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Abstract ble; these cells are arranged in the rows and Not all cells are
simple: aspanned celis a single, complete unit that physi-

A spanned cell in a table is a single, complete unit that cally occupies multiple columns and/or rowdorizontally
physically occupies multiple columns and/or multiple rows. spanned cells occupy multiple contiguous colunmvesti-
Spanned cells are common in tables, and they are a signifi-cally spanned cells occupy multiple contiguous lines. Ver-
cant cause of error in the extraction of tables from free text tically spanned cells are commonly used in tables. We are
documents. In this paper, we present a model for the detecworking with a large corpus of company announcements in
tion and merging of vertically spanned cells for tables pre- plain text form provided by the Australian Stock Exchange
sented in plain text documents. Our model and algorithm (ASX); these are documents whose publication is generally
are based purely on the layout features of the tables, andrequired for regulatory reasons, and many include tables
they require no semantic understanding of the documents.containing financial information. In our random sample of
When tested on the 98 tables appearing in 40 randomly se-40 documents containing a total of 98 tables, 85 of these ta-
lected documents from a corpus of company announcementbles contained vertically spanned cells. Spanned cells have
from the Australian Stock Exchange (ASX), our algorithm been identified in the literature as one of the major factors
achieves an accuracy of 86.79% in detecting and mergingthat contribute to errors in table recognition [1, 4]. Unlike
vertically spanned cells. the problem of detecting horizontally spanned cells, which

has been addressed by several researchefs B,5], the

problem of detecting vertically spanned cells has not re-
1. Introduction ceived much attention. In this paper, we present a spanned-

cell detection model and a cell-merging algorithm for tables

. . . presented in plain text documents.
Tables are a convenient device for conveying informa-

tion, and they are widely used in documents. For any kind .

of automated higher-level processing of real text, it is there- 2. Terminology

fore essential to be able to extract the information embedded

in tables correctly. To achieve this, we need a robust algo- We will use the following terminology to describe tables

rithm for the identification of table structures. In this paper, as they appear in plain text documents:

we are interested in the identification of tables in plain text

documents, of the kind that might be generated by extract-

ing text from a richer format such as PDF, or as might be i o . .

found in email messages and other native plain text formats. 2- A line-artlineis a line whose purpose is to serve as a
Documents in this form contain no explicit markup tags, vertical del|m|ter. Line-art Im_es typically consist only

and necessarily maintain a consistent vertical line height of punctuation characters, with the hyphen and under-

throughout. In such documents, a table is a superstructure ~ SCOre being very common, and the plus sign being used

imposed on a character-level grid. We defirgiraple table to indicate column boundaries. For example, the last

cell as a contiguous horizontal sequence of characters that  lin€ in Table 2 is a line-art liné.

together make up a minimal meaningful constituent of ata-  Unless otherwise indicated, all example tables shown here are from

1. A table consists of a contiguous series of lines, which
are eithetine-art lines row-lines or blank lines
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Sales revenue b0, 492
Net increment in net mkt valus of SGARA= 2,083
Other revenus B.032
Revenues fron ordinary activities 68,607
Lozt of zales (49,065)
Distribution expenses (1,378)
Warketing expenses (663}
Operational expenses (10,2773
Adnin Expenses (3,002)
Research & developnent expenses (403)
Investing expenses (221

)

Expenses fron ordinary activities {65,010

Table 1.
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Implicit delimiters used between

2004-05-27 ASX-SIGNAL-G

Tower today released its half year report for the period ended 31 March

2004. The Company said the revenue from ordinary activities was up 71%

from previous corresponding period (pcp) to WZ$512,799,000. The net

profit was up 113% from pc

declared. Towar Reports HaEij vear Net Profit Up 113% to nz$20.

to nz$20,454,000. No interim dividend was
5

M1

| |current Perdiod ended 31 |Prewious Period ended 31
|March 2003 (Nz$000)

| |March 2004 (nz$0000

|

|
|Total operating |512,799 | 300,461 |
|revenue | | |
|EBITDA i |- |
|Pre-Tax profit | 50,883 | €157, 0420 |
| Mon-Recurring |- i |
|1tems | I |
|Met Profit |20,454 | (154,3700 |
Iogarat'img cash | €3, 9010 | €72,100) |
|Flow | | |
| Dividend [ |- |
|EPs (basic) |5.04 | €93.07] |
| Ccents) | | |
INTA (NZ$) 1. 94 Ji2.2 |

