COFIBRANT SIMPLICIAL SETS

RICHARD GARNER

Abstract.

1. Elegant Reedy categories

1.1. Reedy categories. Recall that a *Reedy structure* on a category C is given by: a pair of identity-on-objects subcategories C_{-} and C_{+} of C together with a degree function |-|: ob $C \to \mathbb{N}$ such that:

- For all non-identity $\sigma: c \to d$ in \mathcal{C}_- , we have |c| > |d|;
- For all non-identity $\delta \colon c \to d$ in \mathcal{C}_+ , we have |c| < |d|.
- Every map $\gamma: c \to d$ of C admits a unique factorisation $\gamma = \delta \sigma$ where $\sigma \in C_{-}$ and $\delta \in C_{+}$.

1.2. Presheaves and degenerate elements. Given a presheaf X on a Reedy category \mathcal{C} , we will write $x\gamma$ for the action of a map $\gamma: d \to c$ of \mathcal{C} on an element $x \in X(c)$; thus $x\gamma = (X\gamma)(x) \in X(d)$. We say that $x \in X(c)$ is non-degenerate if, whenever $x = y\sigma$ with $\sigma \in \mathcal{C}_-$, we have $\sigma = 1_c$, and say that it is degenerate if $x = y\sigma$ for some non-identity $\sigma: d \to c$ in \mathcal{C}_- . We write $X_{nd}(c)$ and $X_d(c)$ for the sets of non-degenerate and degenerate elements of X(c).

1.3. Elegant Reedy categories. A Reedy category C is called *elegant* ([]) if, for every presheaf $X: C^{\text{op}} \to \text{Set}$ and $x \in X(c)$, there is a unique pair ($\sigma_x \in C_-(d, c), \ \bar{x} \in X_{\text{nd}}(d)$) with $x = \bar{x}\sigma_x$.

Proposition 1. C is an elegant Reedy category if and only if every span of maps in C_{-} can be completed to a commutative square in C_{-} which is an absolute pushout in C. It follows that every map in C_{-} is a split epimorphism.

Proof. See Proposition 3.8 of [] and the remarks following.

2. Categories of non-degenerate elements

2.1. **Degeneracy-reflecting maps.** It is immediate that a map of presheaves $f: X \to Y$ on a Reedy category \mathcal{C} preserves degeneracy and reflects non-degeneracy, in the sense that $f(X_{\rm d}(c)) \subseteq Y_{\rm d}(c)$ and $f^{-1}(Y_{\rm nd}(c)) \subseteq X_{\rm nd}(c)$ for all $c \in \mathcal{C}$. We say that a map of presheaves $f: X \to Y$ on a Reedy category *reflects degeneracy* or *preserves non-degeneracy* if one of the two equivalent conditions

$$f(X_{\rm nd}(c)) \subseteq Y_{\rm nd}(c)$$
 and $f^{-1}(Y_{\rm d}(c)) \subseteq X_{\rm d}(c)$

Date: April 5, 2013.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 18D05, 18C15.

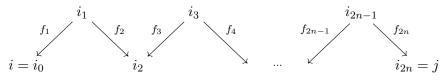
The author acknowledges the support of an Australian Research Council Discovery Project, grant number DP110102360.

holds for all $c \in C$. We write $[C^{\text{op}}, \mathbf{Set}]_{\text{nd}}$ for the subcategory of $[C^{\text{op}}, \mathbf{Set}]$ containing every object but only the degeneracy-reflecting maps.

Proposition 2. If C is an elegant Reedy category, then the inclusion functor $[C^{\mathrm{op}}, \mathbf{Set}]_{\mathrm{nd}} \to [C^{\mathrm{op}}, \mathbf{Set}]$ creates small colimits.

Proof. Let $D: \mathcal{I} \to [\mathcal{C}^{\text{op}}, \mathbf{Set}]_{\text{nd}}$ be a diagram, and $(p_i: Di \to V)_{i \in \mathcal{I}}$ a colimiting cocone for D in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$. We first show that this cocone lies in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]_{\text{nd}}$, which is to say that each p_i reflects degeneracies.

