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Abstract. In this paper, we describe a new approach to information ex-
traction that neatly integrates top-down hypothesis driven information
with bottom-up data driven information. The aim of the KELP project is
to combine a variety of natural language processing techniques so that we
can extract useful elements of information from a collection of documents
and then re-present this information in a manner that is tailored to the
needs of a specific user. Our focus here is on how we can build richly
structured data objects by extracting information from web pages; as
an example, we describe our methods in the context of extracting infor-
mation from web pages that describe laptop computers. Our approach,
which we call path-merging, involves using relatively simple techniques
for identifying what are normally referred to as named entities, then al-
lowing more sophisticated and intelligent techniques to combine these
elements of information: effectively, we view the text as providing a col-
lection of jigsaw-piece-like elements of information which then have to
be combined to produce a representation of the useful content of the
document. A principle goal of this work is the separation of different
components of the information extraction task so as to increase porta-
bility.

Keywords: Natural language understanding, natural language genera-
tion

1 Introduction

Information Extraction (IE [1-3]; the process of identifying a pre-specified set
of key data elements from a free-text data source) is widely recognised as one
of the more successful spin-off technologies to come from the field of natural
language processing. The DARPA-funded Message Understanding Conferences
(see, for example, [4]) resulted in a number of systems that could extract from
texts, with reasonable results, specific information about complex events such as
terrorist incidents or corporate takeovers. In each case, the task is manageable
because (a) some other means has determined that the document being analysed
falls within the target domain, and (b) the key information required is typically
only a very small subset of the content of the document. A major component task
is named entity recognition [5,6], whereby people, places and organizations
are located and tracked in texts; other processing can then take the results of



San Salvador, 19 Apr 89 (ACAN-EFE)
Salvadoran President-elect Alfredo Cristiani condemned the terrorist killing of Attor-
ney General Roberto Garcia Alvarado and accused the Farabundo Marti National
Liberation Front (FMLN) of the crime.

Garcia Alvarado, 56, was killed when a bomb placed by urban guerrillas on his vehicle
exploded as it came to a halt at an intersection in downtown San Salvador.

Vice President-elect Francisco Merino said that when the attorney general’s car stopped
at a light on a street in downtown San Salvador, an individual placed a bomb on the
roof of the armored vehicle.

Fig. 1. A typical text used in information extraction

this process to build higher order data structures, establishing, for example, who
did what to who and when.

The domain-dependency that is typical of IE systems means that the cost
of porting a system to a new domain can be high. As a result, in recent years
there has been a move towards IE based on statistical techniques and machine
learning, and these have been quite successful for the lower level tasks of named
entity identification (see, for example, [7]). However, the larger scale knowledge
integration tasks involved in IE are often better served by more traditional,
knowledge-based approaches. In this paper we present a framework for infor-
mation extraction that focuses on these higher-level processes. Particularly in
cases where the knowledge to be extracted is complex in structure, statistical
approaches can only solve part of the problem; informational elements, once ex-
tracted, have somehow to be built into a larger whole. We describe a new mecha-
nism that relies on a hand-constructed knowledge template, along with a general
inference mechanism we call path merging, to reconcile and combine the infor-
mational elements found in a text. The template provides top-down hypotheses
as to the information we might find in a text; the named entities identified in
the text provide bottom-up data that is merged with these hypotheses.

2 Background

A key aspect of any information extraction task is that only a small portion of
the information available in a text is important. Figure 1 shows fragments of
an input text in the terrorist incident domain; Table 1 shows the data structure
that might be constructed as a result of analysing this document: The general
approach taken in these systems is that we first identify the named entities
and then work out the relations between them. Even for relatively flat output
structures such as the one shown here, domain-specific hand-crafted rules of
considerable complexity are required to build the templates.



