

Referring Expression Generation: What Can We Learn From Human Data?

Robert Dale and Jette Viethen rdale | jviethen@science.mq.edu.au

The Aims of This Talk

- To review the development of algorithms for referring expression generation
- To argue that existing algorithms are not a good starting point for modelling what people do
- To suggest a different way of looking at the referring expression generation task

Outline

- Referring Expression Generation: The Current Paradigm
- What People Do
- A Different Paradigm: Attribute-Based Heuristics
- Where Next?

The Context: Natural Language Generation

- Natural Language Generation is concerned with generating linguistic material from some non-linguistic base
- Why is this important?
 - Applications:
 - any situation where it is not practical to construct the full range of required outputs ahead of time
 - Theory:
 - understanding what drives choice-making in language

The Natural Language Generation Pipeline

What's Involved in Referring Expression Generation?

- The Task:
 - Given some entity we want to refer to, represented by some internal symbol, how do we go about deciding how to refer to it?
- Governed by neo-Gricean Principles:
 - Adequacy
 - Efficiency
 - Sensitivity

Referring Expression Generation

The Effect of Discourse Context on Reference

```
Example 1:
  - owns (m, j1) \rightarrow Matt owns a white jacket.
                                                                    Different
     wears (m, j1, d) \rightarrow He wears it on Sundays.
Example 2:
  - owns (m, [j1+c1]) \rightarrow Matt owns a white jacket and a white coat.
  \rightarrow wears (m, j1, d) \rightarrow He wears the jacket on Sundays.
 Example 3:
  - owns (m, [j1+j2]) \rightarrow Matt owns a white jacket and a blue jacket.
   \rightarrow wears (m, j1, d) \rightarrow He wears the white one on Sundays.
```

The Consensus Problem Statement

Given

- an intended referent R
- a contrast set C consisting of the potential distractor entities
- knowledge of the properties of the entities
- ... find a set of properties true of R that, together, are not true of any entity in C.
- The result is a <u>distinguishing description</u> of R.

Computing Distinguishing Descriptions

Three steps which are repeated until a successful description has been constructed:

Start with a null description.

- Check whether the description constructed so far is successful in picking out the intended referent from the context set. If so, quit.
- 2. If it's not sufficient, choose a property that will contribute to the description.
- 3. Extend the description with this property, and reduce the context set accordingly. Go to Step 1.

Computing Distinguishing Descriptions: The Greedy Algorithm

Initial Conditions:

 $C_r = \langle all \ entities \rangle$; $P_r = \langle all \ properties \ true \ of \ r \rangle$; $L_r = \{\}$

1. Check Success

if $|C_r| = 1$ then return L_r as a distinguishing description elseif $P_r = 0$ then return L_r as a non-dd else goto Step 2.

2. Choose Property

for each $p_i \in P_r$ do: $C_{r_i} \leftarrow C_r \cap \{x \mid p_i(x)\}$ Chosen property is p_j , where C_{r_j} is smallest set. goto Step 3.

3. Extend Description (wrt the chosen p_i)

$$L_r \leftarrow L_r \cup \{p_j\}; C_r \leftarrow C_{r_j}; P_r \leftarrow P_r - \{p_j\}; \text{ goto Step 1}.$$

[Dale 1987]

Problems with This Algorithm

- The algorithm does not guarantee to find a minimal distinguishing description
- Some properties are more useful than other properties which have the same discriminatory power

A Response: The Incremental Algorithm

Initial Conditions:

- $C_r = \langle all \ entities \rangle$; $P = \langle preferred \ attributes \rangle$; $L_r = \{\}$
- 1. Check Success
 - if $|C_r| = 1$ then return L as a distinguishing description
 - elseif P = 0 then return L_r as a non-dd
 - else goto Step 2.
- 2. Evaluate Next Property
 - get next $p_i \in P$ such that userknows $(p_i(r))$
 - if $|\{x \in C_r \mid p_i(x)\}| < |C_r|$ then goto Step 3
 - else goto Step 2.
- 3. Extend Description (wrt the chosen p_i)
 - $L_r \leftarrow L_r \cup \{p_j\}; C_r \leftarrow C_{rj}; \text{ goto Step 1.}$

[Reiter and Dale 1992]

Key Properties of the Incremental Algorithm

- Embodies a distinction between:
 - the way choices are made (domain independent)
 - the choices available (domain dependent)
- May generate redundant descriptions
 - This is seen as a good thing