So let $x \in (Di)(c)$ be such that $p_i(x)$ is degenerate in V(c); we will show that x is itself degenerate. Since C is elegant, we can write $p_i(x) = y\sigma$ for a unique non-identity $\sigma \in C_-(d,c)$ and $y \in V_{nd}(d)$. Since the p_i 's are jointly surjective, there exists $j \in \mathcal{I}$ and $z \in (Dj)(d)$ such that $p_j(z) = y$; and thus we have $p_j(z\sigma) = p_j(z)\sigma = y\sigma = p_i(x) \in V(c)$. Due to the way that colimits are computed in **Set**, this means that there exists a zig-zag



in \mathcal{I} and elements $x_k \in Di_k$ with

But now as $x_{2n} = z\sigma$ is degenerate, and each Df_k preserves and reflects degeneracies, each x_k must be degenerate; in particular, $x = x_0$ is degenerate as required.

It remains to show that the cocone $(p_i: Di \to V)$ is colimiting in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]_{\text{nd}}$. Given any other cocone $(q_i: Di \to W)$ under D, we have, because V is colimiting in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$, a unique induced map $q: V \to W$ with $q_k = qp_k$ for all $k \in \mathcal{I}$. It suffices to show that q in fact lies in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]_{\text{nd}}$. So let $x \in V(c)$ with $q(x) \in W(c)$ degenerate. Because the p_i 's are jointly surjective, there is $j \in \mathcal{I}$ and $y \in (Dj)(c)$ with $p_j(y) = x$. Now $q_j(y) = qp_j(y) = q(x)$ is degenerate, and so y is too, since q_j reflects degeneracies. Thus also $x = p_j(y)$ is degenerate as required. \Box

2.2. The Reedy factorisation system. Recall that a pair of maps (f, g) in a category are said to be *orthogonal*—written $f \perp g$ —if, for every commuting square as in the solid part of the diagram

$$\begin{array}{c}
A \xrightarrow{f} B \\
h \downarrow \swarrow & f \\
c \xrightarrow{f} & f \\
c \xrightarrow{f} & f \\
c \xrightarrow{g} & D
\end{array}$$

there exists a unique filler $j: B \to C$ as indicated making both triangles commute. Given a class of maps \mathcal{J} , we write \mathcal{J}^{\perp} for the class of maps k such that $j \perp k$ for all $j \in \mathcal{J}$; dually, we write $^{\perp}\mathcal{J}$ for the class of all k such that $k \perp j$ for all $j \in \mathcal{J}$. A pair of classes $(\mathcal{E}, \mathcal{M})$ is a *factorisation system* if $\mathcal{E} = ^{\perp}\mathcal{M}$ and $\mathcal{M} = \mathcal{E}^{\perp}$ and every map factorises as an \mathcal{E} -map followed by an \mathcal{M} -map; such factorisations are necessarily unique up to unique isomorphism.

Proposition 3. If \mathcal{E} is a locally presentable category (so in particular, a presheaf category) and \mathcal{J} is any small class of maps in \mathcal{E} , then $(^{\perp}(\mathcal{J}^{\perp}), \mathcal{J}^{\perp})$ is a factorisation system.

Proof. Well-known.

Suppose now that \mathcal{C} is a Reedy category. Applying the preceding result to the class of maps $\mathcal{J} = y(\mathcal{C}_{-})$ (where $y \colon \mathcal{C} \to [\mathcal{C}^{\text{op}}, \mathbf{Set}]$ is the Yoneda embedding) yields a factorisation system $(\mathcal{E}, \mathcal{M})$ on $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$. Explicitly, this factorisation system $(\mathcal{E}, \mathcal{M})$ has classes

$$\mathcal{M} = \{g \colon X \to Y \mid y(\sigma) \perp g \text{ for all } \sigma \in \mathcal{C}_{-}\}$$
$$\mathcal{E} = \{f \colon X \to Y \mid f \perp g \text{ for all } g \in \mathcal{M}\}$$

Proposition 4. When C is elegant, every \mathcal{E} -map is an epimorphism.

Proof. Every map in $y(\mathcal{C}_{-})$ is a split epimorphism. Since epis and monos are orthogonal in presheaf categories, every monomorphism is an \mathcal{M} -map; whence every \mathcal{E} -map is an epimorphism.

Proposition 5. For any Reedy category C, the \mathcal{M} -maps in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ reflect degeneracies; if C is elegant, then every degeneracy-reflecting map is in \mathcal{M} .

