
Using Edit Distance to Analyse Errors in a Natural
Language to Logic Translation Corpus

Dave Barker-Plummer
Center for the Study of

Language and Information
Stanford University

Stanford, CA 94305, USA
dbp@stanford.edu

Robert Dale
Center for Language

Technology
Macquarie University

Sydney, NSW 2109, Australia

Robert.Dale@mq.edu.au

Richard Cox
Faculty of Information

Technology
Monash University

Clayton, VIC 3168, Australia

rcox@inf.ed.ac.uk

ABSTRACT
We have assembled a large corpus of student submissions
to an automatic grading system, where the subject matter
involves the translation of natural language sentences into
propositional logic. Of the 2.3 million translation instances
in the corpus, 286,000 (approximately 12%) are categorized
as being in error. We want to understand the nature of
the errors that students make, so that we can develop tools
and supporting infrastructure that help students with the
problems that these errors represent.

With this aim in mind, this paper describes an analysis of
a significant proportion of the data, using edit distance be-
tween incorrect answers and their corresponding correct so-
lutions, and the associated edit sequences, as a means of
organising the data and detecting categories of errors. We
demonstrate that a large proportion of errors can be ac-
counted for by means of a small number of relatively simple
error types, and that the method draws attention to inter-
esting phenomena in the data set.

1. INTRODUCTION
As reported in [2], we have developed a large corpus of stu-
dent submissions to an automatic grading system, where the
subject matter involves the translation of natural language
(nl) sentences into first-order logic (fol). The translation
exercises are a subset of the exercises in Language, Proof and
Logic (LPL; [6]), a courseware package consisting of a text-
book together with desktop applications which students use
to complete exercises.1 The translation exercises contain a
total of 275 distinct translatable sentences; an abridged ex-
ample of such an exercise is shown in Figure 1.2 We refer
to each translation of a sentence submitted by a student
as a translation instance; the corpus contains 4.5 million
translation instances, collected from more than 55,000 indi-
vidual students over the period 2001–2010. In this paper,
we focus on that subset of the data concerned with trans-
lations into propositional logic; this accounts for 2,340,306
translation instances. The Grade Grinder, our automatic
grading system, categorizes 286,106 of these (approximately
12%) of these instances as being in error; Figure 2 shows
some common incorrect solutions for the first sentence in

1See http://lpl.stanford.edu.
2The ‘∆’ column is explained later.

the exercise shown in Figure 1.

Currently, our grading system simply indicates whether
or not the student has obtained a correct answer. Our inter-
est is in (a) developing tools and supporting infrastructure
that can help students with these errors by providing better
feedback; and (b) using the evidence from the errors that
students make to drive broader pedagogical improvements.
In order to achieve these goals, we first need to acquire an
understanding of the kinds of errors that students make.

Of course, any teacher of logic has intuitions about what
aspects of logic students find hard and why. Any good logic
textbook embodies a distilling of what is essentially folk wis-
dom based on teacher experience. In contrast, our goal is
to use our large dataset of errors as part of an evidence-
based approach to diagnosing, assisting and correcting a
wide range of errors. There have been data-driven stud-
ies in the past (see, for example, our own [3]), but these
have been based on relatively small amounts of data, and so
there is a risk that they are essentially anecdotal.

Our goal, then, is to see what we can learn by looking at
larger and more comprehensive sets of student behaviour in
this domain. In this paper, we look at how edit distance
can be used as a tool for characterising the nature of the er-
rors in our dataset. We demonstrate that a large proportion
of errors can be accounted for by means of relatively simple
error types, and discuss how some of these errors correspond
to specific kinds of problems that students struggle with.

The structure of the remainder of this paper is as fol-
lows. In Section 2, we briefly review related work, describe
the data we work with, and outline our general approach
to its analysis. In Section 3, we provide some summary
statistics on the subset of the data that it is the focus of the
present paper. We then move on in Sections 4 and 5 to a de-
tailed analysis of the errors in this data set, and make some
observations based on our analyses. Finally, in Section 6,
we draw some conclusions and outline our future plans.

2. BACKGROUND

2.1 Related Work
Students have particular difficulty with the formalisation
tasks that underpin logic, and so it is not surprising that
there is a body of work that seeks to understand the nature
of these difficulties, often with the aim of improving on-line
tutoring systems; for example, Barnes et al. [5] studied stu-
dents’ logic learning trajectories in order to extend Deep



ö Exercise 7.12 (Translation) Translate the following En-
glish sentences into fol. Your translations will use all of the
propositional connectives.

(1) If a is a tetrahedron then it is in front of d.

(2) a is to the left of or right of d only if it’s a cube.

(3) c is between either a and e or a and d.

. . .

(19) a is large just in case d is small.

(20) a is large just in case e is.

