
Temporal Expression Recognition Using Dependency Trees

Paweł Mazur∗

∗Institute of Applied Informatics
Wrocław University of Technology

Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Pawel.Mazur@mq.edu.au

Robert Dale†

∗,†Centre for Language Technology
Macquarie University,

NSW 2109, Sydney, Australia
Robert.Dale@mq.edu.au

Abstract
In this paper we present a previously unexplored approach to recognizing the textual extent of temporal expressions. Based on the
observation that temporal expressions are syntactic constituents, we use functional dependency relations between tokens in a sentence to
determine which words in addition to a trigger word belong to the extent of the expression. This method is particularly attractive for the
recognition of expressions with complex syntactic structure, for which state-of-the-art pattern-based taggers are not effective.

1. Introduction
Temporal expressions (TEs) are linguistic expressions that
refer to temporal entities (i.e. points or periods in time).
The first step in extraction of TEs from texts is the proper
recognition of their occurrence. This is generally divided
into two phases: detection and extent recognition. De-
tection is concerned with ‘spotting’ the existence of an ex-
pression, i.e. finding at least one of its constituent tokens.
The goal of extent recognition is to precisely determine
where the expression starts and ends, i.e. to establish ex-
actly which tokens make up the expression.

Very often these two tasks are approached using the
idea of a trigger. This is a lexical item whose presence is
a strong indicator that there may be an instance of a tempo-
ral expression; for example, names of months, weekdays
and temporal units are triggers. Identification of a trigger
which is in fact part of a temporal expression means that
we have detected a temporal expression. Recognition then
extends the span of the hypothesized temporal expression
beyond the trigger word itself. Of course, triggers (here
underlined) may constitute complete temporal expressions
(here italicised) on their own, as in Example (1), but very
often, as in Example (2), they are only parts of longer
strings.

(1) I did not go to work on Monday.
(2) I spent three and a half months in Spain.

In the majority of systems presented in the literature the
remainder of the extent is determined by means of hand-
written recognition grammars.1 Such an approach requires
the development of a number of detailed rules centered on
a trigger in the context. This is a laborious task requiring
the knowledge engineer to foresee what expressions may
appear in texts and to control the interaction between the
rules; as the grammar grows in size, it becomes increas-
ingly difficult to provide wider coverage while maintain-
ing a high level of precision. What we need is a more
general algorithm which, given the trigger as a seed, can
grow the extent outwards to find the complete temporal ex-
pression. The TIMEX2 guidelines define TEs in syntactic

1Our review of the literature identified 27 temporal expres-
sion tagging systems, of which 19 are rule-based.

terms (Ferro et al., 2005, pp. 7, 57–58), and so it seems
obvious that such an algorithm might be based on the no-
tion of syntactic constituency; but, surprisingly, we can
find no reports in the literature of attempts to use a syntac-
tic parser (performing a deeper analysis than chunking) to
determine the extent of a TE beyond the trigger.

In this paper we present our experiments with a novel
approach that uses functional dependency relations be-
tween the tokens in a sentence to determine which words
apart from the trigger belong to the extent of the expres-
sion. In our model, we assume that the trigger is the head
of a dependency tree corresponding to the temporal ex-
pression; so, once we have identified a head, we can eas-
ily extract the complete temporal expression provided we
can correctly determine the dependency structure of the
sentence.

2. Related Work
Most existing TE taggers use rule-based grammars which
recognize TEs by matching encoded patterns of specific
lexical items; some generalisation may be achieved by
using POS tags. While it is the case that these taggers
achieve high performance, it takes a lot of effort to provide
wide coverage without sacrificing precision; this is an is-
sue that becomes increasingly problematic as the coverage
of the grammar grows.

To introduce more generalisation to the rules, Ahn et
al. (2005) used shallow (chunk) parsing; this provided
them with a sequence of non-overlapping units, which
correspond approximately to phrases. Their recognition
patterns then looked for chunks headed by trigger words,
and combined selected contiguous chunks to form TEs.
The results were, however, lower than their corresponding
grammar that did not use chunks.