Proof. We first show that any \mathcal{M} -map $f: X \to Y$ reflects degeneracies. Let $x \in X(c)$ such that f(x) is degenerate in Y(c); thus $f(x) = z\sigma$ for some nonidentity $\sigma \in \mathcal{C}_{-}(d, c)$ and $z \in Y(d)$, and so we have a commutative square

$$(*) \qquad \begin{array}{c} y(c) \xrightarrow{y(\sigma)} y(d) \\ x \downarrow \qquad \qquad \downarrow z \\ X \xrightarrow{f} Y \end{array}$$

in $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$. Since $f \in \mathcal{M}$, there is a filler $w: y(d) \to X$, and so an element $w \in X(d)$ with $w\sigma = x$. Thus x is degenerate as required.

Suppose now that C is elegant; we show that every degeneracy-reflecting map $f: X \to Y$ is an \mathcal{M} -map. Thus, we must show that every diagram (*) admits a unique filler. Because C is elegant, $y(\sigma)$ is (split) epimorphic, and so uniqueness is forced; thus we need only show existence. Thus, given elements $x \in X(c)$ and $z \in Y(d)$ with $f(x) = z\sigma$, we must find $w \in X(d)$ with $w\sigma = x$ and f(w) = z. Since C is elegant, we can write $x = \bar{x}\tau$ and $z = \bar{z}\rho$ with $\tau, \rho \in C_-$ and \bar{x}, \bar{z} non-degenerate. Since f reflects degeneracies, it preserves non-degeneracies, and so $f(\bar{x})$ is non-degenerate; and now

$$\bar{z}\rho\sigma = z\sigma = f(x) = f(\bar{x})\tau$$

exhibits f(x) as the image of a non-degenerate element in two different ways; whence, by elegance of \mathcal{C} , we have $f(\bar{x}) = \bar{z}$ and $\tau = \rho\sigma$. Now taking $w = \bar{x}\rho$, we have $w\sigma = \bar{x}\rho\sigma = \bar{x}\tau = x$ and $f(w) = f(\bar{x})\rho = \bar{z}\rho = z$, as required.

RICHARD GARNER

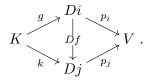
2.3. $[\mathcal{C}^{\text{op}}, \mathbf{Set}]_{\text{nd}}$ is a presheaf category. Let \mathcal{C} be an elegant Reedy category, and let \mathcal{K} be a set of isomorphism-class representatives of objects $X \in [\mathcal{C}^{\text{op}}, \mathbf{Set}]$ which admit an \mathcal{E} -map from a representable; note that \mathcal{K} is indeed only a set, since there are only a set of representables, each \mathcal{E} -map is an epimorphism, and a presheaf topos is well-copowered.

Proposition 6. For any $K \in \mathcal{K}$ the functor $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}](K, -) \colon [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}] \to \mathbf{Set}$ preserves colimits of diagrams of \mathcal{M} -maps.

Proof. Given a diagram $D: \mathcal{I} \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ of \mathcal{M} -maps, let $(p_i: Di \to V)$ be a colimiting cocone; by Proposition 2, each p_i is again an \mathcal{M} -map. We must show that the induced map of sets

$$\operatorname{colim}_{i\in\mathcal{I}}[\mathcal{C}^{\operatorname{op}},\mathbf{Set}](K,Di)\to [\mathcal{C}^{\operatorname{op}},\mathbf{Set}](K,V)$$

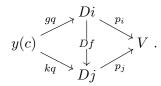
is invertible, or equally that the fibre of this map over each $f \in [\mathcal{C}^{\text{op}}, \mathbf{Set}](K, V)$ is a singleton. This fibre is the set of connected components of the category $\mathbf{Fact}(f)$ whose objects are factorisations $(f = p_i g \colon K \to Di \to V)$ and whose morphisms $(p_i, g) \to (p_j, k)$ are commutative diagrams



Thus we must show that $\mathbf{Fact}(f)$ is connected. Note that this will be so in the special case where K = y(c), since then $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}](y(c), -)$ is the cocontinuous functor given by evaluation at c. For a general $K \in \mathcal{K}$, we first choose some \mathcal{E} -map $q: y(c) \to K$; now $\mathbf{Fact}(fq)$ is connected by the above, so it suffices to show that the functor $q^*: \mathbf{Fact}(f) \to \mathbf{Fact}(fq)$ sending (p_i, g) to (p_i, gq) is an isomorphism of categories. But given (h, p_i) in $\mathbf{Fact}(fq)$, we have a square as in the solid part of the diagram:

$$\begin{array}{c} y(c) \xrightarrow{q} H \\ h \downarrow \swarrow j \downarrow f \\ Di \xrightarrow{p_i} V ; \end{array}$$

since q is in \mathcal{E} , and p_i in \mathcal{M} , we conclude that there is a unique filler j making both triangles commute. So q^* is bijective on objects, and clearly is faithful; for fullness, suppose that (p_i, g) and $(p_j, k) \in \mathbf{Fact}(f)$ and that we have a commuting diagram