Figure 1: An example exercise (7.12) from LPL

Ex. N Correct Incorrect ∆
1 429 Tet(a) →

FrontOf(a, d)
Tet(a) →
FrontOf(a, b)

1

2 254 ¬FrontOf(a, d) →
¬Tet(a)

FrontOf(a, d) →
Tet(a)

2

3 160 Tet(a) →
FrontOf(a, d)

Tet(a) →
FrontOf(d)

1

4 96 Tet(a) →
FrontOf(a, d)

Tet(a) ↔
FrontOf(a, d)

1

Figure 2: Correct and incorrect solutions to Exercise 7.12.1

Thought, a logic proof tutor, by adding a hint generator.

The work carried out by various groups has helped to
identify specific categories of error that recur in formalisa-
tion tasks.

Logical misunderstandings are cognitive misconcep-
tions, such as when a student substitutes the biconditional
(if and only if) for material implication (if . . . then), or when
they reverse the antecedent and consequent of an implica-
tion, writing A → B when the correct answer is B → A.
These misunderstandings are often related to what we might
think of as natural language transfer errors, where some
property true of the natural language sentence, typically to
do with its structure or ordering of elements, is also as-
sumed to be true of the formal translation. An early study
by Clement, Lochhead and Monk [8] investigated such trans-
lation difficulties in mathematics: students were instructed
to write an equation representing the statement There are
six times as many students as professors at this university,
and were told to use S for the number of students and P for
the number of professors. The most common error consisted
of reversing the variables in the equation, writing 6S = P.
An explanation of this phenomenon offered by Clement et
al. was word-order matching, in which the student or-
ders terms in their equation in a way that matches the order
of keywords in the problem statement.

A more general source of difficulty for students lies in
the stance they must adopt towards formal language, which,
compared to everyday discourse, is more concise, less redun-
dant, and has high information density and precision. Oth-
erwise everyday terms are often used in formal contexts with
quite specific meanings; Pimm [13] provides numerous ex-
amples of such ‘borrowed terms’ in mathematics (e.g., face,
mean, real, natural). Consequently, a student may bring ex-
pectations in regard to the use of particular terms that are
not in fact borne out.

Of course, errors which are not unique to formalisation
also manifest themselves in formalisation tasks. Slips [14]
are such a type of error; in the context of the translation of
natural language into logic, an example would be an atten-
tional lapse resulting in a student using the wrong letter to
denote a constant (e.g., b instead of d).

Our own work to-date has focussed upon characterizing
logic translation tasks in terms of the grammatical and other
features of the English sentences to be translated, and upon
the elucidation of the nature of errors made by students
on those tasks. In previous work we have carried out a
detailed analysed of the errors that students make when
performing translation tasks using data from just one of the
LPL exercises [3], and we have compared the errors that
students make when translating into logic as compared to
diagrammatic form [9], together with the effects of visual
and spatial content [4]. We have also looked at students’
individual learning trajectories by examining their repeated
submissions to the Grade Grinder [1].

2.2 The Data
LPL contains 33 exercises that involve translations of natu-
ral language into logic. Each exercise involves multiple sen-
tences to be translated, so these 33 exercises consist of 275
distinct natural language sentences that students are asked
to translate. A complete list of the sentences to be trans-
lated, together with the number of translation instances we
have for each natural language sentence, and the proportion
of instances that were deemed by the Grade Grinder to be in
error, is provided in [2], along with other detailed statistics.

When a student submits an exercise, the Grade Grinder
assigns a status to each sentence in that exercise. An exer-
cise is considered correct if every sentence in the submission
is assigned a status of correct, which indicates that the
sentence is provably equivalent to a gold-standard correct
answer. Other common statuses include incorrect, which
indicates that the sentence is not provably correct, and ill-
formed, which indicates that the student’s submission is
not a well-formed formula of first-order logic.

Each entry in our corpus records the identity of the sen-
tence being translated, a unique identifier for the student,
the particular string submitted by the student, and the sta-
tus that it was assigned by the Grade Grinder. Auxilliary in-
formation concerning the time at which the submission was
made, and other similar meta-information, is also recorded,
but plays no role in the current study.

LPL introduces the language of first-order logic in two
stages. In the first, the quantifier-free fragment (proposi-
tional logic) is introduced, while consideration of the full
first-order language is deferred until the second stage. All
of the data for this study is drawn from exercises in propo-
sitional logic, i.e., from Chapters 1–8 of the textbook; this
results in a subcorpus of 286,106 translation instances.

2.3 Approach
In our earlier explorations of the data [1; 3; 4; 9], we used
a somewhat labor-intensive approach to uncovering the na-
ture of the errors that students make: this involved writ-
ing exercise-specific regular expressions to pick out relevant
properties of each submitted answer. Such an approach is
appropriate for initial forays into large datasets, since it
gives a sense of the range and variety of the data; but it
doesn’t scale up to data collections like the one focussed on



here. We need a way to manage the dataset that provides
some structure, and provides some means for determining
how subsequent more-detailed analyses might be prioritised.

