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Abstract

This paper targets the content selection prob-
lem in generating appropriate information in
the domain of in-car navigation. It describes an
algorithm that models driver’s knowledge about
roads and routes and uses this knowledge to tai-
lor turn-by-turn instructions from a commercial
routing service to those more suitable to the in-
dividual driver’s background. This content se-
lection component is one part of a domain inde-
pendent generation system of a general purpose
dialogue system toolkit. We claim that this type
of adaptive generation facilitates more efficient
and driver friendly navigation.

1 Background

With an increasing number of new devices find-
ing their way into the car to address people’s
needs for communication, entertainment and
telematics services, we need to ensure that these
devices can be operated without increasing the
risk of traffic accidents. Driving is an “eyes
busy, hands busy” activity, and so spoken lan-
guage is an obvious choice for interaction. At
the same time, we cannot expect users to learn
and remember complicated sets of commands,
and so rather than rely on device-specific sets
of keywords, we would like to ensure that the
interface to these devices is via a relatively nat-
ural dialogue.

Our interest is in the design and development
of a natural language dialogue interface for op-
erating in-car devices and services that imposes
the minimum cognitive load on the driver. We
aim to do this by understanding the driver’s re-
quests and producing responses based on the
driver’s knowledge, the conversational context,
and the external situation. We believe that
highly interactive, robust and situation-aware
dialogue enhances usability and safety by reduc-
ing cognitive load in the driving situation. The
system we are developing is intended to allow
the driver to operate in-car equipment, as well

as allowing him or her to obtain navigation in-
formation (e.g., turn-by-turn instructions), and
information about local facilities.

This paper focuses on the generation of navi-
gation instructions. In general, we consider two
decision processes particularly important in the
driving domain:

• What to say: the system should generate
instructions and related information nec-
essary for the success of the navigation
task, providing reaffirmation and necessary
grounding, customized as appropriate for
the current driver.

• When to say it: the system should gener-
ate appropriate navigation information at
the right time, being cognizant of the po-
tentially stressful situations such as missed
turns and driving situations requiring high
attentiveness, so that output that is not im-
mediately critical is delayed.

These requirements demand an adaptive gen-
eration process, where the dialogue system tai-
lors its output on the basis of characteristics of
both the driver and the situation.

Most existing route description generation
systems produce generic or at best stereotypical
navigation information that only accounts for
limited driver specific characteristics. (Höök,
1991) surveys the literature on driver model-
ing and concludes that an explicit user model
is needed. She distinguishes three user pro-
totypes corresponding to tourist, resident and
commuter navigators: routes are chunked and
presented in different ways to these user groups.
(Pattabhiraman and Cercone, 1990) discusses
the importance of salience and relevance in the
content selection stage of route description gen-
eration; however, their notion of relevance is
pertinent to the communicative goals of the gen-
erator rather than those of the user. (Fraczak et



al., 1998) distinguishes between known and un-
known information, and suggests that the prob-
lem concerning known information is that of de-
termining whether or not to make it explicit;
however, their approach only deals with un-
known information. Coral (Dale et al., 2003)
aims at producing natural route descriptions us-
ing general purpose generation techniques. It
features a typical generation architecture but
emphasizes the role of the micro-planning level
in reproducing route descriptions that are lin-
guistically similar to those produced by humans.
The system takes GIS data input, segments this
to produce a hierarchical structure, and then
uses aggregation and referring expression gener-
ation techniques to merge the data into coherent
multiclausal sentences.

In the present paper, we focus on the “what
to say” decision, especially the selection of navi-
gation information to be presented to the driver,
using a model of the driver’s route knowledge.
This content selection process is one component
of a domain independent natural language gen-
eration system, currently under development
as part of a dialogue system toolkit. While
the dialogue system has previously been ap-
plied to multiple applications (Lemon et al.,
2002), the in-car domain raises specific issues
for generation, such as situation awareness, user
adaptibility, incremental generation, conversa-
tion resumption, and time-sensitive generation.

The “when to say it” decision requires a
model of the user’s cognitive load. This might
be estimated from a variety of sources, includ-
ing instrumentation (e.g. sensors) and human
factors (e.g. characteristics of speech (Muller et
al., 2001)); developing a solution here remains
a topic for future work.

This paper begins by motivating content-
based user modeling for in-car applications in
Section 2. We then describe how we represent
the driver’s route knowledge and use this knowl-
edge for selecting driving instructions in Sec-
tion 3. We also give a brief description of the
general purpose NLG system that we are devel-
oping in Section 4.