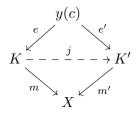
We must show that in fact $Df \circ g = k$. For this, it suffices to show the equality on precomposition with the \mathcal{E} -map q and postcomposition with the \mathcal{M} -map p_j ; and the first of these is true by assumption, and the latter by the calculation $p_j \circ Df \circ g = p_i \circ g = f = p_j \circ k$. Thus q^* is fully faithful, and hence an isomorphism of categories as claimed. \Box

4

Proposition 7. The set of objects \mathcal{K} is dense in $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]_{\mathrm{nd}}$.

Proof. Let $\mathcal{K} \downarrow X$ be the full subcategory of $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]_{\mathrm{nd}}/X$ on objects of the form $(K \in \mathcal{K}, m \colon K \to X \in \mathcal{M})$, and let $\Phi \colon \mathcal{K} \downarrow X \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]_{\mathrm{nd}}$ send (K, m) to K. We must show that the cocone $\theta \colon \Phi \Rightarrow \Delta X$ with $\theta_{(K,m)} = m$ is colimiting. Since $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]_{\mathrm{nd}}$ is closed under colimits in $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$, it suffices to show that the cocone is colimiting in $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$; and as colimits in $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ are pointwise, it suffices for this to show that $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}](y(c), -)$ sends θ to a colimit in \mathbf{Set} .

As in the previous proof, this is equally to show that, for each map $f: y(c) \to X$, the category $\mathbf{Fact}(f)$ of factorisations of f through maps $m: K \to X$ in $\mathcal{K} \downarrow X$ is connected. To see this, form an $(\mathcal{E}, \mathcal{M})$ factorisation $f = me: y(c) \to K \to X$; we claim that (m, e) is an initial object in $\mathbf{Fact}(f)$, which immediately implies its connectedness. Indeed, for any $(m', e') \in \mathbf{Fact}(f)$, we have the diagram:



with e an \mathcal{E} -map and m an \mathcal{M} -map, whence there is a unique filler as indicated. Thus (m, e) is initial in $\mathbf{Fact}(f)$, which is therefore connected as required. \Box

2.4. The \mathcal{E} -map classifier. Let \mathcal{C} be an elegant Reedy category. For each object $X \in [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$, write $\mathrm{Qu}(X)$ for the set of \mathcal{E} -quotients of X: isomorphism classes of \mathcal{E} -maps $q: X \to Q$, where we identify two such maps just when they are isomorphic in the coslice X/\mathcal{C} . Note that $\mathrm{Qu}(X)$ really is a set, as every \mathcal{E} -map is an epimorphism (by elegance) and a presheaf has only a mere set of epimorphic quotients. Now note that any $f: X \to Y$ in $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ induces a function $\mathrm{Qu}(f): \mathrm{Qu}(Y) \to \mathrm{Qu}(X)$ by sending $q: Y \to Q$ to the \mathcal{E} -part of the $(\mathcal{E}, \mathcal{M})$ -factorisation of qf. In this way we obtain a functor

$$\operatorname{Qu}: [\mathcal{C}^{\operatorname{op}}, \operatorname{\mathbf{Set}}]^{\operatorname{op}} \to \operatorname{\mathbf{Set}}$$

Proposition 8. Qu preserves small limits.

Proof. Given $D: \mathcal{I} \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ a diagram and $(p_i: Di \to V)_{i \in \mathcal{I}}$ a colimiting cocone, we must show that the induced cone

$$\left(\operatorname{Qu}(p_i)\colon\operatorname{Qu}(V)\to\operatorname{Qu}(Di)\right)_{i\in\mathcal{I}}$$

is limiting. So suppose that we are given a compatible family of elements of the $\operatorname{Qu}(Di)$'s: thus we have \mathcal{E} -quotient maps $q_i \colon Di \to Qi$ for each $i \in \mathcal{I}$ such that, for each $f \colon i \to j$ in \mathcal{I} , we have a (necessarily unique) factorisation as on the left in:

We must show that there is a unique \mathcal{E} -quotient $q: V \to W$ such that for each $i \in \mathcal{I}$, there is a (necessarily unique) factorisation as on the right above. For existence of

RICHARD GARNER

q, let $(\ell_i: Q_i \to W)$ be a colimiting cocone for Q and let q be the unique map with $qp_i = \ell_i q_i$ for all $i \in \mathcal{I}$. Thus q is the colimit of the q_i 's in $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]^2$, and so is an \mathcal{E} -map since each q_i is so. Moreover, because each Qf is in \mathcal{M} , so too is each ℓ_i by Propositions 2 and 5.

