

At Last! A Reason to Generate Language from Logic

Robert Dale rdale@ics.mq.edu.au

Collaborative work with Dave Barker-Plummer, Stanford; Richard Cox, U Sussex; Mark Dras and Rolf Schwitter, Macquarie U

The Aims of This Talk

- To introduce a new problem in Natural Language Generation
- To sketch the approach we intend to take
- To provide some initial data analysis

Agenda

- Approaches to Generation, Past and Present
- The OpenProof Project
- Paraphrase Selection
- A Look at Some Real Data
- Next Steps

How Natural Language Generation Used To Be Done

The predominant approach until this decade:

- Requires a rich input knowledge representation
- Discourse generation starts with a communicative goal
- Makes subtle linguistic decisions about what to say and how to say it using a domain model, a discourse model and a user model

A Traditional NLG Architecture

One Example: An SPL input to KPML

```
(I / greater-than-comparison
  : tense past
  : exceed-q (I a) exceed
  : command-offer-q notcommandoffer
  : proposal -q notproposal
  : domain (m / one-or-two-d-time : lex month : determiner the)
  :standard (a / quality :lex average determiner zero)
  :range (c / sense-and-measure-quality :lex cool)
  :inclusive (r / one-or-two-d-time
    : lex day
    : number plural
    :property-ascription (r / quality :lex rain)
    : si ze-property-ascription
                          (av / scalable-quality : lex the-av-no-of)))
```

The month was cooler than average with the average number of rain days.

Decision Making in a Systemic Network

Realisation Statements

How Natural Language Generation Gets Done Today

- Input is either:
 - an underspecified knowledge representation
 - other texts
- Language models are used to choose most likely realisation

Problems

- For the earlier approaches:
 - The rich underlying representations just don't exist
- For the later approaches:
 - No insights into the really interesting questions about language use

Agenda

- Approaches to Generation, Past and Present
- The OpenProof Project
- Paraphrase Selection
- A Look at Some Real Data
- Next Steps

Language, Proof and Logic

A Translation Exercise

- 7.12 (Translation) Translate the following English sentences into FOL. Your translations will use all of the propositional connectives.
 - 1. If a is a tetrahedron then it is in front of d.
 - 2. a is to the left of or right of d only if it's a cube.
 - 3. c is between either a and e or a and d.
 - 4. c is to the right of a, provided it (i.e., c) is small.

A Grade Grinder Report

EXERCISE-7.12.Sentences-7.12.error.1=*** Your first sentence, "FrontOf(a,d) \rightarrow Tet(a)", is not equivalent to any of the expected translations.

The Grade Grinder Dataset

The Grade Grinder

- can process solutions to 489 of the 748 exercises in the LPL book
- has been used by more than 38000 individual students over the last eight years, from around 100 institutions in around a dozen countries
- has assessed approximately 1.8 million individual submissions (each of which can contain zero or more exercises)

Hypothesis

 Perhaps we can provide better feedback by translating the student's errored solution back into natural language, so they can see their error

An Example

- English sentence:
 - John is either at the library or at home.
- Incorrect student translation (too weak):
 - Lib (j) \vee Home (j)
- Correct translation:
 - -Lib(j) \vee Home(j) $\wedge \neg$ (Lib(j) \wedge Home(j))
- A possible back-translation of the student's answer:
 - John is either at home or at the library or both.

What This Might Look Like

You were asked to translate:	John is either at the library or at home.
You translated this as:	Lib(j) ∨ Home(j)
But what you said really means:	John is either at home or at the library or both.

Agenda

- Approaches to Generation, Past and Present
- The OpenProof Project
- Paraphrase Selection
- A Look at Some Real Data
- Next Steps

Generating Paraphrases

The Basic Idea:

- The same logical form can be rendered in many different ways in NL
- Some renderings may be easier for a student to understand
- Some renderings may make it easier for a student to see where they have gone wrong

The Aim:

 to develop automatic natural language paraphrase capabilities that, given a student's incorrect answer, are able to select and formulate an appropriate natural language expression that makes clear the difference between this and the correct answer

Paraphrase 'Distance From Source'

[Home(john) \vee Home(mary)] $\wedge \neg$ [Home(john) \wedge Home(mary)]

- Either John is home or Mary is home and it's not the case that John is home and Mary is home
- Either John or Mary is home and it's not the case that John and Mary are both home
- Either John or Mary is home but it's not the case that John and Mary are both home
- Either John or Mary is home but it's not the case that both of them are home
- Either John or Mary is home but not both

A Paraphrase Graph

Basic Ideas

- Paraphrase n is rewritten as Paraphrase m by a tree rewrite rule
- Rewrite rules have a <u>cost</u>, or cause a certain amount of <u>damage</u> (including information loss)
- Paraphrases have <u>properties</u> or <u>effects</u>: they emphasise certain things
- The further a paraphrase is from the literal rendering the harder it may be to see the relationship between logic and NL ...
- ... but literal renderings can be significantly more complex than the simplest NL rendering

Paraphrases #2

- $\forall x \forall y \forall z \text{ ((FatherOf(x,y) } \land \text{FatherOf(y,z) }) \rightarrow \text{Nicer(x,y)}$
- For all x, y and z, if x is the father of y and y is the father of z then x is nicer than y
- For all x, y and z, if x is z's paternal grandfrather and y is z's father, then x is nicer than y
- For all z, z's paternal grandfather is nicer than z's father
- It's the case for everyone that their paternal grandfather is nicer than their father