Given our pedagogical aims, a sensible strategy is to
focus on what is common and repeated in the data; if there
are some mistakes that many students make, it obviously
makes sense to develop techniques to address these issues,
rather than focussing on much rarer errors whose probabil-
ity of reoccurrence is small. But this immediately presents
us with a problem. The natural language sentences that
students are asked to translate are deliberately and neces-
sarily quite varied, often combining a variety of phenomena
both in their surface forms and in their corresponding log-
ical translations. This is entirely appropriate if we want to
test a student’s ability to deal with non-trivial formalisation
problems that are not unidimensional; but this property of
the data also makes it difficult to identify and characterise
the important features that are shared across instances of
error. Put simply: any given incorrect solution provided
by a student may simultaneously represent a number of dif-
ferent errors, and the same error or misunderstanding may
manifest itself in different sentences in different ways.

Our approach is to seek a method of characterising, for
any pairing of a correct answer and an incorrect translation
provided by a student, the delta between the two. This delta
captures the essence of the particular error or set of errors
that the student made; we can then look for similarities
across the deltas found in different contexts, with the aim
of identifying common problems that recur. Essential to
making this work is the availability of a representation that
abstracts out just the right characteristics of the delta.

An approach to characterising error that has been used
in other domains—most notably in the context of natural
language spelling correction—is that of edit distance [12].
The idea here is much-studied and well-known: the dif-
ference between two objects can be characterised by a se-
quence of edit operations (typically, the insertion, deletion
and transposition of elements), and the length of this se-
quence is the edit distance between the two objects.3 In the
context of spelling correction, the objects are strings whose
constituent elements are characters; the edit operations are
therefore the insertion, deletion and transposition of char-
acters. The misspelling teh is then correctable to the by a
single transposition, giving an edit distance of 1. An oft-
cited finding is that 80% of spelling errors are edit distance
1 from their corresponding correct forms [10], supporting
a view that most errors are simple; in the interface to a
spelling correction program, this provides a basis for order-
ing potential corrections in terms of increasing edit distance.

Technically, the approach just described uses the no-
tion of string edit distance. However, our sense is that
the tree structure of well-formed logic sentences will play a
role in characterising the nature of the errors that students
make; we already saw hints of this in our earlier work [3],
where we identified antecedent–consequent reversal (where,
effectively, two subtrees in a formula are transposed) as a
common error type. Consequently, rather than string edit
distance, we use tree edit distance. Here, the edit dis-
tance is defined between ordered labelled trees, i.e., trees

3Substitution is also sometimes considered an atomic oper-
ation, but this can be achieved by a deletion followed by an
insertion.

→

Tet

a

Tet

d

⇒ ∧

Tet

a

Tet

d

Figure 3: Relabelling

∧

Tet

a

¬

LeftOf

a c

Dodec

c

⇒ ∧

Tet

a

LeftOf

a c

Dodec

c

Figure 4: Node deletion/insertion

in which each node has an associated label, and the order
of the children of a node is considered significant. We will
use the term tree as a shorthand for ordered, labelled trees.
The edit distance between two trees is defined as the min-
imum number of edit operations that must be applied to
one tree, the source, to make it identical to another, the
target. Critical to this definition is a set of edit operations
that we have available to make this transformation. In our
formulation, which is typical, three edit operations are avail-
able: relabeling, in which the label on the node of a tree is
changed; deletion, in which a node is deleted from the tree,
with any children of the deleted node becoming children of
the deleted node’s parent (in order); and insertion, the in-
verse of deletion. Figure 3 shows a relabelling operation
applied to a tree; Figure 4 shows a case where a node has
been deleted in the move from left-to-right, or equivalently
inserted from right-to-left.

The edit distance problem in trees has been studied
extensively (see [7] for a survey); our implementation is of
the algorithm due to Klein [11]. More efficient algorithms
exist, but the additional complexity of these algorithms is
not justified in our context primarily because our trees are
quite small.

It is important to note that translation exercises do not
have unique solutions. Student submissions are graded as
correct if they are provably equivalent to a gold-standard
correct answer known to the system. Consequently, the cor-
pus contains a set of submitted correct answers in addition
to the set of submitted incorrect answers. This presents a
problem for our approach: which of the possible correct an-
swers should we compute the distance from when consider-
ing a given incorrect answer? Our response to this problem
is to choose the correct answer for which the edit distance is
minimized. This strategy essentially embodies the assump-
tion that simple errors are more likely.

Figure 2 shows some example pairs for translations of
Sentence 7.12.1 in Figure 1. Example 1 demonstrates an er-
ror with edit distance 1, as indicated by the column headed
‘∆’. Here, the student has used the constant b when a was
required by the correct answer. Note that a different cor-
rect answer is used in Example 2: a simple description of
this error is that the student has reversed the order of the
antecedent and consequent, but an alternative explanation



Figure 5: Cumulative coverage by error type

Figure 6: Proportions of data by edit distance

is the one shown here, which is that they have omitted nega-
tion symbols from the contrapositive of the answer in Ex-
ample 1. This transformation has an edit distance of 2, and
is ‘cheaper’ than the corresponding reversal.