Table 2. Line-art lines used as explicit row de-

CURRENT
PERIOD
AUDOOO
1.1 Revenues from ordinary actiwvities 68, 607
Expenses from_ordinary activities
(see dtems 1.24 + 12.5 + 12.8) 65,010
1.3 Barrowing costs (1,518)
1.4 share of net profit (loss) of
assgciates and joint venture
entities (see item 16.7) 1,484
1.5 pProfit (loss) from ordinary
activities hefore tax 595
1.6 Income tax on ordinary
activities (see note 43 15
1.7 profit (loss) from orchnar“y
actiwities after 580
1.8 profit (loss) from extraordinary
items after tax (see item 2.5 e
1.9 Net profit (loss) 580
outside equity interests 18}
attributable to members 598

PREVIOUS
CORRESPONDING
ERT:

AUDOQO

64,619

65,613

a,

cz,

2,

(z,

(z,

4417

Table 3. Blank lines used as explicit row de-

limiters.

Use a landscape setting to print this table.
Table D, Hedian Incowe of Households by Stace

(In 1998 dollars. For meaning of sybols, ses text)

Two-year woVing averages Differences in 2-year

moving averages

Three-year average

1896-1998 1997-1898 1896-1987 1897-96 less 1996-97
States
Nedian  Standard  Median  Standard  Yedian  Standard Percent
incone error  income error  income error Difference  change
United States 37,779 17 38,23 167 37,227 148 1007 * 277
Alabana 33,394 1,003 34,351 1,210 31,958 1,211 2393 7 7.5 %
ilaska 51,421 1,23 49,717 1,48 31,786 1,354 -2063 4.0
Arizona 34,402 903 35,170 1,057 33,058 1,085 2112 7 6.4 7
Irkansas 27,471 | 27,147 958 27,37 500 -286 2.9
California 40,522 548 40,323 604 40,317 70 307 2.8
Coloradn 44,349 1,075 45,25 1202 43,224 1,389 2028 © 477
Comnecticut 44,978 1,832 45,389 1,91 44,213 2,174 1376 31
Delanare 42,000 1,260 42,381 1,563 42,270 1,470 310 27
District of Colubia 32,999 911 32,895 953 32,783 1,099 112 2.3
Florida 33,234 442 33,935 S61 32,396 462 1538 474
Georgia 36,552 851 37,950 869 35,497 1,117 2453 * 6.9+
Hawaii 41,332 1,325 41,199 1,500 42,484 1,400 -1285 -3.0

Table 4. Heterogeneous row delimiters
used. Source: U.S. Census Bureau at
http://www.census.gov on 1st September
2004.

3. Arow-lineis a line that contains text that contributes

to the content of the cells in a table. For example, the
first line in Table 3 is a row-line. Note that row-lines
may also contain punctuation marks that are used to
indicate column boundaries.

4. A blank lineis either an empty line or a line that con-

tains only white space characters.

5. We define aow delimiteras any sequence of lines that

separates two row-lines. In Table 2, each pair of adja-
centrows is separated by a line-art line; and in Table 3,
all the blank lines are row delimiters.

6. A column delimiteris a sequence of characters that

separate table columns. For example, theHaracters
and their preceding white spaces in Table 2 are column
delimiters.

7. A cell segmentmarked by one or two column de-

limiters, is a sequence of text tokens embedded in
the same row-line. For example, the first row-line in
Table 2 contains two cell segments: ‘Current Period
ended 31’ and ‘Previous Period ended 31'.

8. A cellis the most basic, semantically complete unit in

a table. A simple table cell consists of just one cell
segment, but in the case of a vertically spanned cell,
the cell will contain two or more cell segments from
adjacent row-lines. For example, the last line in Ta-
ble 1 is a row-line containing three cell segments, and
each of these cell segments makes up a complete cell.
However, the first row of Table 2 has two cells each
containing two cell segments on adjacent row-lines.

