
A Model for Detecting and Merging Vertically Spanned Table Cells in Plain Text
Documents

Vanessa Long, Robert Dale and Steve Cassidy
Centre for Language Technology

Division of Information and Communication Sciences
Macquarie University

Sydney, Australia
{vanessa, rdale, cassidy}@ics.mq.edu.au

Abstract

A spanned cell in a table is a single, complete unit that
physically occupies multiple columns and/or multiple rows.
Spanned cells are common in tables, and they are a signifi-
cant cause of error in the extraction of tables from free text
documents. In this paper, we present a model for the detec-
tion and merging of vertically spanned cells for tables pre-
sented in plain text documents. Our model and algorithm
are based purely on the layout features of the tables, and
they require no semantic understanding of the documents.
When tested on the 98 tables appearing in 40 randomly se-
lected documents from a corpus of company announcements
from the Australian Stock Exchange (ASX), our algorithm
achieves an accuracy of 86.79% in detecting and merging
vertically spanned cells.

1. Introduction

Tables are a convenient device for conveying informa-
tion, and they are widely used in documents. For any kind
of automated higher-level processing of real text, it is there-
fore essential to be able to extract the information embedded
in tables correctly. To achieve this, we need a robust algo-
rithm for the identification of table structures. In this paper,
we are interested in the identification of tables in plain text
documents, of the kind that might be generated by extract-
ing text from a richer format such as PDF, or as might be
found in email messages and other native plain text formats.

Documents in this form contain no explicit markup tags,
and necessarily maintain a consistent vertical line height
throughout. In such documents, a table is a superstructure
imposed on a character-level grid. We define asimple table
cell as a contiguous horizontal sequence of characters that
together make up a minimal meaningful constituent of a ta-

ble; these cells are arranged in the rows and Not all cells are
simple: aspanned cellis a single, complete unit that physi-
cally occupies multiple columns and/or rows.Horizontally
spanned cells occupy multiple contiguous columns;verti-
cally spanned cells occupy multiple contiguous lines. Ver-
tically spanned cells are commonly used in tables. We are
working with a large corpus of company announcements in
plain text form provided by the Australian Stock Exchange
(ASX); these are documents whose publication is generally
required for regulatory reasons, and many include tables
containing financial information. In our random sample of
40 documents containing a total of 98 tables, 85 of these ta-
bles contained vertically spanned cells. Spanned cells have
been identified in the literature as one of the major factors
that contribute to errors in table recognition [1, 4]. Unlike
the problem of detecting horizontally spanned cells, which
has been addressed by several researchers [2,?, 3, 5], the
problem of detecting vertically spanned cells has not re-
ceived much attention. In this paper, we present a spanned-
cell detection model and a cell-merging algorithm for tables
presented in plain text documents.

2. Terminology

We will use the following terminology to describe tables
as they appear in plain text documents:

1. A table consists of a contiguous series of lines, which
are eitherline-art lines, row-lines, or blank lines.

2. A line-art line is a line whose purpose is to serve as a
vertical delimiter. Line-art lines typically consist only
of punctuation characters, with the hyphen and under-
score being very common, and the plus sign being used
to indicate column boundaries. For example, the last
line in Table 2 is a line-art line.1

1Unless otherwise indicated, all example tables shown here are from

Table 1. Implicit delimiters used between
rows.

Table 2. Line-art lines used as explicit row de-
limiters.

Table 3. Blank lines used as explicit row de-
limiters.

Table 4. Heterogeneous row delimiters
used. Source: U.S. Census Bureau at
http://www.census.gov on 1st September
2004.

3. A row-line is a line that contains text that contributes
to the content of the cells in a table. For example, the
first line in Table 3 is a row-line. Note that row-lines
may also contain punctuation marks that are used to
indicate column boundaries.

4. A blank lineis either an empty line or a line that con-
tains only white space characters.

5. We define arow delimiteras any sequence of lines that
separates two row-lines. In Table 2, each pair of adja-
cent rows is separated by a line-art line; and in Table 3,
all the blank lines are row delimiters.

6. A column delimiteris a sequence of characters that
separate table columns. For example, the ‘|’ characters
and their preceding white spaces in Table 2 are column
delimiters.