There are also two other approaches to extent recog-
nition that do not involve the identification of a trigger.
One, well-known in work on named entity recognition
more generally and undertaken in the context of TEs by
Hacioglu et al. (2005), is to carry out token classification
using the B-I-O model: i.e. each token is classified as be-
ing a Border (the first or last) token of a TE, an Inside
token (between two border tokens) or being Outside of



the expression. Another approach, proposed by Ahn et
al. (2007), is to use a machine-learning classifier which,
for each candidate phrase in a sentence (e.g., each NP or
ADVP), decides whether or not it is a TE. Although the
two methods scored relatively highly in evaluations, their
disadvantage is that they require significant amounts of
training data. We attempt to develop a method which does
not need to be trained.

3. The Method
Given the observation that temporal expressions are de-
fined as syntactic constituents of sentences, we might at-
tempt to obtain a higher level of generalisation by using
syntactic information. Instead of attempting to predict
what sequences of individual words around a trigger might
constitute TEs, we can develop a conceptually much sim-
pler algorithm that, provided we have a syntactic analysis
of a sentence, would choose which parts of a sentence are
TEs. This idea bears some similarities to the approach
investigated by Ahn et al. (2007); however, our task is de-
fined quite differently. Whereas Ahn et al. (2007) tried to
learn a model of what makes a given constituent a TE, we
assume we have the head of a TE given, and try to deter-
mine the full extent of the expression.

We can distinguish two popular types of syntactic anal-
ysis based on the type of information they output; this may
be either a phrase structure which defines the syntactic
constituents of a sentence, or a set of functional dependen-
cies between the tokens of a sentence. Given TIMEX2’s
stipulation that the trigger is the syntactic head of a mark-
able expression (Ferro et al., 2005, p. 7), the choice of a
dependency-based approach seems most natural; to deter-
mine the full extent of a TE, we only have to extract the
dependency subtree which has the trigger as root. Con-
sider Example (3):

(3) He returned some gifts five days after Christmas.

Here, days is the trigger. The analysis of the sen-
tence provides the following dependencies:2 days:>five,
days:>after, and after:>Christmas. Starting from days we
traverse the tree and get the full extent of five days after
Christmas. In principle, this approach should also work
for more complex cases, where the temporal expression
includes a dependent clause, as in the following example:

(4) I recall the days when he was the best in the team.

Here, the dependencies found in the subtree headed by the
trigger are days:>the, days:>was, was:>he, was:>when,
was:>best, best:>the, was:>in, in:>team, and team:>the.

4. The Experimental Set-up
4.1. The Parsers and Text Tokenisation
In our experiments, carried out using the GATE frame-
work,3 we use four off-the-shelf parsers: Minipar,4 Con-
nexor,5 the Stanford Parser (de Marneffe et al., 2006), and

2We use the notation head:>child to represent a dependency.
3See http://gate.ac.uk.
4See http://webdocs.cs.ualberta.ca/

˜lindek/minipar.htm.
5See http://www.connexor.eu/technology/

machinese/machinesesyntax.

ACE’05 Train WikiWars
Documents 593 22
Tokens (Alternate Tokeniser) 322k 121k
Sentences (GATE) 18,252 4,869
Sentences (Connexor) 18,843 4,857
TIMEX2 5,428 2,681

Table 1: The comparison of the size of the datasets.

the C&C Parser (Clark and Curran, 2007). We do not re-
train the parsers because we do not have enough training
data; this is a common scenario in real-life applications.

The Stanford Parser uses a very rich set of 48 depen-
dency categories that result in analyses which violate the
common assumption that a dependency analysis should be
a tree rather than a graph. Based on an analysis of the cat-
egories of the Stanford dependencies and parses of a few
example sentences from our data, we decided to omit the
following link types from our traversal approach: nsubj
(nominal subject), cop (copula), cc (coordination), and
conj (conjunct) dependencies.

Minipar treats commas as syntactic nodes that are in
functional relations with other tokens; accordingly, we im-
plemented a postprocessing step that shortened the extent
of a TE if its last token was a comma.

We used the ANNIE sentence splitter from GATE for
all parsers, except for Connexor which carries out its own
sentence splitting. Only the C&C Parser expects the text
to be already tokenized,6 while all the other parsers do
their own tokenization. Note that Connexor can combine
several words into a single token: e.g. 25 December 1956
is a single node in a dependency tree.

4.2. The Data
For carrying out the experiment we chose two datasets that
are publicly available and which contain temporal expres-
sions annotated in accordance with the TIMEX2 standard;
these are the ACE 2005 Training corpus7 and WikiWars
(Mazur and Dale, 2010). In Table 1 we compare the sizes
of the two datasets in terms of the number of documents,
sentences, tokens and temporal expressions they contain.