Incident: Date 19 Apr 89

Incident: Location El Salvador: San Salvador (CITY)
Incident: Type Bombing

Perpetrator: Individual ID  [urban guerrillas

Perpetrator: Organization ID|FMLN

Perpetrator: Confidence Suspected or Accused by Authorities: FMLN
Physical Target: Description |vehicle

Physical Target: Effect Some Damage: vehicle

Human Target: Name Roberto Garcia Alvarado

Human Target: Description |attorney general: Roberto Garcia Alvarado
Human Target: Effect Death: Roberto Garcia Alvarado

Table 1. The extracted results from the text in Figure 1

The goal of the KELP? project is to develop technology that can extract
information from a collection of web pages that describe similar things, and
then collate and re-present this information in such a way as for a user to make
it easy to compare those things. Suppose you are interested in purchasing a
new cell phone: you could check out a consumer magazine, or visit a web site
that presents comparisons of the different available models, but those sources are
typically not up-to-date. You might visit the manufacturers’ web pages to obtain
information from the original sources, but this is a painful, slow process, and
comparison is hindered by the different terminology each vendor uses; further,
all these sources provide information for an ‘average’ visitor, rather than tailoring
what they present to your particular needs and interests.

In KELP, we aim to build technology that can mine the information from
these source web pages, and then, using techniques we have discussed elsewhere
(see, for example, [8,9]), re-present it in a form that is tailored to needs and
interests captured in a specific user profile.

Our initial experiments have been in the context of web pages that describe
laptop computers. Based on an analysis of around 120 web pages describing lap-
top computers, we developed a template that captures the range of information
we might want to extract regarding a laptop computer, and then set about de-
veloping techniques to extract the relevant data from these web pages. Part of a
typical filled template, or, as we call these structures within KELP, a knowledge
object or KO, is shown in Figure 2. We have elided this structure to make it
fit the space available; it should be obvious that the quantity and complexity of
the data to be extracted is significant.

In our initial experiments, we focussed our attention on the information en-
coded in tables on web pages: for complex products such as laptop computers,
this is a typical means of information provision, although it should not be for-
gotten that there is also a considerable amount of useful content presented in

3 KELP stands for Knowledge Extraction and Linguistic Presentation, emphasising that
the project is concerned both with natural language analysis and natural language
generation techniques.



<?7xml version="1.0" 7>
<laptop_info>
<laptop_id>
<manufacturer>NEC</manufacturer>
<series>Versa</series>
<model>Premium PIII 1GHz</model>
</laptop_id>
<components>
<cpu>
<cpu_type>Pentium III</cpu_type>
<cpu_speed>
<number>1</number>
<unit>GHz</unit>
</cpu_speed>
</cpu>
<memory>
<installed_memory>
<number>128</number>
<unit>MB</unit>
</installed_memory>
<maximum_memory>
<number>512</number>
<unit>MB</unit>
</maximum_memory>
</memory>
<storage>
<hard_drive>
<number>20</number>
<unit>GB</unit>
</hard_drive>
<removable>
<cd_drive>24x</cd_drive>
</removable>
</storage>

</laptop_info>

Fig. 2. A portion of a filled knowledge object



free-form text. We started out by giving our information extraction module clues
as to the locations of information-bearing tables, so that, typically, the informa-
tion extractor had to first work out whether the cells of the table contained
object names (for example, Versa Premium), attributes (installed memory), or
values (256Mb), and then combine these components to produce the resulting
KO. This approach worked reasonably well, largely because of the predictable
layout of information within tables. However, it turns out that tables are used
for many general-purpose formatting tasks on the web, and so identifying the
information-bearing table in the first place is far from trivial.

3 Owur Approach

In part to overcome some of the problems in locating the important tabular
information, and also to enable the processing of free-form text, we decided to
explore techniques that were capable of using information regardless of where in
a document it is found.

Our starting point is a definition of a KO, as shown in the previous section;
defined in our current system via an XML DTD, this is a hierarchical structure
that specifies the nature of the data to be extracted from the source documents.

The simple key to our approach is to recognize that fragments of the text
can be correlated with different parts of the KO structure. For example, we know
that the manufacturer will be a company name; and we know that the hard disk
capacity will be measured in Mb or Gb. Thus, we can assign type information
to the leaf nodes in this structure. At the same time, words in the text can serve
as indicators of particular attributes: so, for example, if a sentence contains
the phrase remowvable storage, we can use this to hypothesise the presence of a
particular attribute in the text. We think of each such text fragment as a piece
of evidence; faced with evidence from the text of a collection of attributes and
values, the goal is then to combine this information to populate a KO.