7. A cell segment, marked by one or two column de-
limiters, is a sequence of text tokens embedded in
the same row-line. For example, the first row-line in
Table 2 contains two cell segments: ‘Current Period
ended 31’ and ‘Previous Period ended 31’.

8. A cell is the most basic, semantically complete unit in
a table. A simple table cell consists of just one cell
segment, but in the case of a vertically spanned cell,
the cell will contain two or more cell segments from
adjacent row-lines. For example, the last line in Ta-
ble 1 is a row-line containing three cell segments, and
each of these cell segments makes up a complete cell.
However, the first row of Table 2 has two cells each
containing two cell segments on adjacent row-lines.

9. A row is one or more row-lines that contain cells that
are horizontally aligned. A row can be made up of one

our ASX Corpus.

2

or more row-lines: for example, the last line in Table 1
is a row, and the first four lines in Table 3 also form
one row.

10. A row-blockis the longest block of adjacent row-lines.
For example, the first four lines in Table 3 form one
row-block, because the fifth line is not a row-line.
However, all the lines in Table 1 are in one row-block,
and the table contains one big row block.

3. Task Definition

Identifying the structure of even a simple plain text ta-
ble can be a challenging task, primarily because of the am-
biguous use of the space character as both a means of sep-
arating the contents of one column from another, and as
a means of separating tokens within a column. The pres-
ence of vertically spanned cells, such as those occurring in
Table 3, brings the additional difficult requirement of de-
termining which cells contribute to spanned cells and then
merging the content. The techniques required for detect-
ing vertically spanned cells are more complex than those
for detecting horizontally spanned cells. To detect horizon-
tally spanned cells, we look for column alignments, which
can be obtained by calculating the overlapped area using the
starting and ending positions of each cell segment. To de-
tect vertically spanned cells, we also have to decide whether
two aligned cell segments should be merged. Our goal is to
develop an algorithm that can identify and merge the rele-
vant cell segments that make up vertically spanned cells. As
an example, we want to be able to merge the first four row-
lines in Table 3 to form a single table row that consists of
two cells, the first containing the text ‘CURRENT PERIOD
AUD000’ and the second containing the text ‘PREVIOUS
CORRESPONDING PERIOD AUD000’.

4. Approach

Our algorithm for detecting vertically spanned cells is
based on the observation that authors of tables tend to use
row delimiters to separate the adjacent row-lines that form
vertically spanned cells from other row-lines. This leads to
our first heuristic for detecting spanned cells:

Heuristic #1: The row-lines that contain segments of the
same spanned cell should belong to the same row-
block.

Of course, the presence of a row-block does not necessarily
mean that we have spanned cells. This leads to our second
heuristic for merging cell-lines:

Heuristic #2: Two cell-lines within a row-block should
only be merged if they contain at least one pair of ver-
tically aligned cell segments, and if there is no reason
not to merge the cell segments.

4.1. Detecting Vertically Spanned Cells

A table can contain implicit row delimiters, explicit row
delimiters or both. An implicit row delimiter is the line-feed
character that identifies a single row-line as a table row. As
noted earlier, an explicit row delimiter is one or more con-
secutive lines, including blank lines, that visually separate
two table rows. Explicit row delimiters can appear in var-
ious forms: Table 2 uses line-art lines as row delimiters;
Table 3 uses blank lines as row delimiters. Broadly speak-
ing, tables can be categorised into two classes according to
the types of row delimiters they contain; each class displays
different merging characteristics. For ease of reference, we
call these heresimpleandcomplextables respectively.

Simple tables contain only implicit row delimiters. Each
table row occupies exactly one line, and table cells
are not spread across multiple row-lines. No merging
should be performed for tables in this class.

Complex tables contain explicit row delimiters. The row
delimiters can be all of the same type, as in Tables 2
and 3, or they can be of different types, as in Table 4.
Merging might be required for tables in this class.

Essentially, this distinction embodies the hypothesis that ta-
bles which contain vertically spanned cells will always rely
on the use of explicit row delimiters to make the structure
of the table clear; if there are no explicit row delimiters, we
assume the table has no vertically spanned cells.

4.2. Merging Vertically Spanned Cells

If a table contains explicit row delimiters, then we assume
that it may contain vertically spanned cells; and if it does,
these vertically spanned cells will always occur within row-
blocks.