Extensions to the Basic Algorithms: Relations

- What happens if you need to mention another entity in order to identify the intended referent?
 - 'the dog next to the small cat'
- Extensions to incorporate relations:
 - constraint-based extension for relational properties [Dale and Haddock 1991]
 - referring to parts of hierarchically structured objects [Horacek 2006]

Extensions to the Basic Algorithms: Disjunction and Negation of Properties

- What happens if there are multiple entities instead of one?
 - 'the two dogs'
 - 'the dog and the cat'
- What happens if a distinguishing characteristic is that the intended referent <u>lacks</u> some property?
 - 'the dog that isn't a poodle'
- Extensions:
 - Sets [Stone 2000]
 - Negation and Disjunction [van Deemter 2002]:

The General Form of These Algorithms

```
Given an intended referent R, a set of distractors C, a set of properties L_R, and the set of properties D to use in a description: let D = \{\} repeat  \text{add a selected property} \in L_R \text{ to } D   \text{recompute C given D}   \text{until } C = \{\}
```

How Algorithms Differ: The Selection of Properties

- The Greedy Algorithm [Dale 1989]
 - Check all the properties, see which one has the greatest discriminatory power
- The Incremental Algorithm [Dale and Reiter 1995]
 - Take the next property from a predetermined list, provided it has some discriminatory power
- The Graph-Based Algorithm [Krahmer et al 2003]
 - Take the property that has the greatest weight/least cost

Why Is This Not a Good Model of What People Do?

- 1. People often produce redundant descriptions
- 2. People don't always produce distinguishing descriptions
- 3. Different people produce different descriptions in the same situation
- 4. The 'add a property, check how we're doing' model seems too computationally expensive to be plausible

Outline

- Referring Expression Generation: The Current Paradigm
- What People Do
- A Different Paradigm: Attribute-Based Heuristics
- Where Next?

Human-Produced Data Sets

- The TUNA Corpus [van Deemter et al 2006]
 - 900 descriptions of furniture
 - 900 descriptions of people
- The GRE3D3 Corpus [Viethen and Dale 2008]
 - 630 descriptions of coloured blocks

TUNA Furniture

The GRE3D3 Corpus

- Research question: Do people use relations only when they are absolutely necessary?
- Materials: 20 different simple blocksworld scenes containing three objects, split into two trials; each subject sees 10 scenes
- Task: subject has to provide a distinguishing description in each scene for one of the objects; scenes constructed so that relations are never necessary
- Subjects: 74 participants recruited via the Internet

The Experimental Setup

Scene 1 of 10

24

The Stimulus Scenes

25

Data Filtering and Normalisation

74 participants:

 One asked for data to be discarded; one reported as being colour blind; one used very long referring expressions referring to the onlooker; eight participants only used type in their descriptions

Normalisation:

- Spelling mistakes corrected; colour names and head nouns normalised; complex syntactic structures simplified
- → 623 scene descriptions

Relation Use

- Over a third (231 or 36.6%) of the descriptions use spatial relations
- 40 (63.5%) of the 63 participants used relations
- 23 (36.5%) of the participants never used relations
- 11 (over 25%) of the relation-using participants did so in all 10 referring expressions they delivered

Interim Conclusions

- There are three kinds of people in the world those who always use relations, those who never use relations, and those who sometimes do ...
- There was a tendency for relations to be used less for later scenes: people learn that they are not necessary?
- But most importantly: people just do lots of different things

Description Patterns

Label	Pattern	Example
A	⟨tg_col, tg_type⟩	the blue cube
В	(tg_col, tg_type, rel, lm_col, lm_type)	the blue cube in front of the red ball
C	<pre>\langle tg_col, tg_type, rel, lm_size, lm_col, lm_type \rangle</pre>	the blue cube in front of the large red ball
D	⟨tg_col, tg_type, rel, lm_size, lm_type⟩	the blue cube in front of the large ball
E	(tg_col, tg_type, rel, lm_type)	the blue cube in front of the ball
F	(tg_size, tg_col, tg_type)	the large blue cube
G	(tg_size, tg_col, tg_type, rel, lm_col, lm_type)	the large blue cube in front of the red ball
Н	(tg_size, tg_col, tg_type, rel, lm_size, lm_col, lm_type)	the large blue cube in front of the large red ball
I	(tg_size, tg_col, tg_type, rel, lm_size, lm_type)	the large blue cube in front of the large ball
J	⟨tg_size, tg_col, tg_type, rel, lm_type⟩	the large blue cube in front of the ball
K	(tg_size, tg_type)	the large cube
L	(tg_size, tg_type, rel, lm_size, lm_type)	the large cube in front of the large ball
M	(tg_size, tg_type, rel, lm_type)	the large cube in front of the ball
N	(tg_type)	the cube
O	(tg_type, rel, lm_col, lm_type)	the cube in front of the red ball
P	⟨tg_type, rel, lm_size, lm_col, lm_type⟩	the cube in front of the large red ball
Q	⟨tg_type, rel, lm_size, lm_type⟩	the cube in front of the large ball
R	⟨tg_type, rel, lm_type⟩	the cube in front of the ball