The architectural model we use thus consists of the following components.

— An annotation resource file provides a correlation between between arbi-
trarily complex textual patterns and the knowledge object constituents for
which these patterns provide evidence.

— A text scannner processes each input document, searching for the patterns
specified in the annotation resource file. Each time a match is found, this
generates a hypothesis, in the form of a path fragment associated with a
piece of text. The consequence of processing a document is thus a collection
of path fragments that capture the evidence found in the document.

— The path combiner then takes this set of path fragments and attempts
to put these together to build a complete knowledge object. Path fragments
may contribute to multiple hypotheses about the object being constructed,
so the combiner uses the target knowledge object template as a source of
constraints on what is possible.

— In most situations, this will not produce a single KO as a result; there will
still be ambiguities resulting from textual fragments providing evidence for



more than one KO constituent. At this point, we resort to a collection of
inference strategies to resolve the ambiguities.

Of course, if we had full broad-coverage natural language processing available,
then this would achieve the same result: we could just parse the entire text,
carry out semantic analysis, and build a representation of the text. However,
such an approach is not feasible given the current state of NLP technology, so
our aim here is to build on the simpler pattern-matching approaches found in the
IE literature, but to augment this with the scope for more sophisticated higher-
level processing. The architectural breakdown we adopt stratifies the knowledge
used in a way that supports easy maintenance and portability: the annotation
resource file is a relatively simple declarative knowledge source developed anew
for each domain; the text scanner and path combiner are generic components
that do not embody any domain-specific knowledge; and higher-level knowledge
of the domain is factored out into the KO template and the inference strategies.

Section 3.1 below explains in more detail the nature and role of paths and
path equations; and Section 3.2 shows how path-merging is carried out. Sec-
tion 3.3 explains how arbitrary inference can be incorporated into this process.

3.1 Paths

We can view a KO as a graph structure (and for present purposes a tree) into
which extracted information can be placed. The arcs between nodes in this tree
are labelled with the same names as the element tags in the XML DTD; a path is
a sequence of arcs in the tree. Each attribute corresponds to path from the root
of tree, and each value is a data element that resides at the end of that path.
Paths may share common initial subsequences: this means that we use hierarchy
in the tree to cluster related pieces of information into subtrees.

We use the notation A:B:C to notate path fragments; if a path is from the
root of the tree, the path contains an initial “:’; as in :A:B:C. If the path has a
value at its end, then we use a terminal “:’ in the path to indicate this, as in
A:B:C:. A path equation indicates the value at the end of a path: for example

:laptop:iodevices:keyboard:numkeys: = 131

Each piece of evidence we find in a text can be annotated with a path fragment:
this fragment can be of various kinds depending upon how strong the evidence
is.

Complete Paths A path fragment can be complete, in which case there is
no doubt that a particular value is the value of a particular attribute. So, for
example, if we find the string US keyboard in the text, we might take this to be
conclusive evidence for the following path equation:

:laptop:iodevices:keyboard:type: = US



Initial Path Fragments A path fragment can be initial: this means that
we don’t have a complete path but we do have some initial sequence of arcs
in a path. So, for example, if we find the string on-board memory, this might
correspond to the following annotation:

:laptop:memory:on-board

We don’t know at this point what aspect of the on-board memory is being
described; it might be size or speed, for example.

Medial Path Fragments A path fragment can be medial: this means that
we don’t have a complete path but we do have the some sequence of arcs in the
middle of a path. So, for example, if we find a string like memory capacity (maz-
imum), we do not know if this corresponds to main memory, graphics memory,
or perhaps some other kind of memory. This corresponds to the following path
fragment:

memory:maximum:bytesize

Final Path Fragments Finally, a path fragment can be final. This means we
have some sequence of arcs at the end of a path. So, a string like 2Gb corresponds
to the following pair of path fragments:

bytesize:unit: = Gb
bytesize:number: = 2

To operationalise these notions, the annotation resource file correlates arbi-
trarily complex textual patterns with path fragments. These patterns are then
used by the text scanner to generate hypotheses about the information in the
text, expressed in terms of the path fragments; the complete analysis of a text
thus results in a set of textual clues and their corresponding hypothesised path
fragments.