Given two cell segments belonging to the same row-
block, the merging heuristic merges them if both of the fol-
lowing conditions are satisfied.

Merging Condition #1: The cell segments are vertically
aligned, as determined by the column zoning algorithm
described in Section 4.2.1.

Merging Condition #2: The cell segments are mergible,
as determined by the criteria presented in Sec-
tion 4.2.2.

4.2.1 Column Zoning

The purpose of the column zoning step is to determine the
alignments of all the cell segments in a table. After the zon-
ing step, we should know how many columns a table has,

3

and where each column starts and ends. We carry out col-
umn zoning by using two data structures: a set ofposition
vectorsand acolumn boundary map.

A position vector,p = 〈Start, End〉, is used to record
the horizontal start and end indices of the content of a cell
segment. For example, the three cell segments in the first
cell line in Table 1 are represented by three position vec-
tors: 〈1, 13〉 for the ‘Sales revenue’ segment,〈44, 49〉 for
the ‘60,492’ segment, and〈57, 62〉 for the ‘61,224’ seg-
ment.

A column boundary map, denoted asCBmap, is a list
of ordered position vectors that indicate the horizontal ex-
tents of the columns in a table, in left to right order, so that
the ith element in the map records the starting and ending
indices of theith column of the table. For example, once
completed, theCBmapfor Table 1 should contain a list of
three position vectors:{〈1, 40〉, 〈42, 49〉, 〈55, 62〉}.

When we identify a cell-segment, we push its position
vector into a sorted queue, denoted here bysortedQ. The
sortedQsorts the position vectors in ascending order of the
lengths of the segments they represent. Once all the posi-
tion vectors have been entered in the the queue, we use this
information to compute the column boundary map for the
table.

Let pi be theith position vector inCBmap; then the al-
gorithm is as follows. First, we initialize:

CBmap= empty;
p1 = sortedQ.dequeue().

Then, whilesortedQis not empty, we do the following:

1. A position vectorP = sortedQ.dequeue()

2. Calculate the left alignment index,LAI, for P . LAI is
the biggestCBmapindex,i, that satisfies the condition
pi[End] < P [Start]. If such an index does not exist,
thenLAI is set to 0.

3. Calculate the right alignment index,RAI, for P . RAI
is the smallestCBmapindex, i, that satisfies the con-
dition P [End] < pi[Start]. If such an index does not
exist, thenRAI is set to‖CBmap‖ + 1.

4. UpdateCBmapbased on the difference betweenRAI
andLAI. Letd = RAI−LAI. Our algorithm guarantees
d ≥ 1, and the update rules are the following.

(a) If d = 1 then P marks a new column in the
CBmap. UpdateCBmapby insertingP as the
(LAI + 1)th element inCBmap.

(b) If d = 2 thenP is aligned with an existing col-
umn inCBmap. Update the(LAI +1)th element
in CBmapas follows.
PLAI+1[Start] = min(PLAI+1[Start], P [Start])
PLAI+1[End] = max(PLAI+1[End], P [End])

(c) If d ≥ 3 then P is spanned across multiple
columns. UpdateCBmapas follows.
PLAI+1[Start] = min(PLAI+1[Start], P [Start])
PRAI−1[End] = max(PRAI−1[End], P [End])

The end result is that we have determined the horizontal
extents of each of the columns in the table, and we know
which cell segments belong to which columns; i.e., we have
the vertical alignment information we need for the next step.

4.2.2 Determining Mergibility

If two row-lines belong to the same row-block, and they
contain cell segments that are vertically aligned, we then
need to check whether the rows can be merged. The basic
idea here is simple: two row-lines should not be merged if
they both contain non-mergible cell segments. In our exper-
iment, a non-mergible cell segment is a cell segment that
meets any of the following criteria: it contains a numeric
value; it contains a currency value; or it contains ‘NA’,
‘N/A’, ‘ −’, or ‘ ’. This set of criteria could, of course, be
extended and made more sophisticated.

Then, two adjacent row-linesri and ri+1 should be
merged if all of the following conditions apply.

1. ri andri+1 are in the same row-block.

2. ri andri+1 have at least one pair of vertically aligned
cell segments.

3. ri andri+1 do not both contain non-mergible cell seg-
ments.