3. ERROR DISTRIBUTION
An error instance is an occasion of a particular student
submitting a particular incorrect translation for a given nl
sentence; an error type is a pairing of an incorrect transla-
tion with the correct translation of that sentence, abstracted
away from its particular occurrences in the data. The point
here is that the data manifests varying numbers of instances
for each distinct error type: some incorrect translations are
very common (i.e., many students provide the same incor-
rect translation) and some are rare (i.e., only one or two
students produce that particular error).

Our 286,106 error instances are distributed across a total
of 27,151 error types, but the distribution is very skewed:
the 19 most frequent error types account for 20% of the
data, and 142 types account for 50% of the data. Figure 5
shows the cumulative coverage of the error types in order of
their frequency in the data.

A note is in order here in regard to our use of abso-
lute counts of errors, rather than proportions of incorrect
solutions for each translation. It might be thought that the
latter would provide a more realistic measure of where the

difficulties lie for students: if only 10 students attempt one
question and nine get it wrong, this suggests that the ques-
tion is more difficult than one where 1000 students attempt
the question and 500 get it wrong, despite the larger abso-
lute count of errors in the second case. However, the fact
remains that some sentences are translated more often than
others; and if we want to maximise the impact of our work,
it is the questions which generate high numbers of errors,
irrespective of the number of attempts, that are most im-
portant. Consequently, in this paper we report statistics in
terms of absolute counts, although for other purposes pro-
portions will be more informative.

We note that the most frequent error types in the data are
edit distance 1 from their respective correct translations. We
call such errors unit errors or units. Unit errors account
for 42.24% of the incorrect answer instances, and errors with
edit distance 2 account for a further 24.97% of the incorrect
answer instances, for a total of 67.22%. Figure 6 breaks
down the error instances by edit distance. There is a long
tail, and so the graph in this figure is truncated: the largest
edit distance represented in the corpus is 73 (with one in-
stance).

Given the preponderance of relatively simple errors, in
the remainder of this paper we focus on the simple and eas-
ily detectable edit sequences as a means of organising and
analysing the data. This is not to say that the more complex
errors are not important; they still account for a significant
proportion of the data. However, the analyses required to
identify the relevant patterns are correpondingly more com-
plex. Our strategy is therefore to explore the simpler errors
first, with the possibility of subsequently factoring these el-
ements out from the more complex errors to further assist
in managing the complexity.

4. HOMOGENEOUS EDITS
Our goal is to use edit distance as a way of organising the
errored data in the corpus. We are interested in two things
here, both of which are explored further below.

1. We want to see whether edit distance as a metric pro-
vides a useful way to organise and analyse the data;
for example, we might expect that it would allow us
to organise the data in terms of the complexity of the
errors contained.

2. In terms of exploring the particular errors that stu-
dents make, it is conceivable that the edit sequences
required to transform an error into its corrected form
might reveal something about the nature of the errors
made.

As a first step, we organise relabellings into three sub-
categories: relabelConn, relabelConst, and relabelPred.
The basis for this categorization is the syntactic category of
the tokens that participate in the relabeling. The tree edit
distance algorithm is domain-independent, and thus it has
no information about the roles of the symbols at the nodes of
the trees. At the logical level, we distinguish between con-
stant symbols, which serve to name objects, predicate
symbols, which serve to name properties and relations, and
logical connectives, which connect together sentences into
larger sentences. When a node relabeling operation involves
symbols which are both of the same syntactic category, then



Ex. Correct Incorrect Instances Edit Sequence

1
¬Between(c, a, b) ∧
¬(FrontOf(c, a) ∨
FrontOf(c, b))

¬Between(c, a, b) ∨
¬(FrontOf(c, a) ∧
FrontOf(c, b))

521
[relabelConn ∨ at 〈〉 to ∧ at 〈〉,
relabelConn ∧ at 〈.2.1〉 to ∨ at 〈.2.1〉]

2
(LeftOf(a, d) ∨
RightOf(a, d)) → Cube(a)

(LeftOf(a, d) ∨
RightOf(a, d)) → Cube(d)

899 [relabelConst d at 〈.2.1〉 to a at 〈.2.1〉]

3
SameCol(b, e) ∧
SameRow(e, d) ∧
SameCol(d, a)

SameCol(b, e) ∧
SameCol(e, d) ∧
SameCol(d, a)

769
[relabelPred SameCol at 〈.2〉 to SameRow at
〈.2〉]

4 Cube(a) Cub(a) 1 [relabelPred Cub at 〈〉 to Cube at 〈〉]
5 ¬Cube(b) → Tet(c) Cube(b) → ¬Tet(c) 1262 [insert ¬ at 〈.1〉, delete ¬ at 〈.2〉]

Table 1: Some representative error types

we categorize this relabeling as the appropriate subcate-
gory above. A relabeling which involves labels from more
than one syntactic category—for example, a constant be-
ing replaced by a connective—is called relabelMixed. The
relabelMixed edit is very rare in the corpus; in fact there
are only three homogeneous relabelMixed edit sequences,
each of which accounts for one error instance. We note that
a similar subtyping of the insert and delete is possible,
but we have not yet made use of this granularity.