Distribution of Patterns Across Scenes

Distribution of Patterns Across Scenes

	Scene #									
Pattern	1	2	3	4	5	6	7	8	9	10
A tg_col, tg_type	17	24			36	32	26			40
B tg_col, tg_type, rel, lm_col, lm_type	14	8	3		16	7	8	3		10
C tg_col, tg_type, rel, lm_size, lm_col, lm_type		4		1			3		1	
D tg_col, tg_type, rel, lm_size, lm_type						1	1		1	
E tg_col, tg_type, rel, lm_type	4		1			2				
F tg_size, tg_col, tg_type	2	1	15	44	5	3	2	25	40	8
G tg_size, tg_col, tg_type, rel, lm_col, lm_type	1		14		2		1	14		1
H tg_size, tg_col, tg_type, rel, lm_size, lm_col, lm_type		1	1	13	2	1	2	1	17	2
l tg_size, tg_col, tg_type, rel, lm_size, lm_type				3					1	
J tg_size, tg_col, tg_type, rel, lm_type			1			1				1
K tg_size, tg_type			12					15		
L tg_size, tg_type, rel, lm_size, lm_type				1						
M tg_size, tg_type, rel, lm_type	1		7					4		
N tg_type	11	13				14	14			
O tg_type, rel, lm_col, lm_type		4					1			
P tg_type, rel, lm_size, lm_col, lm_type							1			
Q tg_type, rel, lm_size, lm_type		3					2			
R tg_type, rel, lm_type	13	5	9			2	2	1		

Can We Use this Data to Learn How to Refer?

- 1. Identify relevant characteristics of scenes
- 2. See if these can be correlated with patterns via a machine learner

Characteristics of Scenes

Label	Attribute	Values
tg_type = lm_type	Target and Landmark share Type	TRUE, FALSE
$tg_type = dr_type$	Target and Distractor share Type	TRUE, FALSE
$lm_type = dr_type$	Landmark and Distractor share Type	TRUE, FALSE
$tg_col = Im_col$	Target and Landmark share Colour	TRUE, FALSE
$tg_col = dr_col$	Target and Distractor share Colour	TRUE, FALSE
$lm_col = dr_col$	Landmark and Distractor share Colour	TRUE, FALSE
tg_size = lm_size	Target and Landmark share Size	TRUE, FALSE
$tg_size = dr_size$	Target and Distractor share Size	TRUE, FALSE
$lm_size = dr_size$	Landmark and Distractor share Size	TRUE, FALSE
rel	Relation between Target and Landmark	on top of, in front of

Results

- Weka J48 pruned decision tree classifier
- Predicts actual form of reference in 48% of cases under 10fold cross validation
- The rule learned:

```
if tg_type = dr_type
    then use pattern F (\langle tg_size, tg_col, tg_type \rangle)
    else use pattern A (\langle tg_col, tg_type \rangle)
endif
```

Distribution of Patterns Across Scenes

	Scene #									
Pattern	1	2	3	4	5	6	7	8	9	10
A tg_col, tg_type	17	24			36	32	26			40
B tg_col, tg_type, rel, lm_col, lm_type	14	8	3		16	7	8	3		10
C tg_col, tg_type, rel, lm_size, lm_col, lm_type		4		1			3		1	
D tg_col, tg_type, rel, lm_size, lm_type						1	1		1	
E tg_col, tg_type, rel, lm_type	4		1			2				
F tg_size, tg_col, tg_type	2	1	15	44	5	3	2	25	40	8
G tg_size, tg_col, tg_type, rel, lm_col, lm_type	1		14		2		1	14		1
H tg_size, tg_col, tg_type, rel, lm_size, lm_col, lm_type		1	1	13	2	1	2	1	17	2
l tg_size, tg_col, tg_type, rel, lm_size, lm_type				3					1	
J tg_size, tg_col, tg_type, rel, lm_type			1			1				1
K tg_size, tg_type			12					15		
L tg_size, tg_type, rel, lm_size, lm_type				1						
M tg_size, tg_type, rel, lm_type	1		7					4		
N tg_type	11	13				14	14			
O tg_type, rel, lm_col, lm_type		4					1			
P tg_type, rel, lm_size, lm_col, lm_type							1			
Q tg_type, rel, lm_size, lm_type		3					2			
R tg_type, rel, lm_type	13	5	9			2	2	1		