Paraphrases #3: De Morgan's Laws

- $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$
 - It's not the case that both P and Q \Leftrightarrow Either not P or not Q
 - It's not the case that both John and Simon are telling the truth
 - Either John isn't telling the truth or Simon isn't telling the truth
- Add 'synonymy by negation':
 - Either John is lying or Simon is

Contextual Constraints on Paraphrase Choice

What we know or might be able to infer:

- The specific mistake that has been made
- The extent to which the student is comfortable with other parts of the translation
- What concepts they are already comfortable with
- What mistakes they have made before

So:

 Learn the mapping from user model and task model to preferred paraphrase

Agenda

- Approaches to Generation Past and Present
- The OpenProof Project
- An Approach to Paraphrase Selection
- Some Data Analysis
- Next Steps

Data Selection for Initial Exploration

- We computed the number of GG submissions per LPL exercise and rank ordered them; Exercise 7.12 from Chapter 7 (which introduces conditionals) was selected
- 74,000 submitted solutions, of which 42,416 were erroneous (57%), containing 148,681 incorrect translation solutions
- The solutions were submitted by 11,925 students representing an average of 12.47 erroneous sentences per student

Exercise 7.12: Sentences 1-10

- 1. If a is a tetrahedron then it is in front of d.
- 2. a is to the left of or right of d only if it's a cube.
- c is between either a and e or a and d.
- 4. c is to the right of a, provided it (i.e., c) is small.
- 5. c is to the right of d only if b is to the right of c and left of e.
- 6. if e is a tetrahedron, then it's to the right of b if and only if it is also in front of b.
- 7. If b is a dodecahedron, then if it isn't in front of d then it isn't in back of d either.
- 8. c is in back of a but in front of e.
- 9. e is in front of d unless it (i.e., e) is a large tetrahedron.
- 10. At least one of a, c, and e is a cube.

Exercise 7.12: Sentences 11-20

- 11. a is a tetrahedron only if it is in front of b.
- 12. b is larger than both a and e.
- 13. a and e are both larger than c, but neither is large.
- 14. d is the same shape as b only if they are the same size.
- 15. a is large if and only if it's a cube.
- 16. b is a cube unless c is a tetrahedron.
- 17. If e isn't a cube, either b or d is large.
- 18. b or d is a cube if either a or c is a tetrahedron.
- 19. a is large just in case d is small.
- 20. a is large just in case e is.

An Error Taxonomy

45 distinct error types organised under the following categories:

- Structural Errors
- Connective Errors
- Atomic Errors
 - Predicate Errors
 - Argument Errors

Examples of Errors

#	Reference solution	Errored solution	Туре	Subtype
1	$Tet(a) \rightarrow FrontOf(a,d)$	FrontOf(a, d) \rightarrow Tet(a)	1	Antecedent-Consequent Reversal
2	$Tet(a) \rightarrow FrontOf(a,d)$	$FrontOf(a,b) \rightarrow Tet(a)$	1	Antecedent-Consequent Reversal
			and 3ii	Incorrect Constant
3	$Tet(a) \rightarrow FrontOf(a, d)$	Tet(a) ∨ FrontOf(a,d)	2	Disjunction for Conditional
4	$\neg Cube(e) \rightarrow (Large(b) \lor Large(d))$	$\neg Cube(e) \rightarrow Large(b) \lor Large(d)$	1	Missing Parens
5	$Large(e) \rightarrow Large(a)$	$e \rightarrow Large(a)$	2	Elided Predicate
6	$Tet(a) \rightarrow FrontOf(a,d)$	Tet(a) → InFrontOf(a,d)	3i	Incorrect Predicate
7	$Tet(a) \rightarrow FrontOf(a,d)$	$Tet(a) \rightarrow FrontOf(a,b)$	3ii	Incorrect Constant
8	$Tet(a) \rightarrow FrontOf(a,d)$	$Tet(a) \rightarrow FrontOf(d)$	3ii	Arity Error

Error Frequencies

Error Type	Count	%age of All
Antecedent-Consequent Reversal	25084	25.86%
Biconditional for Conditional	17518	18.06%
Conditional for Biconditional	11362	11.71%
Negation Error	8954	9.23%
Incorrect Scope	5422	5.59%
Failure to Scope	4701	4.85%
Argument Error	4474	4.61%
Conjunction for Conditional	3187	3.29%
Conditional for Conjunction	2091	2.16%
Biconditional for Conjunction	1514	1.56%

BiCondForCond Errors

Frequency	Percentage	Surface Form
13214	75.43%	S only if S.
1777	10.14%	S unless S.
1146	6.54%	S provided S.
725	4.14%	S if S.
367	2.09%	If S then if S then S.
289	1.65%	If S then S.

Agenda

- Approaches to Generation, Past and Present
- The OpenProof Project
- Paraphrase Selection
- A Look at Some Real Data
- Next Steps

Logic to NL Correspondences

Realisation Classes: Different Realisations of the Conditional

Realisation Classes: Surface Form Effects

Generation Strategy

- Malrules detect the types of errors found in the student's solution
- Each malrule results in directives for the generator to select structures that have particular features
- In complex cases there may be conflicting requirements
 - The generator should try to select the combination of features most likely to result in understanding
 - Best choice determined by weightings derived from the user and task model

Next Steps

- Further development of the error taxonomy and malrules
- Characterisation of a range of paraphrase rules to deal with the common cases
- Implementation of a prototype generator

Conclusions

- Traditional NLG requires:
 - a rich semantic input representation to motivate linguistic distinctions
 - widely varying contexts of use to motivate variation in output
- OpenProof + an immense student base provides both
- Other possibilities for the same approach:
 - Tailored advice in language learning
 - Customised web pages based on browsing history