Example 1 in Table 1 presents an instance of relabelConn,
where the student wrote ∨ when ∧ was expected; Example
2 in that table presents an instance of relabelConst, where
the student wrote d where a was expected; and Example 3
in the table presents an example of relabelPred, where the
student wrote SameCol in place of SameRow.

Having identified these different classes of edit operations,
we can distinguish two kinds of edit sequences: those that
are homogeneous and those that are heterogeneous. We
call an edit sequence homogeneous if all of the edit oper-
ations in the sequence are of the same type: for example,
they might be all insert or all relabelConn operations.
Any edit sequence that is not homogeneous is heteroge-
neous.

Homogeneous edit sequences are significant from our point
of view because they have the potential to be identified and
analysed more easily. For example, a homogeneous edit se-
quence that contains only relabelConst edits indicates that
the student has made a mistake concerning only the con-
stants and their positions within the answer sentence, but
the other features of the sentence are correct. The analysis
of these errors based on the information in the edit sequences
that they produce is likely to be more tractable, while the
analysis of heterogeneous edit sequences, by contrast, will
be more involved.

Moreover, homogeneous edit sequences account for more
than 60% of the error instances in the corpus. Focussing on
these edit sequences enables us to make significant headway
in understanding the nature of the errors that students make
without having to interpret convoluted edit sequences.

Within the homogeneous edits, we distinguish two cat-
egories: relabellings, and insertions and deletions. A
homogeneous relabeling edit consists only of relabelling op-
erations of a single type (for example, all relabelConst or
all relabelConn), indicating that the structure of the for-
mula tree that the student produced was identical to that
which was expected (as in Figure 3 shown earlier). Homoge-
neous insertion and deletion sequences, on the other hand,

consist of only insert or delete operations (although with
possibly different operands), meaning that the structure of
the formula tree produced by the student was different from
that which was expected (Figure 4 shows a case where a
single delete has occurred).

4.1 Relabellings

4.1.1 relabelConn

The largest category of homogeneous relabellings in the data
are sequences of one or more relabelConn edits. These
account for 25.10% of the error instances, with 23.45% of
the total data set being units; this indicates that students
often get the overall structure of the solution correct, but
are confused about which logical connectives to use to cap-
ture the intended meaning. A simple example of a pair
of sentences exhibiting this pattern is the student sentence
Tet(a) ∧ Tet(b) being provided when the correct answer is
Tet(a) → Tet(b); as shown in Figure 3, here the connective
relabeling occurs at the root of the tree.

It is interesting to look more closely at the particular
relabellings that students use. Table 2 presents a confu-
sion matrix that shows, for each pair of connectives, how
often one connective is found when the other is expected.
The numbers here indicate the proportion of attempts that
generated the error in each case; so, for example, the pair
〈Found: ↔, Expected: →〉 has a value of 10.33%, indicat-
ing that in 10.33% of the situations where a biconditional
was expected, the student instead used an implication.4 Ex-
ample 4 in Figure 2 provides an example of this extremely
common error type.

The other notable confusion here is the use of conjunc-
tion when disjunction is required; this occurs in 2.74% of
possible cases. For both these confusions, the inverse sub-
stitution is also quite prominent, but in neither case to the
same extent. This data provides insights into the particular
connectives that cause problems for students, and suggest
where in the data more detailed analysis might be performed
to build an understanding of student misconceptions.

4Note that these numbers are for homogeneous relabellings
only, i.e., cases where the structure of the formula provided is
otherwise correct. It is highly likely that this same error oc-
curs as part of more complex heterogeneous edit sequences,
but these are harder to isolate.



expected
found ⇓ ∧ ∨ → ↔

∧ – 2.74% 0.50% 0.44%
∨ 0.79% – 0.07% 0.06%
→ 0.45% 0.09% – 10.33%
↔ 0.20% 0.09% 2.54% –

Table 2: Confusion of connectives

4.1.2 relabelConst

Our results show that 13.20% of the error instances are ac-
counted for by homogenous relabelConst edits, of which
the first 3.32% are units. A confusion matrix illustrating
students’ constant substitutions is provided in Table 3.