What About Speaker Difference?

- As well as the characteristics of scenes, add participant ID as a feature
- Description pattern prediction increases to 57.62%
- So: it may be possible to learn individual differences from the data

Interim Conclusions

- We can learn a 'correct answer' for every scene
- We can't explain the diversity in forms of reference

Outline

- Referring Expression Generation: The Current Paradigm
- What People Do
- A Different Paradigm: Attribute-Based Heuristics
- Where Next?

The Basic Idea

- People build different *descriptions* for the same intended referent in the same scene
- But maybe the decision processes around each specific attribute are less varied?

Learning the Presence or Absence of Individual Properties

Attribute to Include	Baseline (0-R)	
Target Colour	78.33%	
Target Size	57.46%	
Relation	64.04%	
Landmark Colour	74.80%	
Landmark Size	88.92%	

Heuristics for Colour Inclusion

- Always use colour [37 participants]
- If the target and the landmark are of the same type, use colour [all the rest]
- If the target and the landmark are not of the same type then:
 - Ignore colour [19 participants]
 - Use colour if target and distractor are the same size [4]
 - Use colour if target and distractor share size and the target is on top of the landmark [2]
 - Use colour if target and distractor share colour [1]

What Does This Mean?

- Everybody's different, but we often have some things in common:
 - A <u>speaker profile</u> consists of a collection of <u>attribute-specific heuristics</u>
 - Speaker profiles can vary significantly but be based on a set of commonly used attribute-specific heuristics
- The heuristics a particular speaker uses in a given situation may depend on a variety of contextual and personal-history factors

Speaker Profiles

#	tg_col	tg_size	tg_size	rel	lm_size
13	TgCol-T	TgSize-1	Rel-F	n/a	n/a
10	TgCol-T	TgSize-1	Rel-T	LmCol-T	LmSize-1
9	TgCol-1	TgSize-1	Rel-F	n/a	n/a
2	TgCol-3	TgSize-1	Rel-4	LmCol-F	LmSize-1
2	TgCol-T	TgSize-1	Rel-2	LmCol-T	LmSize-1
2	TgCol-1	TgSize-1	Rel-T	LmCol-1	LmSize-1

- TgCol-T = always include tg colour
- TgSize-1 = include tg size if tg and dr share type
- Rel-F = never use a relation

Implications for Algorithm Development

- Each property is different: reduction to a single metric of value (such as discriminatory power) is too simplistic
- Properties may be included independently of other properties
- An alternative to the 'add one then check' model:
 - A 'read off the scene' model: gestalt analysis of a scene results in several properties being chosen in parallel

Outline

- Referring Expression Generation: The Current Paradigm
- What People Do
- A Different Paradigm: Attribute-Based Heuristics
- Where Next?

Is This The Whole Story?

- No. Sometimes we <u>do</u> reflect on the referring expression constructed so far, and add more:
 - Uhm, I'm gonna transfer to the phone on the table by the red chair . . . [points in the direction of the phone] the . . . the red chair, against the wall, uh the little table, with the lamp on it, the lamp that we moved from the corner? . . . the black phone, not the brown phone . . .

[Lucy from Twin Peaks]

New Questions

- What properties of a scene just 'jump out'?
- How do we decide if the first cut is good enough?
- What kinds of reasoning are involved in determining what else is needed in a referring expression?
- How and when do more reflective reasoning processes kick in?
- How are speaker profiles modified dynamically through alignment and learned success?

Conclusions

- Existing algorithms, based on a cycle of 'add a carefullyconsidered property then check how we're doing', don't acknowledge 'bounded rationality'
- Hypothesis: different speakers use different heuristics for property inclusion in different circumstances, based on individual history and other factors
- To build a psycholinguistically plausible model, we need to explore what conditions the use of specific properties