2 User Modeling for Content
Selection

Two main user modeling techniques have been
used to adapt the behavior of systems in con-
texts such as user-specific webpage recommen-
dation (Zukerman and Albrecht, 2001):

• Content-based modeling assumes that users
exhibit particular behaviors under given
circumstances, and that this behavior is re-
peated under similar circumstances. This
is most useful when a user’s past behavior
is a reliable indicator of future behavior.

• Collaborative modeling assumes that peo-
ple with related characteristics tend to
behave similarly under the same circum-
stances. This is most useful when a user’s
behavior is similar to that of other (like-
minded) users.

Existing generation components of dialogue
systems have previously used collaborative
modeling to predict a user behavior based on
those exhibited by the group to which the user
belongs. (Zukerman and Litman, 2001) identi-
fies a number of user features often considered
in the content planning module of existing NLG
systems, including expertise or interests, prefer-
ences, user prototypes, and emotional state.

While it is easier to collect data from a large
number of people, individual variations often
reduce the predictability of the collaborative
approach. In contrast, the content-based ap-
proach is more accurate for modeling individual
user behaviors, but the lack of sufficient training
data often affects its performance. Hence these
two approaches can be combined to achieve bet-
ter predictions (Zukerman and Albrecht, 2001):
collaborative modeling is used for a new user be-
cause there is not enough evidence to support a
reliable prediction, but as more evidence is col-
lected, the system may switch to the content-
based approach. In Section 2.2, we examine the
special features of the navigation domain which
motivate taking a content-based approach to
modeling the driver’s route knowledge.

2.1 Domain Specific User Knowledge
for Dialogue

The hand-crafted hypothetical dialogue in Ta-
ble 1, from our in-car application domain, illus-
trates some user modeling issues that arise.

Here, the user’s background knowledge in-
cludes local route knowledge and driving prefer-
ences. This knowledge is important for tailoring
the output to maximize its utility for the user.
For example, knowing driver characteristics can
affect the generated instructions in quite drastic
ways. A description for the route from home to
the freeway may just be reduced to something
like that in S1 above if the system knows that
this is a route already known to the driver. The



Situation Dialogue
User driving from home U1: How can I get to the Orbit Cafe in San Francisco?

S1: Take Highway 101 and exit at Duboce Ave. It will take
about 30 minutes to get there.

When approaching SF S2: You’ll be taking the Duboce Ave. exit, so stay left.
When approaching the exit S3: The highway will end very soon and you will be on

Duboce Ave.
System waits while user gets
off the highway.

S4: Do you still remember how to get to Market St.?

U2: Not really.
System gives turn-by-turn S5: Follow this road, and turn right at Guerrero St.
instruction. S6: Turn left here at Market St, and you have arrived at the

Orbit Cafe.

Table 1: Hand-crafted sample navigation dialogue

system could also refer to previous driving expe-
riences, as in Take the freeway south; you’ll take
the same exit you took to get to Bob’s house last
week. Such adaptive instructions are preferable
to the detailed turn-by-turn instructions pro-
vided by most navigation systems in use today.

2.2 Content-based Modeling
A useful property of our application scenario
is that the navigation system in any given car
will typically be used by the same driver many
times. This provides the system with the oppor-
tunity to collect a large amount of specific user
data through both implicit observations and ex-
plicit interactions, in a way that is not true of
many other dialogue scenarios. For example, a
GPS-based navigation system can maintain a
history of all the places the driver has been to,
and use this to generate hypotheses about the
driver’s route knowledge. Based on this knowl-
edge, the system can make reasonable assump-
tions about what the driver knows and predic-
tions about what she needs to know. The follow-
ing sources of evidence can be used to generate
hypotheses:

Implicit observation: The driver’s daily
driving activities and use of clarification
questions provide useful information. If
the driver has driven to a place without
asking for help, we can assume that she is
familiar with the route between the origin
and destination. If the driver queries
how to implement a specific navigation
instruction—for example, asking how to
get to Highway 101 in reply to utterance
S1 in the sample dialogue above—we can
assume that she is not familiar with that
route.

Explicit enquiry: If the system knows that
the driver has been to a particular place,
but is not sure if she still needs help, it
can explicitly query the driver. For exam-
ple, the system might say: You should first
drive to Highway 101. Do you know how to
get there? Utterance S4 in the sample dia-
logue above gives another example. Based
on the driver’s reply, the system can up-
date its representation of the driver’s route
knowledge.

Since a large amount of driver data will be
available, the dialogue system should be able
to learn from this data and adapt its responses
on the basis of the learned driver model. This
permits the system to omit information that the
driver is familiar with; a dialogue system that
keeps on presenting information that the driver
already knows is likely to cause irritation.