In [3], we reported data from a smaller-scale study of
constant substitutions based on data from just one of the
LPL exercises. We noted that this kind of error seemed to
interact with (1) the use of the constant a in a sentence; (2)
whether a was the first-mentioned constant in the sentence;
and (3) whether the constant names were alphabetically ad-
jacent (e.g. 〈a, b, c〉) as opposed to being alphabetically
‘gappy’ (e.g. 〈b, e, d〉). What we referred to as the gap-
piness effect was statistically significant, being magnified
when (1) the letters used as constants were not alphabet-
ically adjacent; and (2) the first constant name mentioned
in the sentence was a. Table 3 shows that the most com-
mon constant substitution is 〈Found: b, Expected: e〉. The
nl sentence with which this substitution is most frequently
associated is Neither e nor a is to the right of c and to
the left of b. The next two most common substitution pat-
terns are 〈Found: c, Expected: e〉 and 〈Found: b, Expected:
d〉. These three frequent substitutions are ones in which
the substituted constant appears earlier in the alphabetic
sequence than the expected constant; this is consistent with
the operation of a gappiness effect.

Table 3 shows that the fourth largest proportion is as-
sociated with 〈Found: a, Expected: f〉. An inspection of
the nl sentences suggests that this is associated with cases
where they contain a and another constant, b. This partic-
ular substitution is rarer when a is present as the only other
constant, or when the other constants are not a and b (e.g., c
and d). This apparent trend warrants further investigation.

The fifth most frequent substitution is 〈Found: d, Expected:
a〉. One sentence (a is to the left or right of d only if it’s
a cube) stands out in relation to this error. Here there is
anaphoric reference to an object that is a cube; the inten-
tion is that the cube should be labelled a, but clearly many
students resolve it to the cube with identity d.

4.1.3 relabelPred

The relabelPred operation appears relatively infrequently
in the data corpus. Only 4.51% of the error instances are
accounted for by homogenous relabelPred edits, of which
the first 3.32% are units.

An interesting example of this is where the correct sentence
is SameCol(b, e) ∧ SameRow(e, d) ∧ SameCol(d, a) while the
incorrect answer is SameCol(b, e) ∧ SameCol(e, d) ∧ SameCol(d, a).
This is the second most frequent homogeneous relabelPred
sequence, accounting for 769 error instances. Like gappiness,
this appears to be the result of students’ inability to adopt
a sufficiently careful stance toward the formalization task.

found ⇓ expected
a b c d e f

a - 0.11% 0.20% 0.07% 0.10% 0.31%
b 0.05% - 0.15% 0.47% 0.48% 0.04%
c 0.05% 0.13% - 0.12% 0.42% 0.02%
d 0.20% 0.08% 0.09% - 0.13% 0.05%
e 0.07% 0.05% 0.10% 0.08% - 0.08%
f 0.02% 0.01% 0.01% 0.04% 0.02% -

Table 3: Confusion of constants

In this case, one predicate from the expected language
(here, the Blocks World language) is replaced by another
from the same language;5 however, we also find cases where
a predicate is replaced by one from outside the language. In
the most common instance of this type, instead of the ex-
pected answer 2 : 00 < 2 : 05 we find the answer Earlier(2 : 00, 2 : 05):
The student has here used a predicate derived from the lex-
ical content of the nl sentence, but this predicate does not
exist in the expected formal language (the Pets World lan-
guage). This error type accounts for 1976 error instances.6

4.2 Insertions and Deletions
So far we have discussed only relabeling operations, but the
tree edit distance computation also allows for the inclusion of
insert and delete operations in the edit sequences. Each
such edit operation inserts or deletes a node into the source
tree as it is transformed to the target. Unlike relabeling
operations, insert and delete modify the structure of the
trees in order to align them. Just as a homogeneous
relabeling edit sequence may relabel nodes at various points
in the tree, a homogeneous sequence of delete operations
could delete many nodes from the tree. However, we might
expect that deletions would come in groups. For example,
consider again the error in Example 2 of Figure 2, but this
time computing the distance from the correct answer shown
for Example 1 in that table. A simple description of this
pair is that the incorrect answer has the antecedent and
consequent of the implication switched. The shortest edit
sequence that achieves this is one which: (1) deletes the node
labelled Tet from its position in the consequent (one opera-
tion); (2) inserts it as the new antecedent (one operation);
(3) removes the node labelled a from its original position
(one operation); and (4) inserts a as a child of Tet in its new
location, for a total edit distance of 4. But notice that here
the insert and delete operations come in pairs, and that
the deleted nodes form a subtree of the original tree. We
call these local insert or delete sequences. We believe that
these local sequences may be of particular interest, because
they appear to aggregate as higher level operations.

There is an interesting asymmetry in our data. There
are many more homogeneous edit sequences involving in-
sert (15.51% of all error instances, with the first 4.34%
being units) than there are using delete (only 2.16% of all
error instances, with the first 1.10% being units). This in-
dicates that students are more likely to provide translations

5Most exercises in LPL use the language of a Blocks World;
there are also exercises that make use of a ‘Pets World’ of
pets and their owners.
6Note that the notion of being outside the language also in-
cludes the possibility that a student commits a simple typ-
ing error, such as typing Cub where Cube is expected; see
Example 4 in Table 1.



that omit information present in the nl sentence than they
are to add information. This seems plausible, since any addi-
tional information would have to come from somewhere, and
this would have to be from outside the source sentence. It is
much more likely that students misread the sentence, failing
to notice or express relevant information that is present.