The ACE corpus contains documents from six dif-
ferent domains: newswire, broadcast news, broadcast
and telephone conversations, UseNet discussions, and
weblogs. WikiWars contains narratives sourced from
Wikipedia; each presents the course of a military conflict.

4.3. The Selection of Triggers
The literature does not provide an agreed-upon or rec-
ommended set of temporal expression triggers; even
the TIMEX2 annotation guidelines only provide a non-
exhaustive list of examples. We therefore needed to derive
a trigger list ourselves. We distinguish three types of trig-
gers: word triggers (e.g. month names), four digit num-
bers (years), and conventionalised alphanumeric patterns
(e.g. 17-07-1964).

6We used the Penn Treebank tokenizer with some some mi-
nor modifications (e.g. to not break numbers like 3,000 into sep-
arate tokens).

7See corpus LDC2006T06 in the LDC catalogue.



[Day,]YYYY/MM/DD [HH:MM:SS] [TMZ]
[Day,]DD/MM/YYYY [HH:MM:SS] [TMZ]
HH:MM[:SS] [AMPM] [TMZ]
HH AMPM [TMZ]
HH o’clock [TMZ]
[Day,] YYYY Month DD [HH:MM:SS] [TMZ]
[Day,] DD/Month[/YYYY]
[Day,] Month/DD[/YYYY]
[Day,] [YYYY/]Month/DD
Month/YYYY

Figure 1: Conventionalised patterns in the Trigger Tagger.

We analysed the corpora used in the experiments to
check the frequencies of the words that appear in the ex-
tents of the gold standard annotations; based on this, we
obtained a set of 166 word triggers. Our analysis also
showed that four digit numbers commonly appear as de-
noting both years (e.g. 1997) and hours (e.g. 0545, re-
ferring to 5:45am). However, we limit the range to 1900–
2019 to be consistent with Ahn et al. (2005) in this regard.8

In Figure 1 we present the conventionalised date and
time patterns recognized by rules; elements in square
brackets are optional, and the TMZ stands for a time differ-
ence or a time-zone code (e.g. GMT). We also allow full
and abbreviated names of months and weekdays to appear
within the patterns (Month and Day, respectively). The
implemented grammar is slightly more complex since we
allow for some punctuation and ordering variations, and
single digit numbers in some positions.

4.4. Evaluation
Performance is measured in terms of lenient recognition
(detection of the presence of a TE) and strict recognition
(determination of the full extent of the TE). The goal of the
trigger extraction process here is to detect enough TEs to
test our syntactic recognition method. For this experiment,
the absolute values of the lenient and strict results do not
matter; it is the difference between them that is important.
The only caveat is that if the lenient scores are low, then
this suggests that we may not have captured the full variety
of triggers in the data, or we may be generating too many
false-positive (spurious) annotations. We therefore need
a reasonably broad sample of triggers, so that we do not
accidentally miss expressions that have interesting syntax
just because we have omitted the corresponding trigger.

The lenient and strict results determine the lower and
upper bounds, respectively, for the approach based on
functional dependencies. The strict results for recognizing
triggers on their own allows us to measure the improve-
ment obtained by using a syntactic parser; the lenient re-
sults, on the other hand, provide the upper limit of what
we can expect to achieve in the experiment (i.e. the score
obtained if every detected expression was also correctly
recognized).

In Table 2 we present the results obtained with a tag-
ger which recognizes only the triggers, which we refer to
as the Trigger Tagger. We consider the three classes of

8Note that restricting years in this way damages performance
on WikiWars, which also contains bare year references to earlier
periods.

triggers identified above individually and together. As an-
ticipated, we get the best performance when all three types
of triggers are used; for both corpora we get very good
coverage in detection (0.89 and 0.88 lenient recall) with-
out compromising the precision too much (0.89 and 0.92),
resulting in high lenient F-measures of 0.89 and 0.90.

The relatively high strict recall (0.49 and 0.54) tells us
that about half of the TEs appearing in our corpora do not
have very complex structure; they can be correctly recog-
nized just with simple word triggers and a quite limited set
of rules. This fact should be kept in mind when evaluat-
ing any fully-featured tagger. Matching just trigger words
yields 0.29 and 0.13 strict recall on our data; the large dif-
ference here shows that differences among datasets may
be significant.