The wealth of user specific data that a system
of this kind can accumulate makes the content-
based modeling approach very appropriate; of
course, a collaborative modeling approach can
provide defaults when user specific data is not
available.

3 Design of the Content Selection
Component

This section describes a prototype system that
can generate both navigation information and
queries when it is uncertain. The implemen-
tation emphasizes modeling the driver’s route
knowledge. It uses canned text and templates
for surface generation so as to focus on content
selection.



3.1 Route Knowledge Representation

Generating personalized navigation instructions
requires acquisition and representation of the
driver’s route knowledge. Existing representa-
tions log all intersections and roads via which a
driver has driven. For example, the RouteCom-
piler system (Rogers et al., 1997) represents the
routes that a driver has driven as a graph, where
nodes are intersections and arcs are the roads
between them. A context-free grammar is ex-
tracted from the graph to represent the driver’s
route knowledge at various levels of detail. This
knowledge is used to bias a route planing pro-
cedure to favor familiar routes, thus minimizing
the probability of getting lost. A problem with
such representations is that they explode in size,
and also use information that is not necessarily
salient to the driver (e.g. crossroads driven past
but not necessarily noted) to bias routes.

We represent a route by all the decision points
(DPs) along the route. Decision points are in-
tersections where the driver makes a turn, where
street name or road status1 changes, as well as
origin and destination locations. Intersections
where the driver simply drives straight through
and there is no name change or road status
change are not considered to be DPs. We claim
that only such salient features to a route should
be considered useful in biasing future route de-
scriptions with respect to familiarity.2 Our rep-
resentation uniquely identifies routes while re-
ducing the amount of information to be stored
because it disregards all intersections that are
not decision points and the road information be-
tween intersections.

For each DP, we specify the following fea-
tures:

• FromStreet: the street from which the ve-
hicle is to make a turn;

• IntoStreet: the street into which the vehicle
will turn;

• TurnDirection: the direction the vehicle
will turn, e.g., east, south;

• Familiarity: a measure of how familiar the
driver is with this intersection, based on
the number of times the driver has driven

1Roads are assigned a status of 1 to 6, with 6 denoting
interstates and freeways, 3 denoting expressways, and 2
being a default status for most city streets.

2This does not preclude using other features in the
route descriptions themselves.

through this intersection from and into the
same road, making the same turn;

• LastVisit: the last time that the driver was
here.

The first three features uniquely identify a de-
cision point. Familiarity is measured on a scale
of 1 to 5, with 5 indicating high familiarity. This
information determines whether a DP should be
presented to the driver. LastVisit is used for
two purposes: if the driver traveled through a
DP a long time ago, we do not assume that she
still remembers it; however, if she traveled the
DP fairly recently, then this information can be
used to remind the driver about this intersection
or road by referring to her previous experience.

The following example demonstrates a DP
where the driver turns east from Arastradeo
Road into Foothill Expressway; she has made
this maneuver twice before, and the last time
was on January 27, 2004 at 3pm:

FromStreet: Arastradero Road, 94304
IntoRoad: Foothill Expressway, 94304
TurnDirection: east (left)
Familiarity: 2
LastVisit: 1/27/2004/15

DPs are stored and maintained in a knowl-
edge base through Protégé (Musen et al., 1993),
which is a tool for constructing and maintaining
knowledge resources. For each routing task, the
system examines all the decision points along
the route. If a DP is new, it creates an entry in
the knowledge base with a Familiarity value of
1; if the DP is already in the knowledge base,
its Familiarity value is incremented by 1, until
the maximum value of 5 is reached; if the driver
asks a question about the DP or gives a nega-
tive answer to the system’s query about the DP,
its Familiarity value is decremented by 1.

For a new driver, the system has no knowl-
edge of her background. As the interactions
between the driver and the system increase,
our model captures more and more driver spe-
cific features, and therefore provides more fine-
grained and dynamic user modeling.