To show uniqueness of q, suppose that $q': V \twoheadrightarrow W'$ is another \mathcal{E} -quotient for which we have factorisations $\ell'_i q_i = q' p_i$ with $\ell'_i \in \mathcal{M}$. It follows from the fact that each q_i is epimorphic that we have a cocone of maps $(p_i, \ell'_i): q_i \to q'$; since q is a colimit of the q_i 's, we induce a map

in $V/[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$. Now h is an \mathcal{E} -map because q and q' are; but it also an \mathcal{M} -map, because each Qf and each ℓ'_i is in \mathcal{M} . It is therefore invertible and so q = q' in $\mathrm{Qu}(V)$.

Since Qu preserves small limits, it is representable; more explicitly, we have:

Proposition 9. Qu is represented by the object L with L(c) = Qu(y(c)) and $L(\gamma) = Qu(y(\gamma))$; the natural isomorphisms

$$\theta_X \colon [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}](X, L) \to \mathrm{Qu}(X)$$

witnessing the representation send $f: X \to L$ to the \mathcal{E} -part of its $(\mathcal{E}, \mathcal{M})$ factorisation. The inverse of θ_X sends an \mathcal{E} -quotient $q: X \twoheadrightarrow Q$ to the map $X \to L$ which sends $x \in X(c)$ to $\operatorname{Qu}(\bar{x})(q)$.

Proof. Clearly the maps θ_X are natural in X; we must show they are invertible. Since both $[\mathcal{C}^{\text{op}}, \mathbf{Set}](-, L)$ and Qu send colimits in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ to limits in \mathbf{Set} , and since every presheaf is a colimit of representables, it suffices to show that each $\theta_{y(c)}$ is invertible with the given inverse. That inverse sends $q \in \text{Qu}(y(c))$ to the map $\bar{q}: y(c) \to L$ corresponding to it under the Yoneda lemma; hence we must show that, for every $q \in \text{Qu}(y(c))$, the $(\mathcal{E}, \mathcal{M})$ factorisation of $\bar{q}: y(c) \to L$ is of the form

$$\bar{q} = y(c) \xrightarrow{q} Q \xrightarrow{\ell} L$$
.

First we show that \bar{q} factors through q; since q is regular epi, this is equally to show that whenever $f, g: y(d) \Rightarrow y(c)$ satisfy qf = qg, we also have $\bar{q}f = \bar{q}g$. But $\bar{q}f$ and $\bar{q}g$ are the elements of Qu(y(d)) obtained as the \mathcal{E} -parts of the respective $(\mathcal{E}, \mathcal{M})$ factorisation of qf and qg; thus they will certainly agree if qf = qg. Thus we have a factorisation $\bar{q} = \ell q$; and it remains to show that ℓ is an \mathcal{M} -map.

So let $x \in Q(d)$ be a non-degenerate element. Since q is surjective, we can choose some $\gamma \in y(c)(d) = \mathcal{C}(d,c)$ with $q(\gamma) = x$. Now $\ell(x) = \bar{q}(\gamma) = \operatorname{Qu}(\gamma)(q) \in \operatorname{Qu}(y(d))$, and we have a commutative diagram as on the left in:

$$\begin{array}{cccc} y(d) \xrightarrow{y(\gamma)} y(c) & y(d) \xrightarrow{y(\sigma)} y(d') \\ \ell(x) & & \downarrow q & \text{and} & \ell(x) & \downarrow z \\ Q' - & & Q' & Q' & Q' & Q' & \end{array}$$

Suppose that $\ell(x)$ were a degenerate element of L, $\ell(x) = z\sigma$, say. Then we would have a commutative diagram as on the right above; consequently, $\ell(x)$ sends $1_d \in y(d)(d)$ to a degenerate element of Q'(d), and so the composite $q \circ y(\gamma)$ sends 1_d to a degenerate element of Q(d); but $(q \circ y(\gamma))(1_d) = q(\gamma) = x$, contradicting non-degeneracy of x.

Department of Computing, Macquarie University, NSW 2109, Australia $E\text{-}mail\ address:\ \texttt{richard.garner@mq.edu.au}$