One example of students providing ‘extra’ information
in their answer is in an exercise containing the sentence No-
tice that f (the large dodecahedron in the back) is not in front
of a. Use your first sentence to say this. In this exercise,
students are looking at a picture of a situation in which the
sentences are true. We intend the student to translate f is
not in front of a, and provide a parenthetical hint to help
them identify f in the picture. 687 students additionally pro-
vide the information that f is a large dodecahedron. This
finding suggests that some students are so focussed on the
operations required by the translation task that their aware-
ness of problem context is diminished, a process akin to the
phenomenon of suspension of sense-making proposed in
[15].7

5. HETEROGENEOUS EDITS
As noted above, homogeneous edit sequences account for
just over 60% of the data; consequently, 40% of the error
instances are heteregeneous, i.e. they consist of more than
one type of edit operation.

Our intuition is that particular subsequences (or, more
likely, particular subsets) of the edits that make up these edit
sequences will correspond to characteristic errors. Identify-
ing these patterns would then allow us to detect the same
or similar errors occurring in quite different contexts. How-
ever, we observe that, as with so many pattern recognition
problems, getting the representation right is crucial, and it
is quite likely that the particular set of edit operations we
have chosen to use is not optimal for this purpose.

As a case in point: in our earlier work, we identified
antecedent–consequent reversal as a particularly prevalent
error. From the perspective of tree manipulation, this cor-
responds to a swapping of two subtrees. Such an operation
is only indirectly perceptible in terms of our current edit
operations. Although we could derive a characterisation of
this error in terms of the lower-level operations, an alter-
native would be to ‘reify’ it in terms of higher-level tree
manipulation operations; in particular, we might make tree
insertion and deletion be primitive operations in determin-
ing edit sequences and the corresponding edit distances. The
technical challenge here is to retain the tractability of the
edit distance computation if these more complex operations
are permitted.

As an exploration of the potential of such higher-level
edit operations, we observe that one characteristic of the
relocation of a subtree is that it will consist of n delete
operations paired with n insert operations.8 It turns out
that 4.94% of the error instances in our data set consist
of n inserts and n deletes, which we might think of as
the simplest form of heterogeneous edits. Note that this

7As a result of finding this phenomenon in the data, we have
subsequently configured the Grade Grinder to accept this as
a correct answer.
8There are, of course, a number of other constraints, most
notably the relationship between the addresses of the nodes
in each pair of inserts and deletes.

delete insert Count
¬ ¬ 8581

folly folly 1406
a a 410

Figure 7: The three most common symbol movements

category does not include longer edit sequences that contain
equal numbers of inserts and deletes in conjunction with
other edits, so the actual number of such pairs is likely to
be larger.9

One must be careful in interpreting such numbers. It
is certainly not the case, for example, that all of these cor-
respond to subtree movements: apart from the fact that
other constraints must be met for a subtree movement to
be in evidence, the reality is that the vast majority of these
paired inserts and deletes consist of exactly one instance
of each, and so they correspond to movements of single sym-
bols rather than larger structures: such movements account
for 4.58% of the error instances in the corpus. But even this
simpler observation is an important finding: Figure 7 shows
the three most common symbol movements that occur in the
data set. This reveals that by far the most common error
of this type is misplaced negation, as in Example 5 in Ta-
ble 1; this is clearly a place where students need assistance.
The other two cases shown in this table are most likely to
be instances of argument movement (although it is conceiv-
able that there are other causes of the phenomena), which
arises whenever a student provides an answer that has the
arguments in the wrong order.

6. CONCLUSIONS
Students find formalisation hard; but the ability to formalise
problems underpins many fields, and so any means we can
find to improve student abilities in this regard is important
and valuable. Our ultimate goal is to develop evidence-based
pedagogy in this area, and so we want to take advantage
of our large data set of student translations to guide this
activity.

Unfortunately, there are no established analytical tools
for exploring this kind of data. In this paper, we have pre-
sented the results of an initial exploration that uses the no-
tions of edit distance and edit operation sequence as a means
to better understanding what it is that students do wrong
when they make mistakes in nl to fol translation. We have
been encouraged by the outcomes:

1. Unit errors and edit distance 2 errors account for ap-
prox 67% of our data, permitting tractable use of tree
edit distance as a useful data mining method in our
domain.

2. Results from the application of tree edit distance vali-
date our earlier, pilot findings from analyses of a sub-
sample of the data analysed in this paper. In par-
ticular, the analysis provides support for our earlier

9We say only likely because it is correspondingly more dif-
ficult to determine whether the inserts and deletes are
related to each other; in more complex sequences, it is also
possible that some inserts or deletes belong to some other
higher-level transformation.



observations in regard to gappiness in constant substi-
tutions, and antecedent–consequent reversal [3]. Vali-
dating previous results by triangulation using different
methods promotes confidence in the findings.

As noted throughout this paper, a number of more specific
findings provide important stepping-off points for developing
a better understanding of the nature of common student
errors.