3.2 Implementation of Route
Description Generation

We use a navigation web service provided by
Robert Bosch Corporation to obtain routing in-
formation. For each routing request, the server
returns a set of instructions as follows:



Input: Route instructions from the navigation web service
1 Foreach DP on the route
2 Retrieve driver’s knowledge about the DP
3 If Familiarity <= 2 (has little knowledge) or the DP leads to a

major road (state highway or freeway)
4 Mark it as fully describing
5 Else if Familiarity <= 3 (has some knowledge)
6 Mark it as briefly describing
7 Else (very familiar)
8 Mark it as disregarding
9 End if

10 End foreach

11 Foreach DP on the route
12 If fully describing
13 If there are disregarded DPs before it
14 Describe the immediately previous DP first
15 Else if briefly describing
16 Find in the sequence of such DPs the last one
17 Give the instruction for that DP
18 If there are disregarded or skipped briefly described DPs before it
19 Randomly decide whether or not to query the driver
20 If driver gives positive answer or does not ask for details
21 Continue with loop
22 Else
23 Continue with loop
24 End if
25 If driver gives negative answer or asks for details
26 Give instructions from the last described DP to the current one,

skipping disregarded DPs
27 Else
28 Give the instruction for the current DP
29 End if
30 End foreach

Figure 1: Content selection algorithm

Driving Distance: 5.8 mile(s).
Driving Time: 9 minute(s).
Depart. Go East on Miranda Ave.
Drive 0.2 mile(s), < 1 minute.
Turn left on Arastradero Rd.
Drive 1.0 mile(s), 1 minute(s).
...
Straight on Hospital Dr. Drive
0.1 mile(s), < 1 minute. Arrive.

The first line indicates the total travel dis-
tance and time. Each subsequent line provides
a turn-by-turn instruction. The instructions are
supplied as strings, and the application program
is responsible for extracting the information it
needs from these messages.

Given this detailed input, our system extracts
information such as street names and turning
directions from the strings and represents these

as internal objects. It then selects which in-
structions to present to the driver based on its
modeling of her route knowledge; it may aggre-
gate multiple instructions as appropriate (see
below). Finally, the driver’s route knowledge
base is also updated as navigation information
is presented.

The content selection algorithm is shown in
Figure 1. The first loop marks how a DP should
be presented based on the driver’s route knowl-
edge, and the second loop presents the DPs to
the driver.

The algorithm gives turn-by-turn instructions
for a driver with little route knowledge, but for
a local driver, it skips consecutive familiar DPs
until encountering an unfamiliar or significant
DP (such as a highway entrance, lines 3 and 4
in Figure 1). It summarizes the route segments



up to this DP (line 14), and then provides de-
tailed instructions from that point on (lines 25
- 29). When there is doubt about the driver’s
familarity, the algorithm will skip consecutive
DPs that do not need to be fully described, and
only mention the last one (lines 16 and 17). It
can then choose to either explicitly query the
driver or say nothing unless the driver asks for
more details. Drivers’ route knowledge typically
includes some local areas and several highways
branching out from these areas. Therefore we
expect route knowledge learned by our approach
to consist of clusters of decision points in these
local areas. These clusters plus the road classes
facilitate natural route chunking, similar to that
obtained by the chunking algorithm of (Höök,
1991). The numbers used in the algorithm are
rather arbitary at present; we aim to substanti-
ate appropriate values with data collected in our
simulated driving environment in the future.

Aggregation is based on situation: we use
the distance between decision points to simu-
late this. Two instructions on DPs whose dis-
tance is smaller than 0.1 miles are aggregated
(for example, Turn right here, stay in the left
lane and turn immediately left), as are adjacent
instructions about the same DP (for example,
Turn right onto El Camino Real and drive east
for about 3.5 miles).

3.3 Sample Results
For a driver who has no knowledge of the area,
our system generates the following output for
directions:

Drive east on Miranda Ave.,
stay in the left lane and turn
immediately left onto Arastradero
Road.
Turn right onto El Camino Real and
drive east for about 3.5 miles.
Turn right onto Grand Road.
Turn right onto North Dr., and it
soon turns into Hospital Dr.

The distance information is only given when
the distance between two DPs is greater than 2
miles. For a driver who knows how to get onto
El Camino Real, which is a state highway, the
system disregards instructions for the known
sub-route and generates the following output:

Get onto El Camino Real east and
drive for about 3.5 miles.
Turn right onto Grand Road.
Turn right onto North Dr., and it
soon turns into Hospital Dr.

Two types of aggregation are featured in the
sample output: conjunction is used to com-
bine descriptions of the same DP or adjacent
DPs (as in the first and last utterances of the
sample output), and subordinated prepositional
phrases are used to realize distance information.

4 Architecture

We are in the process of incorporating the capa-
bilities of a domain independent generation ar-
chitecture and enhancing it to handle the user
and situation related issues discussed in the pre-
vious sections. Such an architecture typically
assumes a pipeline architecture with three ma-
jor components: a content planner, an utter-
ance planner and an utterance realizer (Reiter,
1994). The content planner concerns the se-
lection of information to be expressed and the
organization of this information into a hierarchi-
cal structure that represents a globally coherent
text plan. The utterance planner and realizer
are concerned with the construction of utter-
ance structures that convey the selected infor-
mation, and the choice of grammatical features
to produce locally fluent utterances. The user
model affects all levels of generation and has a
bearing on the variety and complexity of the
text being generated.

