as the index of
the argument to the predicate. The next stage determines how the entities that
participate in the plan will be referred to. For our present purposes, we do not
make use of a sophisticated referring expression mechanism; essentially, we use
simple table lookup to determine how a given entity should be described in a
plan. At a later date we intend to incorporate more sophisticated algorithms
for the generation of referring expressions along the lines described in [2]. The
process of determining semantic content results in the output shown in Figure 4.

Applying Structure Realisation Strategies: Once we have determined the
relevant aspects of the description of each of the actions in the plan, we are in
a position to decide how to realise the overall description structure. We do this
by means of STRUCTURE REALISATION STRATEGIES, which can be summarised
in general terms as follows.?

— An action not immediately involved in a parallel description is described in
a separate sentence, with appropriate adjuncts.

— Actions involved in simple parallelism are combined in a single sentence.

— actions involved in more complex parallelism are described in terms of the
groupings assigned by the information structurer, with each group in a sep-
arate paragraph and signalled by appropriate adjuncts. See Section 4 for an
example. Parallelism that is more embedded is signalled by means of the
same strategy together with indentation.

The results of this process are shown in Figure 5. Here, we can see that the
structure realisation rules for atomic actions have determined various aspects of
the sentential forms to be used. By taking account of the number of the elements
in the sequence, appropriate adjuncts for first, then, and finally are added; an
alternative realisation rule might decide to use the adjuncts second, third and so
on instead of then. The realisation rules have also determined that the imperative
forms of the verbs should be used.

3 There are additional realisation strategies available, including textual ones such as
numbered lists, and the use of multiple modalities. These topics are a subject of
future work.

sequence ([number_elements: 5],
[elements: [[1, atomic,
[index: al,
predicate: [sem: find],
argument: [index: peoplel,
syn: [category: npl,
text: [some,interested,peoplel]]l],
[2, atomic,
[index: a2,
predicate: [sem: choose],
argument: [index: moviel,
syn: [category: mnpl,
text: [a,moviellll,
[3, simple_branch, [number_elements: 2],
[elements: [[1, atomic,
[index: a3,
predicate: [sem: buy],
argument: [index: ticketsl,
syn: [category: npl,
text: [the,tickets]]]],
[2, atomic,
[index: a4,
predicate: [sem: arrange],
argument: [index: placel,
syn: [category: np],
text: [a,meeting,placel]]]]]],
[4, atomic,
[index: a5,
predicate: [sem: meet],
argument: [index: placel,
syn: [category: np],
text: [the,meeting,placelll],
[5, atomic,
[index: a6,
predicate: [sem: enter],
argument: [index: cinemal,
syn: [category: npl,
text: [the,cinemall]l]]])

Fig. 4. Adding semantic content and referring expressions to the description structure

sequence ([number_elements: 5],
[elements: [[1, atomic,
[index: al,
syn: [category: s, pre_adjunct: [first,’,’]],
predicate: [sem: find,
syn: [category: v,
vform: imperativell,
argument: [index: peoplel,
syn: [category: npl,
text: [some,interested,peoplell]],
[2, atomic,
[index: a2,
syn: [category: s, pre_adjunct: [then,’,’]],
predicate: [sem: choose,
syn: [category: v,
vform: imperative]l,
argument: [index: moviel,
syn: [category: npl,
text: [a,movielll],
[3, simple_branch, [number_elements: 2],
[syn: [category: s],
pre_adjunct: [then,’,’],
conjunct: [and],
post_adj: [’,’,doing,these,in,any,order,you,like],
[elements: [[1, atomic,
[index: a3,
syn: [category: sl,
predicate: [sem: buy,
syn: [category: v,
vform: imperativell,
argument: [index: ticketsl,
syn: [category: npl,
text: [the,tickets]]]]

Fig. 5. The result of applying realisation strategies to the description structure

[paragraph(1, [sentence([first,’,’,find,some,interested,peoplel),
sentence([then,’,’,choose,a,movie]),
sentence([then,’,’ ,buy,the,tickets,and,arrange,

a,meeting,place,’,’,doing,these,in,

any,order,you,like]),
sentence([then,’,’ ,meet,at,the,meeting,placel]),
sentence([finally,’,’,go,into,the,cinema])])]

Fig. 6. The final set of sentence specifications

Surface Realisation Our description structure now contains enough informa-
tion to be able to determine the final lexical content of our plan description.
Information about the realisation of different verb forms is encoded in the sys-
tem lexicon by means of entries like the following:

lex([category: verb, sem: find, vform:imperative,lex:find]).
lex([category: verb, sem: find, vform:progressive,lex:finding]).