5. Results
On both corpora the best strict results were obtained using
the C&C Parser, and the worst using Minipar. The taggers
using the Stanford Parser and Connexor fell in the mid-
dle, but the differences here were not large; Connexor was
slightly more useful on the ACE corpus, but the Stanford
Parser yielded slightly better results on WikiWars. Given
space limitations, we only report here the results obtained
using the C&C Parser; see Table 3.

We first applied our dependency-based approach to
each subset of triggers individually; these are the first
three set-ups in Table 3. As expected, the lenient results
have not changed at all or only insignificantly compared
to recognizing just triggers, as these reflect only the per-
formance for the detection task.9

With regard to recognition, the strict F-measure got
much higher when using word-triggers, much lower
when using conventionalised-pattern-based triggers, and
slightly better or worse depending on which dataset we
consider for four digit numbers (years).

We note that trigger words on their own yield better
strict results on ACE than WikiWars, but after applying the
syntactic method, the situation changes: the performance
is higher on WikiWars. This means that in ACE there
are (proportionally) more expressions which are built just
with trigger words, but in WikiWars (where the gain ob-
tained with the method is greater), either there are (propor-
tionally) more expressions headed by word triggers, or the
parser performs better; the latter in turn may mean that the
sentences are more syntactically well-formed and easier to
parse.10

Two set-ups, #4 and #5, combine all three sets of trig-
gers. In both set-ups the words are used as the syntac-
tic heads of the expressions, but the date-recognition rules
are assumed to detect the full extents of the correspond-
ing TEs (i.e. they are not further extended by the syntax-
driven method). The difference is in the use of four-digit

9Growing the extent may impact the scoring of the detec-
tion task if the new extents impact the matching of system and
gold standard annotations and, in consequence, the number of
detected, missing, or spurious expressions.

10The ACE corpus contains a number of documents with au-
tomatically transcribed speech, weblogs entries and UseNet dis-
cussions; these genres are challenging to parse well.



ACE 2005 Training WikiWars
Strict Lenient Strict Lenient

Trigger Set Prec. Recall F Prec. Recall F Prec. Recall F Prec. Recall F
Words 0.35 0.29 0.32 0.86 0.71 0.78 0.18 0.13 0.15 0.97 0.72 0.83
Dates 0.75 0.16 0.27 0.94 0.20 0.33 0.94 0.29 0.44 1.00 0.31 0.47
Years 0.17 0.04 0.06 0.96 0.21 0.34 0.34 0.12 0.18 1.00 0.35 0.52

Words+Dates 0.48 0.45 0.46 0.90 0.84 0.87 0.55 0.42 0.48 0.97 0.73 0.83
Words+Years 0.31 0.33 0.32 0.82 0.86 0.84 0.23 0.25 0.24 0.80 0.87 0.84
Dates+Years 0.73 0.20 0.31 0.92 0.25 0.40 0.81 0.41 0.54 1.00 0.50 0.67
Words+Dates+Years 0.49 0.49 0.49 0.89 0.89 0.89 0.56 0.54 0.55 0.92 0.88 0.90

Table 2: The results obtained with different sets of triggers by the Trigger Tagger.

ACE 2005 Training WikiWars
Strict Lenient Strict Lenient

Set-up Prec. Recall F Prec. Recall F Prec. Recall F Prec. Recall F
1 (Words) 0.56 0.46 0.50 0.86 0.71 0.78 0.69 0.51 0.59 0.97 0.72 0.83
2 (Dates) 0.33 0.07 0.12 0.94 0.20 0.33 0.82 0.25 0.38 1.00 0.31 0.47
3 (Years) 0.23 0.05 0.08 0.96 0.21 0.34 0.27 0.09 0.14 1.00 0.34 0.51
4 (Words+Year)+Dates 0.65 0.65 0.65 0.89 0.89 0.89 0.73 0.68 0.71 0.92 0.87 0.89
5 (Words)+Year+Dates 0.65 0.65 0.65 0.89 0.89 0.89 0.75 0.71 0.73 0.92 0.88 0.90

Table 3: The results for extent recognition obtained with a dependency-based tagger using the C&C parser.