Our goal is to produce conversational turns
ranging from lengthy multi-clausal contribu-
tions to sub-clausal fragments, which we will
refer to collectively as turns. Each turn can
consist of several utterances, which should vary
depending upon characteristics of the user. Fig-
ure 2 illustrates the generation architecture we
are working on; we explain each major compo-
nent below.

4.1 The Content Planner
There are, of course, different ways in which
multi-utterance dialogue contributions might be
generated. Research in text generation has
addressed both top-down and bottom-up con-
tent planning strategies (Moore and Paris, 1993;
Marcu, 1997). In a dialogue context, this deci-
sion is often determined by the nature of the
dialogue domains. Some domains are highly
structured and goal-driven, and the generation
system has to come up with a text plan that
conforms to the goal structure. In other do-
mains, the goals are only loosely structured;
this is the case in our in-car navigation sys-
tem, where the goal is to effectively navigate the
driver to the destination. Different text plans
can achieve the same goal, so the generation
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Figure 2: The generation architecture

system can choose a text plan that satisfies as
many domain and user preferences as possible.

A generic content planner should be able to
accommodate both needs, that is, to take either
a communicative goal or a set of domain pref-
erences as well as the semantic contents associ-
ated with these goals as the input, and produce
a turn specification, which is a tree structure
that contains the propositions to be expressed
and the rhetorical relationships between them.
The content selection component described in
Section 3 is the first step toward a bottom-up
content planner. This planner is invoked once
per conversational turn, and makes reference to
a dialogue model that is maintained over the
entire dialogue.

4.2 The Utterance Planner and
Realizer

The utterance planner takes a turn specifica-
tion and produces a sequence of one or more
utterance specifications, compatible with the re-
alizer input specification language. Two impor-
tant tasks of the utterance planner are aggrega-
tion and referring expression generation. These
two tasks encounter new challenges in the in-
car dialogue environment because of the time-
and position-sensitive nature of the generation
task. A referring expression or aggregated ut-
terance can cause confusion if the driver’s po-
sition changes dramatically during processing.
Aggregation can also be used to opportunisti-
cally provide additional information (such as
landmarks) to help identify domain objects, for

example, Turn left at Mathilda Avenue, where
you can see an Arco gas station at the corner.

The utterance realizer takes an utterance
specification and produces marked-up text to
send to the Text-to-Speech component. It
should have the ability to address the re-
quirements of echoing user language, prosodic
markup and variability.

4.3 Interfaces to Other Dialogue
Components

The generator draws on a number of other sys-
tem components to provide the desired func-
tionality.
Dialogue Manager: The Dialogue Manager
stores the current context of the ongoing conver-
sation, as well as the historical context. Each
utterance, whether by user or system, is classi-
fied as a dialogue move, updating this context.
The dialogue manager also constructs an ‘Ac-
tivity Tree’, which represents all activities per-
formed by the behavioral agent and their exe-
cution status.
Behavioral Agent: The user effectively con-
verses with the behavioral agent. Requests from
the user are communicated to the agent as goals
for it to achieve. It executes the user’s requests,
and put the communicative goals on to the Dia-
logue Manager’s Activity Tree, to become part
of the Content Planning process. The Behav-
ioral Agent is also responsible for prioritizing
its communicative goals according to urgency
and importance, and hence ensuring that crit-
ically important information is planned to be



communicated early by the Content Planner.
User and Situation Models: These compo-
nents are responsible for influencing the gener-
ated utterances to account for current situation
and user state. The Situation Model draws on
multiple information sources, such as GPS, de-
vice sensors, etc. The User Model stores in-
formation pertinent to the current user, includ-
ing the driver’s route knowledge. It should be
capable of adapting over time, by being given
explicit preferences by the user and by observa-
tion.

5 Future work

The current implementation features the con-
tent selection algorithm in Figure 1 and some
aggregation strategies, but uses canned text and
templates for utterance realization. We are in
the process of implementing the above domain
independent generation architecture, designed
specifically to deal with issues raised by the
in-car domain, including situation awareness,
user adaptibility, incremental generation, inter-
rupted conversation, and time sensitive gener-
ation. We are also collecting data on situated
direction-giving by human subjects, some por-
tion of which will be used for evaluation pur-
poses; evaluation will include different familiar-
ity of users with specific routes.
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