3.2 Path Merging

A KO consists of set of paths, and a fully instantiated KO has a value for each
path that makes up the KO. We can characterise an instantiated KO by a set of
path equations:

:laptop:model:manufacturer: = Dell

:laptop:model:series: = Inspiron

:laptop:iodevices:mouse:type: = optical
:laptop:iodevices:mouse:numbuttons: = 3

From a text, we derive a set of path fragments. From the examples in Section 3.1
above, we would have the following set of path fragments:



:laptop:iodevices:keyboard:type: = US
:laptop:memory:on-board
memory:maximum:bytesize
bytesize:unit: = Gb

bytesize:number: = 2

Our goal is therefore to take this collection of path fragments and to derive from
them a set of path equations that define an instantiated KO.

Formally there are many combinations of path fragments that we could en-
tertain. A number of cases need to be considered.

First, we do not have to do anything to path fragments which are complete;
note, however, that we do not want to just forget about these, since their presence
may rule out some other possible combinations (in the example above, if we are
tempted to merge two path fragments that would give us a different keyboard
type, then we have a good reason for not doing this).

Second, two path fragments may share some arcs: so, for example, in the
above, a possible combination results in

memory:maximum:bytesize:unit: = Gb

This is a possible combination but not a necessary one: since arc labels are not
unique, it’s possible that this particular bytesize:unit fragment does not belong
with the memory:maximum:bytesize fragment.

Third, from a formal point of view, any pair of paths can be combined, with
the exception that an initial path can only appear at the front of a combined
path, and a terminal path can only appear at the end of a combined path. In
such cases, where there is no overlap, there is essentially missing material in the
middle. We indicate missing material using ‘...”. So, we might have a combined
path that looks something like the following’:

This is a case where we have some possible evidence for a memory size but we
don’t know if it is the standard on-board memory, the expanded-to-maximum
memory size, or some other aspect of memory size. > Of course, not all formally
possible combined paths are actually possible. The KO definition provides a way
of ruling out impossible path combinations. Our technique for filtering the paths
is as follows.

First, we take the set of paths that constitute a KO, called the KO path set;
this will look something like the following:

4 The ideas discussed here have been strongly influenced by work in graph-based
unification [10], although we do not currently make use of a unification engine in our
approach.

5 Note that the presence of medial paths makes the situation more difficult than it
would otherwise be; rather than just pairs of fragments being combined, in principle
any number of medial path fragments can be placed between pairs of initial and final
paths.



:laptop:model:manufacturer:
:laptop:model:series:

:laptop:iodevices:mouse:type:
:laptop:iodevices:mouse:numbuttons:

Then, we take the set of path fragments derived from the document. We first
separate out the medial paths and the complete paths, leaving the initial paths
and final paths. We then produce all possible initial x final combinations, re-
sulting in what we call the IF path set. Each element of the IF path set has the
form

A:B:C:.... XY Z:

We then compare each element of the IF path set against the KO path set. Any
match of an IF path against the KO path set constitutes an instantiation: it
provides a possible substitution for the ‘...” part. Note that any IF path may result
in multiple instantiations. If an IF path results in no instantiations, then it is
not completable given the KO definition, and can be discarded. The remaining
IF paths make up the filtered IF path set; and each element of this set may
correspond to multiple instantiations. We notate instantiations as follows:

:A:B:C:[P:Q:R]:X:Y:Z:

This indicates that P:Q:R is a possible completion derived from the KO path
set. In effect, material between square brackets is hypothesized on the basis of
top-down knowledge; we have not extracted direct evidence for it from the text.

Next we take the medial paths and see if they support any of these instanti-
ations by matching them against the instantiations. Again, a medial path may
support multiple instantiations. Note that a medial path may actually overlap
with the initial or final path in an instantiation.