The result of incorporating this information is a final specification for the text
to be generated, as in Figure 6. These specifications are passed to a rendering
module which, at present, simply uppercases the first character of the first word
of each sentence and appends a full stop at the end of each sentence, and wraps
the entire paragraph within appropriate HTML tags:

<p>

First, find some interested people.

Then, choose a movie.

Then, buy the tickets and arrange a meeting place,
doing these in any order you like.

Then, meet at the meeting place.

Finally, go into the cinema.

<\p>

Clearly, some improvements to the overall fluency are possible here, in particular
with regard to the use of appropriate forms of subsequent. However, the key
element of the system’s behaviour we wish to focus on here is the use of the
intermediate level of representation—the description structure—in enabling us
to create textual realisations whose overall structure is coherent. In the next
section we look at how this is used in a more complex example.

4 Dealing with Embedded Parallelism

4.1 The Project Plan

Figure 7 shows a PERT chart of a section of a plan dealing with housework.
This part of the plan deals with cleaning the kitchen and dining area. After the
task of ensuring that one has the required equipment, the tasks involved follow
two main parallel branches. On one branch, we have the task of washing the
dishes, followed by cleaning the stove, followed by wiping the benches, followed
by mopping the kitchen floor. On the other branch we start with picking up
rubbish and dusting the furniture, related to each other in simple parallelism.
These two tasks are followed by vacuuming the floor, which is followed by taking
out the garbage.

This plan provides an example of a structure we call EMBEDDED PARAL-
LELISM: this occurs when the plan contains two or more collections of actions,
where the ordering between these collections of actions does not matter, and
where there is also parallelism within at least one of these collections of actions.

[Wash the dishes Clean the stove Wipe the benches Map the kitchen flaor

5 [0.2d i Jo1d 8 [0.05d El [0.1d
Tue 629193 [Tue 6/29/99 Tue 6/25/99 | Tue £/29/29 Tue 62993 [Tue 672299 [Tue 629193 | Tue 6/29/99

Ensure you have the Pick up rubbish
required equipment N
1 | ERE 2 | ERE
Tue 5/25/99 |Tue £/29/59 Tue 5/25/99 [Tue £/29/59 [Vacuurn the carpet [Take out the garbage

1 [o.2d 8 [0.05d
/Tue 6/29/99 |Tue 6/29/23 Tue 6:29/93 [Tue 672299
Dust the furniture

3 Jo1d

Tue 6/29/99 [Tue B/29/99

Fig. 7. A more complex plan fragment

The case shown here is also more complex than our first example above in that
the two top-level parallel structures each contain more than one action in a
sequence.

This plan information is provided to PLANPRESENTER in a form similar to
that shown for our earlier example.

4.2 Producing an Output Text
Given the above input, PLANPRESENTER produces the following output text:

First, ensure you have the required equipment. You are now ready for
two main parts of the cleaning, which may be done in any order, or
alongside each other.

The first part is as follows. First, pick up any rubbish and dust the
furniture, doing these in any order you like. Then, vacuum the carpet.
Finally, take out the garbage.

The second part is as follows. First, wash the dishes. Then, clean the
stove. Then, wipe the benches. Finally, mop the kitchen floor.

Note that the parallel relationships that exist in the plan are preserved in the
text.

As before, in order to generate this text we first construct an information
structure as follows:

sequence([al,parallel([sequence([parallel([a2,a3]) ,ad,ab]),
sequence([a6,a7,a8,a9]1)1)1) .

Figure 8 shows part of the description structure that is then constructed from
this representation. Note that this structure differs from our previous example
in that, in building the description structure, we have recognised the presence
of a COMPLEX BRANCH.