After merging, the newly merged line should belong to
the same row-block asri andri+1, and it will contain non-
mergible cell segments if and only ifri or ri+1 contains
non-mergible cell segments. The merging process is re-
peatedly applied to every pair of adjacent row-lines within
a row-block. The process stops only when any two ad-
jacent row-lines contain no aligned cell segments, or they
both contain non-mergible cell segments.

5. Evaluation

Our test data set contains a set 98 tables extracted from
40 documents randomly selected from the Australian Stock
Exchange (ASX) corpus; these tables contain a mixture of
spanned cells and non-spanned cells.

5.1. Accuracy Definition

For each document in the test data set, we manually com-
pared the actual extracted result against the expected an-
swer; three performance measures, recall rate (R), precision
rate (P) and F-measure rate (F), are calculated as follows

4

Documents with VSC Documents without
VSC

All Documents

Num of documents 25 15 40
VSC NVSC NVSC VSC NVSC Overall

Num of cells in the original
documents

565 2815 113 565 2928 3493

A 454 2424 110 454 2534 2988
B 111 391 3 111 394 505
C 33 274 2 33 276 309
Recall(A

A+B
) 80.35% 86.11% 97.35% 80.35% 86.54% 85.54%

Precision(A
A+C

) 93.22% 89.84% 98.21% 93.22% 90.18% 90.63%
F-Measure(Recall+Precision

2
) 86.79% 87.98% 97.78% 86.79% 88.36% 88.09%

Figure 1. Table Extraction Results

Recall:R = A
A+B ,

Precision:P = A
A+C ,

F-measure:F = R+P
2 ,

whereA is the number of cells that are correctly identified,
B is the number of table cells missed by our extraction al-
gorithm, andC is the number of non-table cells that are
incorrectly identified as table cells by our algorithm.

5.2. Test Results

Our algorithm correctly identifies 454 of 565 vertically
spanned cells (80.35%) while maintaining an accuracy of
88.36% for extracting cells that are not vertically spanned.
The overall F-measure is 88.09%. The test results are sum-
marised in Figure 1.2

6. Conclusions and Future Work

Vertically spanned cells are one of the major sources of
errors in table extraction. In this paper we have presented
a model to extract vertically spanned cells with an overall
accuracy of 86.79%. The main sources of error come from
the assumptions that our heuristics are based on:

1. Our work assumes that there is neither a blank line nor
a line-art line between the row-lines that belong to a
single spanned cell. While this assumption is valid
most times, there are exceptions: in our test cases,
there are table cells that are physically spanned across
multiple lines and there are blank lines between the
row-lines.

2. When deciding whether two adjacent cell-lines within
the same row-block should be merged or not, we re-
quire that they do not both contain non-mergible cell

2VSC = Vertically-Spanned Cells; NVSC = Non-Vertically-Spanned
Cells.

segments, such as numeric data. This requirement is
too strict, causing our algorithm to fail to merge row-
lines when they should be merged.

Some relatively simple extensions to the heuristics pre-
sented here will increase the performance of our algorithm;
it remains to be seen what the upper bound of performance
without recourse to semantic information will be.

References

[1] S. Douglas, M. Hurst, and D. Quinn. Using natural language
processing for identifying and interpreting tables in plain text.
In Proceedings of the Fourth Symposium on Document Anal-
ysis and Information Retrieval, pages 535–546, Las Vegas,
Nevada. University of Nevada, 1995.

[2] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. A system for un-
derstanding and reformulating tables. InFourth ICPR Work-
shop on Document Analysis Systems, pages 361–372, Rio De
Janeiro, Brazil, 2000.

[3] H. T. Ng, C. Y. Lim, and J. L. T. Koo. Learning to recognize
tables in free text. InProceedings of the 37th Annual Meeting
of the Association for Computational Linguistics, pages 443–
450, College Park, Maryland, USA, 1999.

[4] D. Pinto, A. McCallum, X. Lee, and W. B. Croft. Table ex-
traction using conditional random fields. InProceedings of
the 26th ACM SIGIR, pages 235–242, Toronto, Canada, 2003.

[5] J. Ramel, M. Crucianu, N. Vincent, and C. Faure. Detec-
tion, extraction and representation of tables. InThe 7th Inter-
national Conference on Document Analysis and Recognition,
pages 374–378, Edinburgh, Scotland, 2003.

5