ACE 2005 Training WikiWars
Strict Lenient Strict Lenient

Tagger Prec. Recall F Prec. Recall F Prec. Recall F Prec. Recall F
DepC&C 0.65 0.65 0.65 0.89 0.89 0.89 0.75 0.71 0.73 0.92 0.88 0.90
DANTE 0.75 0.79 0.77 0.88 0.92 0.90 0.93 0.93 0.93 0.98 0.99 0.99

Table 4: The comparison of recognition results of the dependency-based approach with a pattern-based tagger.

numbers; in set-up #4 we attempt to grow extents contain-
ing these, but in set-up #5 we treat the numbers as com-
plete TEs in themselves. The difference in the results for
these two set-ups is, however, insignificant.

Just as when we used the individual subsets of triggers,
the absolute results for WikiWars are higher than those for
ACE: 0.73 vs 0.65 F-measure. However, we are more in-
terested in the gain obtained using the syntactic method as
compared to recognizing just the triggers, since this shows
just how much the dependency trees are useful for extent
recognition.

Set-up #1 provides gains which are quite different for
the two corpora: 0.44 for WikiWars and 0.18 for ACE (F-
measure). If we compare the results from set-up #5 with
those obtained when annotating the three sets of triggers
as TEs, the gains are very similar for the two corpora: 0.18
for WikiWars and 0.16 for ACE (F-measure). The gain for
WikiWars is now much smaller because many temporal
expressions are now matched by the rules that recognize
dates and times in conventionalised formats; on the other
hand, these rules make little difference when processing
ACE documents.

We note, however, that there is still a big gap be-
tween the strict and lenient results: 0.24 on ACE and
0.17 on WikiWars (F-measure). Also, the absolute perfor-
mance is lower than that which we can get with a pattern-
based tagger; in Table 4 we compare the best results of
the dependency-based approach with the DANTE tagger
(Mazur and Dale, 2007).

The picture is different if we evaluate the method only

on what are called event-based TEs. These have com-
plex syntactic structures, as their extent typically contains
dependent clauses; consider the following example:

(5) During the three months between the cease-fire and
the French referendum on Algeria, the OAS un-
leashed a new terrorist campaign.

For such expressions it seems practically impossible to
write a recognition grammar based on matching specific
lexical items, parts-of-speech or even syntactic chunks.
For a dataset consisting of 122 event-based TEs drawn
from WikiWars, our dependency-based approach scored
0.69 strict F-measure, while two pattern-based taggers,
DANTE and TERSEO,11 scored 0.06 and 0.03, respec-
tively.

6. Error Analysis

6.1. Sentence Splitting and Tokenisation
We found that in some cases, e.g. an email present-
ing a trip itinerary where the text was not organized into
sentences, sentence splitting negatively impacted extent
recognition.

The tokenisation carried out by parsers sometimes re-
sulted in combining two or more tokens into a single syn-
tactic node. This happens, for example, with date ranges
like 12-15 September, where the two hyphen-separated
numbers are treated as a single token, resulting in an ex-
tent that does not match the gold standard annotations.

11http://gplsi.dlsi.ua.es/˜stela/TERSEO.



6.2. Parsing Errors
A general problem is the attachment of prepositional
phrases and dependent clauses, as shown in Example (6);
here, the correct extents are marked with italics and the
extents found by the tagger are underlined.
(6) The British Army endured the bloodiest day in its his-

tory, suffering 57,470 casualties including . . .
In other cases the parses are broken and the extents of the
temporal expressions include extra tokens from a phrase
following the expression:
(7) . . . after stalling for a day against the main resistance

line to which the enemy had withdrawn.
These problems might be overcome by re-training the
parsers on more similar textual data.

6.3. Heads in Dependencies
There is not always a consensus view on what the role of
a given token in a dependency relation should be. The dif-
ferences between parsers in this regard sometime resulted
in a different tree than was expected; in particular, the trig-
ger was not always determined to be the head of a relation.

In some cases, for example in the case of conjunctions,
a node can occur as a child in two dependencies, with the
result that the output is a directed graph rather than a tree.
In an expression like the spring and early summer of 1943,
this has the consequence that both triggers spring and sum-
mer are extended to cover the entire expression.