9. Arow is one or more row-lines that contain cells that

are horizontally aligned. A row can be made up of one

our ASX Corpus.



or more row-lines: for example, the last line in Table 1 4.1. Detecting Vertically Spanned Cells
is a row, and the first four lines in Table 3 also form

one row. A table can contain implicit row delimiters, explicit row
10. Arow-blockis the longest block of adjacent row-lines. delimiters or both. An implicit row delimiter is the line-feed
For example, the first four lines in Table 3 form one character that identifies a single row-line as a table row. As
row-block, because the fifth line is not a row-line. noted earlier, an explicit row delimiter is one or more con-
However, all the lines in Table 1 are in one row-block, secutive lines, including blank lines, that visually separate

and the table contains one big row block. two table rows. Explicit row delimiters can appear in var-
ious forms: Table 2 uses line-art lines as row delimiters;
3. Task Definition Table 3 uses blank lines as row delimiters. Broadly speak-

ing, tables can be categorised into two classes according to

Identifying the structure of even a simple plain text ta- the types of row delimiters they contain; each class displays
ble can be a challenging task, primarily because of the am-different merging characteristics. For ease of reference, we
biguous use of the space character as both a means of sefs@ll these hersimpleandcomplextables respectively.
arating the contents of one column from another, and as
a means of separating tokens within a column. The pres-
ence of vertically spanned cells, such as those occurring in
Table 3, brings the additional difficult requirement of de-
termining which cells contribute to spanned cells and then

merging the content. The techniques required for detect-co ey tables contain explicit row delimiters. The row
ing vertically spanned cells are more complex than those delimiters can be all of the same type, as in Tables 2
for detecting horizontally spanned cells. To detect horizon- and 3, or they can be of different types, as in Table 4.
tally spanned cells, we look for column alignments, which Merging might be required for tables in this class.

can be obtained by calculating the overlapped area using the

starting and ending positions of each cell segment. To de-Essentially, this distinction embodies the hypothesis that ta-
tect vertically spanned cells, we also have to decide whetherles which contain vertically spanned cells will always rely
two aligned cell segments should be merged. Our goal is toon the use of explicit row delimiters to make the structure
develop an algorithm that can identify and merge the rele- of the table clear; if there are no explicit row delimiters, we

vant cell segments that make up vertically spanned cells. Asassume the table has no vertically spanned cells.
an example, we want to be able to merge the first four row-

lines in Table 3 to form a single table row that consists of 4 o Merging Vertically Spanned Cells
two cells, the first containing the text ‘CURRENT PERIOD
AUDOOOQ’ and the second containing the text ‘PREVIOUS
CORRESPONDING PERIOD AUDOOO'.

Simple tables contain only implicit row delimiters. Each
table row occupies exactly one line, and table cells
are not spread across multiple row-lines. No merging
should be performed for tables in this class.

If a table contains explicit row delimiters, then we assume
that it may contain vertically spanned cells; and if it does,
these vertically spanned cells will always occur within row-
blocks.

Given two cell segments belonging to the same row-

Our algorithm for detecting vertically spanned cells is block, the merging heuristic merges them if both of the fol-
based on the observation that authors of tables tend to us‘?owing conditions are satisfied.

row delimiters to separate the adjacent row-lines that form
vertically spanned cells from other row-lines. This leads to Merging Condition #1: The cell segments are vertically

4. Approach

our first heuristic for detecting spanned cells: aligned, as determined by the column zoning algorithm
Heuristic #1: The row-lines that contain segments of the described in Section 4.2.1.
same spanned cell should belong to the same row- ) " .
block. Merging Condition #2: The cell segments are mergible,

] as determined by the criteria presented in Sec-
Of course, the presence of a row-block does not necessarily  ion 4.2.2.

mean that we have spanned cells. This leads to our second

heuristic for merging cell-lines:

- : i 4.2.1 Column Zoning
Heuristic #2: Two cell-lines within a row-block should

only be merged if they contain at least one pair of ver- The purpose of the column zoning step is to determine the
tically aligned cell segments, and if there is no reason alignments of all the cell segments in a table. After the zon-
not to merge the cell segments. ing step, we should know how many columns a table has,



(c) If d > 3 then P is spanned across multiple
columns. Updat€Bmapas follows.
PLAI+1 [Starl] = min(PLA1+1 [Starl], P[Start])
PRA]_l[En(ﬂ = ma;z:(PRAI_l[End, P[Encﬂ)

and where each column starts and ends. We carry out col-
umn zoning by using two data structures: a sepadition
vectorsand acolumn boundary map

A position vector,p = (Start End), is used to record
the horizontal start and end indices of the content of a cell

segment. For example, the three cell segments in the first The end result is that we have determined the horizontal
cell line in Table 1 are represented by three position vec- €xtents of each of the columns in the table, and we know

tors: (1,13) for the ‘Sales revenuesegment,(44, 49) for which cell segments belong to which columns; i.e., we have
the ‘60,492 segment, and57,62) for the ‘61,224 seg- the vertical alignment information we need for the next step.

ment.

A column boundary map, denoted @8map is a list
of ordered position vectors that indicate the horizontal ex-
tents of the columns in a table, in left to right order, so that
thei*" element in the map records the starting and ending
indices of thei” column of the table. For example, once
completed, the€CBmapfor Table 1 should contain a list of
three position vectors;(1,40), (42, 49), (55,62} }.

When we identify a cell-segment, we push its position

4.2.2 Determining Mergibility

If two row-lines belong to the same row-block, and they
contain cell segments that are vertically aligned, we then
need to check whether the rows can be merged. The basic
idea here is simple: two row-lines should not be merged if
they both contain non-mergible cell segments. In our exper-
iment, a non-mergible cell segment is a cell segment that

vector into a sorted queue, denoted heresbgtedQ The meet§ any of the following criteria: _'t coptams a nur‘ner,|c
value; it contains a currency value; or it contains ‘NA,

sortedQsorts the position vectors in ascending order of the |~ 7", | O . -
lengths of the segments they represent. Once all the posi—N/A' — or .. This set of criteria could, of course, be

tion vectors have been entered in the the queue, we use thigxtended and made more sophisticated.

information to compute the column boundary map for the Then,_ two adjacent r_ow-lmeszi _and ri+1 Should be
merged if all of the following conditions apply.

table.
Let p; be thei!” position vector inCBmap then the al- 1. r; andr;, are in the same row-block.
gorithm is as follows. First, we initialize: 2. r; andr; 1 have at least one pair of vertically aligned

CBmap= empty; cell segments.

= sortedQd . . .
P1 Qdequeue() 3. r; andr; 11 do not both contain non-mergible cell seg-

Then, whilesortedQis not empty, we do the following: ments.

1. A position vectorP = sortedQdequeue() After merging, the newly merged line should belong to
the same row-block as andr; 1, and it will contain non-

2. Calculate the left alignment indelxAl, for P. LAI is mergible cell segments if and only i or ., contains

the biggesCBmapindex, i, that satisfies the condition
p;[End < P[Star{. If such an index does not exist,
thenLAl is set to 0.

3. Calculate the right alignment indeRAl, for P. RAI
is the smallesCBmapindex, i, that satisfies the con-
dition P[End < p;[Star{. If such an index does not
exist, therRAl is set to|[CBmap| + 1.

4. UpdateCBmapbased on the difference betweBrAl
andLAl. Letd = RAI—LAI. Our algorithm guarantees
d > 1, and the update rules are the following.

(@ If d = 1 then P marks a new column in the
CBmap UpdateCBmapby inserting P as the
(LAI + 1)** element inCBmap

(b) If d = 2 then P is aligned with an existing col-
umn inCBmap Update the LAT +1)*" element
in CBmapas follows.

Ppari1[Star = min(Prary1[Star], P[Start)
PLAIH[EnCﬂ = mal‘(PLA]+1[EnCﬂ, P[EI"ICD

non-mergible cell segments. The merging process is re-
peatedly applied to every pair of adjacent row-lines within

a row-block. The process stops only when any two ad-
jacent row-lines contain no aligned cell segments, or they
both contain non-mergible cell segments.

