Information Extraction in the KELP Framework

Robert Dale, Marc Tilbrook

Centre for Language Technology
Macquarie University

E-mail {rdale|marct} @ics.mgq.edu.au

Cécile Paris

Intelligent Interactive Technology Research Group
CSIRO Mathematical and Information Sciences

Cecile. Paris@cmis. csiro. au

Abstract

In this paper, we describe some early steps in a new
approach to information extraction. The aim of the
KELP project is to combine a variety of natural lan-
guage processing techniques so that we can extract
useful elements of information from a collection of
documents and then re-present this information tai-
lored to the needs of a specific user. Our focus here
is on how we can build richly structured data ob-
jects by extracting information from web pages; as
an example, we describe the extraction of informa-
tion from web pages that describe laptop computers.
A principle goal of this work is the separation of
different components of the information extraction
task so as to increase portability.

Keywords Information extraction, natural lan-
guage generation, document personalisation.

1 Introduction

Information Extraction (IE [1]; the process
of identifying a pre-specified set of key data
elements from a free-text data source) is widely
recognised as one of the more successful spin-off
technologies to come from the field of natural
language processing. The DARPA-funded Message
Understanding Conferences resulted in a number
of systems that could extract from texts, with
reasonable results, specific information about
complex events such as terrorist incidents or
corporate takeovers. In each case, the task is
manageable because (a) some other means has
determined that the document being analysed
falls within the target domain, and (b) the key
information required is typically only a very small
subset of the content of the document. A major
component task is named entity recognition [3],
whereby people, places and organizations are

Proceedings of the 7th Australasian Document
Computing Symposium,
Sydney, Australia, December 16, 2002.

located and tracked in texts; other processing
can then take the results of this process to build
higher order data structures, establishing, for
example, who did what to who and when. In
this paper, we describe a new mechanism that
relies on a hand-constructed knowledge template,
along with a general inference mechanism we call
path merging, to reconcile and combine the
informational elements found in a text.

2 Background

The goal of the KELP' project is to develop technol-
ogy that can extract information from a collection
of web pages that describe similar things, and then
collate and re-present this information in such a
way as for a user to make it easy to compare those
things. Suppose you are interested in purchasing
a new cell phone: you could check out a consumer
magazine, or visit a web site that presents compar-
isons of the different available models, but those
sources are typically not up-to-date. You might
visit the manufacturers’ web pages to obtain in-
formation from the original sources, but this is a
painful, slow process, and comparison is hindered
by the different terminology each vendor uses; fur-
ther, all these sources provide information for a
‘typical’ visitor, rather than tailoring what they
present, to your particular needs and interests.

In KELP, we aim to build technology that can
mine the information from these source web pages,
and then, using techniques we have discussed else-
where (see [2]), re-present it in a form that is tai-
lored to needs and interests captured in a specific
user profile. Our initial experiments have been
in the context of web pages that describe laptop
computers. Based on an analysis of around 120 web

IkELP stands for Knowledge Extraction and Linguistic
Presentation, emphasising that the project is concerned
both with document analysis and document production
techniques. The KELP project is funded by CSIRO, whose
support we gratefully acknowledge.

<?xml version="1.0" 7>
<laptop_info>
<laptop_id>
<manufacturer>NEC</manufacturer>
<series>Versa</series>
<model>Premium PIII 1GHz</model>
</laptop_id>
<components>
<cpu>
<cpu_type>Pentium III</cpu_type>
<cpu_speed>
<number>1</number>
<unit>GHz</unit>
</cpu_speed>
</cpu>

</laptop_info>
Figure 1: A portion of a filled knowledge object

pages describing laptop computers, we developed a
template that captures the range of information we
might want to extract regarding a laptop computer,
and then set about developing techniques to extract
the relevant data from these web pages. Part of a
typical filled template, or, as we call these struc-
tures within KELP, a knowledge object or KO, is
shown in Figure 1. We have elided this structure to
make it fit the space available; it should be obvious
that the quantity and complexity of the data to be
extracted is significant.

3 Our Approach

Our starting point is a definition of a KO, as shown
in the previous section; defined in our current sys-
tem via an XML DTD, this is a hierarchical structure
that specifies the nature of the data to be extracted
from the source documents.

The simple key to our approach is to recognize
that fragments of the text can be correlated with
different parts of the KO structure. For example,
we know that the manufacturer will be a company
name; and we know that the hard disk capacity
will be measured in Mb or Gb. Thus, we can
assign type information to the leaf nodes in this
structure. At the same time, words in the text can
serve as indicators of particular attributes: so, if
a sentence contains the phrase remowvable storage,
we can use this to hypothesise the presence of a
particular attribute in the text. We think of each
such text fragment as a piece of evidence; faced
with evidence from the text of a collection of at-
tributes and values, the goal is then to combine
this information to populate a KO.

The architectural model we use thus consists
of the following components. An annotation re-
source file provides a correlation between between
arbitrarily complex textual patterns and the knowl-

edge object constituents for which these patterns
provide evidence.