In the abstracted example used here, suppose we have the following medial
fragments available: Q, P:Q, P:Q:R, C:P, and R:X. When a medial path matches
one of our instantiations, we notate this by moving the square brackets, echoing
the idea that the square brackets indicate material for which we have no direct
evidence, and each medial path adds some evidence. The effect of this process is
shown by means of the instantiation equations in Figure 3. The results here
correspond to a filtered IMF path set: a set of paths built from the initial,
medial and final path fragments in the text, and filtered using the KO path set.
Note that any given initial, final or medial path fragment may figure in more than
one element of the filtered IMF path set, which is to say that it can contribute
evidence to more than one instantiation.

For our present purposes, we make the assumption that each path fragment
derived from the text should only actually contribute to one instantiated path.6

6 This is an important assumption to make processing more straightforward, but note
that it may not actually hold: in an expression like the main processor and the co-
processor both have 512Mb of dedicated RAM, the 512Mb of dedicated RAM actually
contributes to two instantiated paths.



A:B:C:[P:Q:R]:X:Y:Z: + Q = :A:B:C:[P]:Q:[R]:X:Y:Z:
A:B:C:[P:Q:R]:X:Y:Z: + P:Q = :A:B:C:P:Q:[R]:X:Y:Z:
A:B:C:[P:Q:R]:X:Y:Z: + P:Q:R = :A:B:C:P:Q:R:X:Y:Z:
A:B:C:[P:Q:R]:X:Y:Z: + C:P = :A:B:C:P:[Q:R]:X:Y:Z:
A:B:C:[P:Q:R]:X:Y:Z: + R:X = :A:B:C:[P:Q]:R:X:Y:Z:

Fig. 3. Instantiation Equations

We want to now reduce the set of instantiations in the filtered IMF path set so
that we end up with a set where each I, M or F element only plays a role once.
Each path in the filtered IMF path set can be thought of as being a combination
of its contributing I, M and F fragments; some combinations are more likely
than others. We therefore need to assess each combination, and where there is
a competing demand for a piece of evidence, determine which of the alternative
uses of that evidence is most likely.

3.3 Adding Reasoning

So far we have constructed a set of hypotheses regarding the information con-
tained in a text using a combination of bottom-up knowledge from the textual
source itself, and top-down knowledge from the KO. As we have seen above, this
does not necessarily result in a completely instantiated KO, and so we may need
to add to this process heuristics that allow us to choose between competing
hypotheses.

In our present work, we have only begun to explore how this might be ap-
proached. Note that the architectural separation we have adopted allows the in-
corporation at this stage of arbitrary intelligence to the process, thus focussing
the knowledge-based processing in one place; here, we describe the incorporation
of a simple heuristic based on a distance metric.

Ultimately, where we have competing instantiations, we can assign probabil-
ities to each. One simple probability measure is based on the distance between
the initial path fragment (which generally corresponds to the attribute being
considered) and the final path fragment (which corresponds to the value being
assigned to that attribute): we can assign scores so that those instantiations that
have closer I and F evidence will score higher. Then, we select from this set a
smaller set of paths that (a) uses each piece of evidence only once and (b) takes
account of the scores. The result is a set of hypotheses that populate the KO
using all the data located in the source document, with each piece of evidence
being used once.

This is, of course, a very simple technique, but one that seems to work well
on the basis of our initial experiments, at least for information extracted from
free-form text. Far more elaborate heuristics could be incorporated in the same
way; a key future target for us here is to incorporate heuristics that take account



of table layout information in order to determine the appropriate correlation of
table row and column headers.

4 Conclusions

We have presented an approach to information extraction that separates out
the different knowledge sources and types of knowledge required. The approach
makes use of both top-down and bottom-up knowledge sources, and neatly par-
titions domain-specific and domain-independent processing: although we have
not yet attempted this, we believe the mechanisms described here should be
easily portable to a new domain by constructing a knowledge object template
for that domain, and an appropriate annotation resource file. The text scan-
ner and path combining modules are domain independent, as are the current
inference strategies; as the work develops, we would expect the inference strate-
gies to break down into those which are domain-dependent and those which are
domain-independent.
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