Of course, much remains to be done. So far, we have
shown that the techniques described here allow us to identify
particular errors that manifest themselves in many different
circumstances; but this is really a descriptive analysis of the
data, and does not necessarily correspond to the kinds of
explanations for these errors that we might need if we want
to provide appropriate assistance to students. In some cases
the explanation may seem to follow straightforwardly from
the description, but in other cases we need to dig deeper into
the context (what are the characteristics of the nl sentence
being translated? what is the student’s history of error?) in
order to provide an explanation. Moving in this direction is
a major priority in our future work.

Orthogonal to this line of development, we should note
also that we have focussed here on what we call homoge-
nous edits, these being the simpler to identify and anal-
yse. As noted earlier, these account for 60% of the data, so
they allow us to make considerable headway; but this leaves
the 40% of the data that correspond to heterogeneous edits
still to be explored. One strategy we aim to pursue here
is to see whether we can decompose heterogeneous edit se-
quences into partitions, some of which may correspond to
the homogenous edit sequences we have already explored;
this would then leave a simpler residue still to be char-
acterised. However, we suspect that there may be more
mileage to be gained by revising the set of edit operations
used to be closer to the kinds of operations that are more
conceptually valid in the domain; for example, allowing in-
sertion and deletion of entire subtrees as atomic operations
may provide a better way of characterising some of the mis-
takes that students make.

Armed with these kinds of tools, we hope to be able to
develop a better understanding of the mistakes that students
make, and to provide appropriate assistance.

7. ADDITIONAL AUTHORS
Additional authors: Alex Romanczuk, CSLI/Stanford Uni-
versity, email: aproman@stanford.edu.

8. REFERENCES
[1] D. Barker-Plummer, R. Cox, and R. Dale. Dimensions

of difficulty in translating natural language into first
order logic. In Second International Conference on Ed-
ucational Data Mining, pages 220–229. Cordoba Spain,
2009.

[2] D. Barker-Plummer, R. Cox, and R. Dale. Student
Translations of Natural Language into Logic: The
Grade Grinder Corpus Release 1.0. In Proceedings of
The 4th International Conference on Educational Data
Mining, pages 51–60, 6th–8th July 2011.

[3] D. Barker-Plummer, R. Cox, R. Dale, and
J. Etchemendy. An empirical study of errors in

translating natural language into logic. In V. Sloutsky,
B. Love, and K. McRae, editors, Proceedings of the
30th Annual Cognitive Science Society Conference,
pages 505–510. Lawrence Erlbaum Associates, 2008.

[4] D. Barker-Plummer, R. Dale, and R. Cox. Impedance
effects of visual and spatial content upon language-to-
logic translation accuracy. In C. Hoelscher, T. F. Ship-
ley, and L. Carlson, editors, Proceedings of the 32nd An-
nual Cognitive Science Society Conference, pages 3259–
3264. Lawrence Erlbaum Associates, 2011.

[5] T. Barnes, J. Stamper, L. Lehmann, and M. Croy. A
pilot study on logic proof tutoring using hints generated
from historical student data. In T. B. R. Baker and
J. Beck, editors, Proceedings of the 1st International
Conference on Educational Data Mining (EDM 2008),
pages 197–201. International Educational Data Mining
Society, 2008.

[6] J. Barwise, J. Etchemendy, G. Allwein, D. Barker-
Plummer, and A. Liu. Language, Proof and Logic. CSLI
Publications and University of Chicago Press, Septem-
ber 1999.

[7] P. Bille. A survey on tree edit distance and related prob-
lems. Theoretical Computer Science, 337:217–239, 2003.

[8] J. Clement, J. Lochhead, and G. Monk. Translation dif-
ficulties in learning mathematics. The American Math-
ematical Monthly, 88(4):286–290, 1981.

[9] R. Cox, R. Dale, J. Etchemendy, and D. Barker-
Plummer. Graphical revelations: Comparing students’
translation errors in graphics and logic. In G. Stapleton,
J. Howse, and J. Lee, editors, Proceedings of the Fifth
International Conference on the Theory and Applica-
tion of Diagrams. Lecture Notes in Computer Science
LNAI 5223, Berlin: Springer Verlag, 2008.

[10] F. Damerau. A technique for computer detection and
correction of spelling errors. Communications of the
ACM, 7(3):171–176, 1964.

[11] P. N. Klein. Computing the edit-distance between un-
rooted ordered trees. In Proceedings of the 6th Annual
European Symposium on Algorithms (ESA), pages 91–
102. Springer-Verlag, 1998.

[12] V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet Physics Doklady,
10:707–710, 1966.

[13] D. Pimm. Speaking Mathematically. Routledge and
Kegan Paul, 1987.

[14] J. Reason. Human Error. Cambridge University Press,
1990.

[15] L. Verschaffel, B. Greer, and E. de Corte. Making Sense
of Word Problems. Swets and Zeitlinger, 2000.