A text scanner processes each input
document, searching for the patterns specified in
the annotation resource file. Each time a match
is found, this generates a hypothesis, in the form
of a path fragment associated with a piece of
text. The consequence of processing a document
is thus a collection of path fragments that capture
the evidence found in the document.

The path combiner then takes this set of path
fragments and attempts to put these together to
build a complete knowledge object. Path fragments
may contribute to multiple hypotheses about the
object being constructed, so the combiner uses the
target knowledge object template as a source of
constraints on what is possible.

In most situations, this will not produce a single
KO as a result; there will still be ambiguities result-
ing from textual fragments providing evidence for
more than one KO constituent. At this point, we
resort to a collection of inference strategies to
resolve the ambiguities.

Of course, if we had full broad-coverage natu-
ral language processing available, then this would
achieve the same result: we could just parse the
entire text, carry out semantic analysis, and build
a representation of the text. However, such an
approach is not feasible given the current state of
NLP technology, so our aim here is to build on
the simpler pattern-matching approaches found in
the IE literature, augmented with more sophisti-
cated higher-level processing. Our architectural
breakdown stratifies the knowledge used in a way
that supports easy maintenance and portability:
the annotation resource file is a relatively simple
declarative knowledge source developed anew for
each domain; the text scanner and path combiner
are generic components that do not embody any
domain-specific knowledge; and higher-level knowl-
edge of the domain is factored out into the KO
template and the inference strategies.

3.1 Paths

We can view a KO as a graph structure (and for
present purposes a tree) into which extracted in-
formation can be placed. The arcs between nodes
in this tree are labelled with the same names as the
element tags in the XML DTD; a path is a sequence
of arcs in the tree. Each attribute corresponds to
path from the root of tree, and each value is a
data element that resides at the end of that path.
Paths may share common initial subsequences: this
means that we use hierarchy in the tree to cluster
related pieces of information into subtrees.

We use the notation A:B:C to notate path frag-
ments. If a path is from the root of the tree, the
path contains an initial ‘:’; if the path has a value

at its end, then we use a terminal .’ to indicate
this. A path equation indicates the value at the
end of a path: for example

:laptop:iodevices:keyboard:numkeys: = 131

Each piece of evidence we find in a text can be
annotated with a path fragment: this fragment can
be of various kinds depending upon how strong the
evidence is. The example above is a complete
path fragment, where there is no doubt that a par-
ticular value is the value of a particular attribute.

A path fragment can be initial: this means that
we don’t have a complete path but we do have some
initial sequence of arcs in a path. So, the string on-
board memory might correspond to the following
annotation:

:laptop:memory:on-board

We don’t know at this point what aspect of the
on-board memory is being described.

A path fragment can be medial: this means
that we don’t have a complete path but we do have
the some sequence of arcs in the middle of a path.
So, a string like memory capacity (mazimum) may
correspond to main memory, graphics memory, or
perhaps some other kind of memory; this corre-
sponds to the following medial path fragment:

memory:maximum:bytesize

Finally, a path fragment can be final. This means
we have some sequence of arcs at the end of a path.
So, the string 2Gb corresponds to the following pair
of path fragments:

bytesize:unit: = Gb
bytesize:number: = 2

To operationalise these notions, the annotation re-
source file correlates arbitrarily complex textual
patterns with path fragments. These patterns are
then used by the text scanner to generate hypothe-
ses about the information in the text, expressed in
terms of the path fragments; the complete analysis
of a text thus results in a set of textual clues and
their corresponding hypothesised path fragments.

3.2 Path Merging

A KO consists of set of paths, and a fully instanti-
ated KO has a value for each path that makes up
the KO. We can characterise an instantiated Ko by
a set of path equations:

:laptop:model:manufacturer: = Dell
:laptop:model:series: = Inspiron

:laptop:iodevices:mouse:numbuttons: = 3

From a text, we derive a set of path fragments like
those shown in the previous section. Our goal is to
take this collection of path fragments and to derive
from them a set of path equations that define an
instantiated KO. Formally there are many combi-
nations of path fragments that we could entertain.?
A number of cases need to be considered.

First, we do not have to do anything to path
fragments which are complete; note, however, that
we do not want to just forget about these, since
their presence may rule out some other possible
combinations (in the example above, if we are
tempted to merge two path fragments that would
give us a different number of keys, then we have a
good reason for not doing this).

Second, two path fragments may share some
arcs: so, in the above, a possible combination re-
sults in

memory:maximum:bytesize:unit: = Gb

This is a possible combination but not a necessary
one: arc labels are not unique, so it’s possible that
this particular bytesize:unit fragment does not be-
long with the memory:maximum:bytesize fragment.