5. Evaluation

Our test data set contains a set 98 tables extracted from
40 documents randomly selected from the Australian Stock
Exchange (ASX) corpus; these tables contain a mixture of
spanned cells and non-spanned cells.

5.1. Accuracy Definition

For each document in the test data set, we manually com-
pared the actual extracted result against the expected an-
swer; three performance measures, recall rate (R), precision
rate (P) and F-measure rate (F), are calculated as follows



Documents with VSC Documents without All Documents
VSC

Num of documents 15 40

VSC NVSC NVSC VSC NVSC Overall
Num of cells in the original| 565 2815 113 565 2928 3493
documents
A 454 2424 110 454 2534 2988
B 111 391 3 111 394 505
C 33 274 2 33 276 309
Recall(25) 80.35% 86.11% 97.35% 80.35% 86.54% 85.54%
Precision(A_%c) 93.22% 89.84% 98.21% 93.22% 90.18% 90.63%
F-Measurg fecalltPrecision ) 1786799 87.98% 97.78% 86.79% 88.36% 88.09%

Figure 1. Table Extraction Results

. _ A
Recall: R = AJF—B;‘
Precision:P = 41+,

F-measuref’ = Z£2,

segments, such as numeric data. This requirement is
too strict, causing our algorithm to fail to merge row-
lines when they should be merged.

whereA is the number of cells that are correctly identified, SOMe relatively simple extensions to the heuristics pre-
B is the number of table cells missed by our extraction al- ;ented_here will increase the performance of our algorithm;
gorithm, andC is the number of non-table cells that are it remains to be seen what the upper bound of performance

inco

5.2.

rrectly identified as table cells by our algorithm.

Test Results

Our algorithm correctly identifies 454 of 565 vertically
spanned cells (80.35%) while maintaining an accuracy of
88.36% for extracting cells that are not vertically spanned.

The overall F-measure is 88.09%. The test results are sum-

mari

sed in Figure %.

without recourse to semantic information will be.

References

[1] S. Douglas, M. Hurst, and D. Quinn. Using natural language

processing for identifying and interpreting tables in plain text.
In Proceedings of the Fourth Symposium on Document Anal-
ysis and Information Retrievapages 535-546, Las Vegas,
Nevada. University of Nevada, 1995.

[2] J.Hu, R.Kashi, D. Lopresti, and G. Wilfong. A system for un-

6. Conclusions and Future Work

Vertically spanned cells are one of the major sources of [3]

errors in table extraction. In this paper we have presented
a model to extract vertically spanned cells with an overall

accuracy of 86.79%. The main sources of error come from
the assumptions that our heuristics are based on:

1.

Our work assumes that there is neither a blank line nor
a line-art line between the row-lines that belong to a

single spanned cell. While this assumption is valid

most times, there are exceptions: in our test cases,
there are table cells that are physically spanned across
multiple lines and there are blank lines between the

row-lines.

. When deciding whether two adjacent cell-lines within

the same row-block should be merged or not, we re-
quire that they do not both contain non-mergible cell

2y
Cells.

SC = Vertically-Spanned Cells; NVSC = Non-Vertically-Spanned

(4]

derstanding and reformulating tables. Rourth ICPR Work-
shop on Document Analysis Systepeges 361-372, Rio De
Janeiro, Brazil, 2000.

H. T. Ng, C. Y. Lim, and J. L. T. Koo. Learning to recognize
tables in free text. I#Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistigages 443—
450, College Park, Maryland, USA, 1999.

D. Pinto, A. McCallum, X. Lee, and W. B. Croft. Table ex-
traction using conditional random fields. Rroceedings of
the 26th ACM SIGIRpages 235—-242, Toronto, Canada, 2003.

[5] J. Ramel, M. Crucianu, N. Vincent, and C. Faure. Detec-

tion, extraction and representation of tablesThe 7th Inter-
national Conference on Document Analysis and Recognition
pages 374-378, Edinburgh, Scotland, 2003.