6.4. Triggers
Recognizing dates and years as ‘fully-extended’ TEs (i.e.
immune from further extension using the dependency-
based approach) also contributed to a number of errors,
resulting in a failure to recognize references to decades
(the 1950s) and modified dates (early 1950).12

6.5. Heads of Temporal Expressions
It turns out that the assumption that the trigger is the syn-
tactic head of the TE that contains it does not always hold.
For example, the head of the expression the middle of Au-
gust is middle rather than August. The source of this prob-
lem lies in an inconsistency in the TIMEX2 guidelines: by
their definition of a TE, the expression consists of a trig-
ger and its syntactic pre- and postmodifiers. But in or-
der to capture semantic subtleties (e.g. that only a part
of a month is being referred to), the extent is permitted
to grow to include additional tokens beyond the syntactic
modifiers of the trigger. In WikiWars this affected 14% of
all incorrectly recognized expressions.

A similar issue concerns expressions like the 28th of
that month, where the head is 28th rather than month;
however, we did not use ordinal numbers as triggers, and
so expressions with this structure were only partially rec-
ognized.

12However, as we discussed earlier, applying the syntax-based
method to these triggers did not improve the overall results, be-
cause while some expressions obtain the correct extents, other
are damaged by including tokens from outside the correct extent
because of parsing errors.

7. Conclusions and Future Work
We have presented a new approach to recognising the ex-
tent of temporal expressions in text: given the trigger as
a seed, we grow the extent outwards by including all syn-
tactic nodes found in the dependency tree with the trigger
as root.

We experimented with four dependency parsers (Mini-
par, Stanford, C&C and Connexor) using two datasets (the
ACE 2005 Training corpus and WikiWars). The best re-
sults were achieved using the C&C Parser. The results
demonstrate that the method generally works as antici-
pated. The gap between the performance of the method
and the upper bound is, however, significant: 0.24 for the
ACE corpus and 0.17 for WikiWars. Our error analysis
reveals that in most cases the problem lies in an incor-
rect syntactic analysis being provided by the parser. We
also found that there are TEs where the trigger is not the
syntactic head. On WikiWars, this issue is implicated in
about 14% of the incorrectly recognized expressions. The
source of this problem lies, however, in an inconsistency
in the TIMEX2 guidelines.

The method is most useful for the recognition of
event-based TEs; these are expressions with complex syn-
tax which cannot be practically recognized by rule-based
grammars using lexical and shallow syntactic information
such as POS tags or chunking. On a dataset of 122 event-
based TEs drawn from WikiWars, the method achieved a
strict F-measure of 0.69, significantly outperforming two
rule-based systems which scored 0.03 and 0.06.

As future work we plan to experiment with using
phrase structures instead of dependency trees, to overcome
some of the problems noted above.

8. References
D. Ahn, S. F. Adafre, and M. de Rijke. 2005. Extracting Tem-

poral Information from Open Domain Text: A Comparative
Exploration. In Proc. of the 5th Dutch-Belgian Information
Retrieval Workshop, Delft, The Netherlands, March.

D. Ahn, J. van Rantwijk, and M. de Rijke. 2007. A Cascaded
Machine Learning Approach to Interpreting Temporal Ex-
pressions. In Proc. of HLT: The Annual Conference of the
North American Chapter of the ACL, Rochester, NY, USA.

S. Clark and J. R. Curran. 2007. Wide-Coverage Efficient Sta-
tistical Parsing with CCG and Log-Linear Models. Computa-
tional Linguistics, 33(4):493–552, December.

M.-C. de Marneffe, B. MacCartney, and Ch. D. Manning. 2006.
Generating Typed Dependency Parses from Phrase Structure
Parses. In Proc. of the IEEE / ACL 2006 Workshop on Spoken
Language Technology.

L. Ferro, L. Gerber, I. Mani, B. Sundheim, and G. Wilson. 2005.
TIDES 2005 Standard for the Annotation of Temporal Expres-
sions. Technical report, MITRE, September.

K. Hacioglu, Y. Chen, and B. Douglas. 2005. Automatic Time
Expression Labeling for English and Chinese Text. In A. F.
Gelbukh, editor, Computational Linguistics and Intelligent
Text Processing, 6th International Conference, LNCS, pages
548–559. Springer, February.

P. Mazur and R. Dale. 2007. The DANTE Temporal Expression
Tagger. In Zygmunt Vetulani, editor, Proc. of the 3rd Lan-
guage and Technology Conference, Poznan, Poland, October.

P. Mazur and R. Dale. 2010. WikiWars: A New Corpus for Re-
search on Temporal Expressions. In Proc. of the Conference
on Empirical Methods in NLP, pages 913–922.