Third, from a formal point of view, any pair
of paths can be combined, with the exception that
an initial path can only appear at the front of a
combined path, and a terminal path can only ap-
pear at the end of a combined path. In such cases,
where there is no overlap, there is essentially miss-
ing material in the middle, which we indicate using
‘...". So, we might have a combined path that looks
something like the following’:

This is a case where we have some possible evi-
dence for a memory size but we don’t know if it
is the standard on-board memory, the expanded-
to-maximum memory size, or some other aspect of
memory size. Of course, not all formally possible
combined paths are actually possible. The KO defi-
nition provides a way of ruling out impossible path
combinations. Our technique for filtering the paths
is as follows.

First, we take the set of paths that constitute
a Ko, called the KO path set; this will look some-
thing like the following:

:laptop:model:manufacturer:
:laptop:model:series:

:laptop:iodevices:mouse:numbuttons:

Then, we take the set of path fragments derived
from the document. We first separate out the me-
dial paths and the complete paths, leaving the ini-
tial paths and final paths. We then produce all

2The ideas discussed here have been strongly influenced
by work in graph-based unification [4].

possible initial x final combinations, resulting in
what we call the IF path set. Each element of the
IF path set has the form

A:B:C:.... XY Z:

We then compare each element of the IF path set
against the KO path set. Any match of an 1F path
against the KO path set constitutes an instanti-
ation: it provides a possible substitution for the
‘..." part. Note that any IF path may result in
multiple instantiations. If an IF path results in no
instantiations, then it is not completable given the
KO definition, and can be discarded. The remaining
IF paths make up the filtered 1IF path set; and
each element of this set may correspond to multiple
instantiations. We notate instantiations as follows:

:A:B:C:[P:Q:R]:X:Y:Z:

This indicates that P:Q:R is a possible completion
derived from the KO path set. In effect, material
between square brackets is hypothesized on the ba-
sis of top-down knowledge; we have not extracted
direct evidence for it from the text.

Next we take the medial paths and see if they
support any of these instantiations by matching
them against the instantiations. Again, a medial
path may support multiple instantiations. A me-
dial path may actually overlap with the initial or
final path in an instantiation. By combining this
information, we produce a set of paths built from
the initial, medial and final path fragments in the
text, and filtered using the KO path set. We then
need to reduce the set of instantiations in the fil-
tered IMF path set so that we end up with a set
where each I, M or F element only plays a role
once. Some combinations of the contributing I, M
and F fragments are are more likely than others.
We therefore need to assess each combination, and
where there is a competing demand for a piece of
evidence, determine which of the alternative uses
of that evidence is most plausible.

3.3 Adding Reasoning

The set of hypotheses constructed so far uses a
combination of bottom-up knowledge from the tex-
tual source itself, and top-down knowledge from the
KO. This does not necessarily result in a completely
instantiated KO, and so we need to add heuris-
tics that allow us to choose between competing
hypotheses.

Note that the architectural separation we have
adopted allows the incorporation at this stage of
arbitrary intelligence to the process, thus focussing
the knowledge-based processing in one place; here,
we describe the incorporation of a simple heuristic
based on a distance metric.

Ultimately, where we have competing instanti-
ations, we can assign probabilities to each. One

simple probability measure is based on the distance
between the initial path fragment (which generally
corresponds to the attribute being considered) and
the final path fragment (which corresponds to the
value being assigned to that attribute): we can
assign scores so that those instantiations that have
closer I and F evidence will score higher. Then,
we select from this set a smaller set of paths that
(a) uses each piece of evidence only once and (b)
takes account of the scores. The result is a set of
hypotheses that populate the KO using all the data
located in the source document, with each piece of
evidence being used once.

This is, of course, a very simple technique, but
one that seems to work well on the basis of our ini-
tial experiments, at least for information extracted
from free-form text. Far more elaborate heuristics
could be incorporated in the same way.

4 Conclusions

We have presented an approach to information

extraction that separates out the different
knowledge sources and types of knowledge
required. The approach makes use of both

top-down and bottom-up knowledge sources,
and neatly partitions domain-specific and
domain-independent processing: we believe
the mechanisms described here should be easily
portable to a new domain by constructing a
knowledge object template for that domain, and
an appropriate annotation resource file. The
text scanner and path combining modules are
domain independent, as are the current inference
strategies; as the work develops, we would expect
the inference strategies to break down into those
which are domain-dependent and those which are
domain-independent.

References

[1] J. Cowie and W. Lehnert. Information extrac-
tion. Communications of the ACM, Volume 39,
Number 1, pages 80-91, 1996.

[2] R Dale, S J Green, M Milosavljevic, C Paris,
C Verspoor and S Williams. Using natural
language generation techniques to produce vir-
tual documents. In Proceedings of the Third

Australian Document Computing Symposium
(ADCS’98), Sydney, Australia, August 21 1998.

[3] Andrei Mikheev, Claire Grover and Marc
Moens. XML tools and architecture for named
entity recognition. Markup Languages, Vol-
ume 1, Number 3, pages 89—-113, 1999.

[4] S. Shieber. An Introduction to Unification-
Based Approaches to Grammar. CSLI Lec-
ture Notes. Chicago University Press, Chicago,
1986.