The realisation strategies then augment this structure with relevant syntactic
and semantic information as before; in this case, the presence of the complex
branch results in a realisation decision that the two parts of this branch should

sequence ([number_elements: 2],
[elements: [[1, atomic, all,
[2, complex_branch, [number_elements: 2],
[elements:
[[1, sequence, [number_elements: 3],
[elements: [[1, simple_branch, [number_elements: 2],
[elements: [[1, atomic, a2],
[2, atomic, a3]]1]]
[2, atomic, a4],
[3, atomic, a5]11]
[2, sequence, [number_elements: 4]
[elements: [[1, atomic, a6],
[2, atomic, a7],
[3, atomic, a8],

[4, atomic, a9]111111111)

Fig. 8. Representing sequence and embedded parallelism

be realised by means of separate paragraphs, and that the entire text should be
preceded by a sentence that indicates the overall structure of the plan.

Once complete, this description structure is then passed on to the surface re-
alisation component, which produces the output specification shown in Figure 9.

5 Conclusions and Next Steps

In this paper, we have presented a NLG system that addresses the problem of
generating English natural language descriptions of plans that contain non-linear
elements. As a first step in this exercise, we have focussed on the problem of how
to express parallelism at different levels of complexity. We have demonstrated
how the use of an intermediate representation that encodes information about
the overall structure of the plan can serve both as a updateable repository of
information regarding the text to be generated, and as a structure that supports
reasoning about the best ways to present that information. The resulting texts
present instructions for performing the input plans in a way that makes attempts
to remove potential ambiguities in the structures described.

So far we have only scratched the surface in this exploration of how to describe
non-linear structures. There are three major directions in which we intend to
extend the current work.

First, in many cases, a plan can be described hierarchically in terms of a
number of high-level actions, each of which can consist of other high-level actions
or atomic actions. We aim to incorporate this hierarchical information into our
descriptions.

A second avenue of development concerns the means of expression that are
available to PLANPRESENTER. So far we have only used simple typographic
mechanisms, such as paragraph structuring, to indicate the underlying structure

[paragraph(1, [sentence([first,ensure,you,have,the,required,equipment]),
sentence ([you,are,now,ready,for,two,main,parts,
of ,the,cleaning,which,may,be,done,in,
any,order,or,alongside,each,other])]),
paragraph(2, [sentence([the,first,part,is,as,follows]),
sentence ([first,pick,up,any,rubbish,and,dust,the,
furniture,doing,these,in,any,order,you,like]),
sentence ([then,vacuum,the,carpet]),
sentence ([finally,take,out,the,garbage])]),
paragraph(3, [sentence([the,second,part,is,as,follows]),
sentence([first,wash,the,dishes]),
sentence ([then,clean,the,stove]),
sentence ([then,wipe,the,benches]),
sentence ([finally,mop,the,kitchen,floor])])]

Fig. 9. The final set of sentence specifications

of the plan. We aim to extend the range of realisation strategies available to the
system so that more sophisticated outputs can be achieved.

Finally, so far we do not make use of a significant amount of other information
regarding durations and resources that is available to us; we intend to incorporate
this information to provide more complete descriptions of plans.

References

1. Elizabeth André and Thomas Rist. Generating coherent presentations employing

textual and visual material. Artifical Intelligence Review, 9:147-165, 1994.

2. Robert Dale. Generating Referring Expressions: Constructing Descriptions in a

Domain of Objects and Processes. MIT Press, Cambridge, MA, 1992.
3. Eli Goldberg, Norbert Driedger, and Richard Kittredge. Using natural-language
processing to produce weather forecasts. IEEE Ezpert, 9(2):45-53, 1994.

4. Benoit Lavoie, Owen Rambow, and Ehud Reiter. Customizable descriptions of

object-oriented models. In Proceedings of the Fifth Conference on Applied Natural-
Language Processing (ANLP-1997), pages 253-256, 1997.
5. John Levine, Alison Cawsey, Chris Mellish, Lawrence Poynter, Ehud Reiter, Paul
Tyson, and John Walker. IDAS: Combining hypertext and natural language gener-
ation. In Proceedings of the Third European Workshop on Natural Language Gen-
eration, pages 55—62, Innsbruck, Austria, 1991.
6. Chris Mellish and Roger Evans. Natural language generation from plans. Compu-
tational Linguistics, 15(4):233-249, 1989.
7. Maria Milosavljevic, Adrian Tulloch, and Robert Dale. Text generation in a dynamic
hypertext environment. In Proceedings of the 19th Australasian Computer Science
Conference, pages 417-426, Melbourne, Australia, 31 January—2 February 1996.
8. Ehud Reiter and Robert Dale. Building Natural Language Generation Systems.
Cambridge University Press, 2000.

