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Abstract.

1. Elegant Reedy categories

1.1. Reedy categories. Recall that a Reedy structure on a category C is given by:
a pair of identity-on-objects subcategories C− and C+ of C together with a degree
function |–| : ob C → N such that:

• For all non-identity σ : c→ d in C−, we have |c| > |d|;
• For all non-identity δ : c→ d in C+, we have |c| < |d|.
• Every map γ : c→ d of C admits a unique factorisation γ = δσ where σ ∈ C−

and δ ∈ C+.

1.2. Presheaves and degenerate elements. Given a presheaf X on a Reedy
category C, we will write xγ for the action of a map γ : d→ c of C on an element
x ∈ X(c); thus xγ = (Xγ)(x) ∈ X(d). We say that x ∈ X(c) is non-degenerate if,
whenever x = yσ with σ ∈ C−, we have σ = 1c, and say that it is degenerate if
x = yσ for some non-identity σ : d→ c in C−. We write Xnd(c) and Xd(c) for the
sets of non-degenerate and degenerate elements of X(c).

1.3. Elegant Reedy categories. A Reedy category C is called elegant ([]) if,
for every presheaf X : Cop → Set and x ∈ X(c), there is a unique pair (σx ∈
C−(d, c), x̄ ∈ Xnd(d)) with x = x̄σx.

Proposition 1. C is an elegant Reedy category if and only if every span of maps
in C− can be completed to a commutative square in C− which is an absolute pushout
in C. It follows that every map in C− is a split epimorphism.

Proof. See Proposition 3.8 of [] and the remarks following. �

2. Categories of non-degenerate elements

2.1. Degeneracy-reflecting maps. It is immediate that a map of presheaves
f : X → Y on a Reedy category C preserves degeneracy and reflects non-degeneracy,
in the sense that f(Xd(c)) ⊆ Yd(c) and f−1(Ynd(c)) ⊆ Xnd(c) for all c ∈ C. We say
that a map of presheaves f : X → Y on a Reedy category reflects degeneracy or
preserves non-degeneracy if one of the two equivalent conditions

f(Xnd(c)) ⊆ Ynd(c) and f−1(Yd(c)) ⊆ Xd(c)
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holds for all c ∈ C. We write [Cop,Set]nd for the subcategory of [Cop,Set] containing
every object but only the degeneracy-reflecting maps.

Proposition 2. If C is an elegant Reedy category, then the inclusion functor
[Cop,Set]nd → [Cop,Set] creates small colimits.

Proof. Let D : I → [Cop,Set]nd be a diagram, and (pi : Di → V )i∈I a colimiting
cocone for D in [Cop,Set]. We first show that this cocone lies in [Cop,Set]nd, which
is to say that each pi reflects degeneracies.

So let x ∈ (Di)(c) be such that pi(x) is degenerate in V (c); we will show that
x is itself degenerate. Since C is elegant, we can write pi(x) = yσ for a unique
non-identity σ ∈ C−(d, c) and y ∈ Vnd(d). Since the pi’s are jointly surjective,
there exists j ∈ I and z ∈ (Dj)(d) such that pj(z) = y; and thus we have
pj(zσ) = pj(z)σ = yσ = pi(x) ∈ V (c). Due to the way that colimits are computed
in Set, this means that there exists a zig-zag

i1
f1

~~

f2

  

i3
f3

~~

f4

  

i2n−1
f2n−1

~~

f2n

  

i = i0 i2 ··· i2n = j

in I and elements xk ∈ Dik with

x19
Df1

||

�
Df2

""

x39
Df3

||

�
Df4

""

x2n−19
Df2n−1

||

� Df2n

""
x = x0 x2 ··· x2n = zσ .

But now as x2n = zσ is degenerate, and each Dfk preserves and reflects degeneracies,
each xk must be degenerate; in particular, x = x0 is degenerate as required.

It remains to show that the cocone (pi : Di → V ) is colimiting in [Cop,Set]nd.
Given any other cocone (qi : Di→W ) under D, we have, because V is colimiting
in [Cop,Set], a unique induced map q : V → W with qk = qpk for all k ∈ I. It
suffices to show that q in fact lies in [Cop,Set]nd. So let x ∈ V (c) with q(x) ∈W (c)
degenerate. Because the pi’s are jointly surjective, there is j ∈ I and y ∈ (Dj)(c)
with pj(y) = x. Now qj(y) = qpj(y) = q(x) is degenerate, and so y is too, since qj
reflects degeneracies. Thus also x = pj(y) is degenerate as required. �

2.2. The Reedy factorisation system. Recall that a pair of maps (f, g) in a
category are said to be orthogonal—written f ⊥ g—if, for every commuting square
as in the solid part of the diagram

A
f
//

h
��

B

j~~

k
��

C g
// D

there exists a unique filler j : B → C as indicated making both triangles commute.
Given a class of maps J , we write J ⊥ for the class of maps k such that j ⊥ k for
all j ∈ J ; dually, we write ⊥J for the class of all k such that k ⊥ j for all j ∈ J .
A pair of classes (E ,M) is a factorisation system if E = ⊥M and M = E⊥ and
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every map factorises as an E-map followed by an M-map; such factorisations are
necessarily unique up to unique isomorphism.

Proposition 3. If E is a locally presentable category (so in particular, a presheaf
category) and J is any small class of maps in E, then (⊥(J ⊥),J ⊥) is a factorisation
system.

Proof. Well-known. �

Suppose now that C is a Reedy category. Applying the preceding result to the
class of maps J = y(C−) (where y : C → [Cop,Set] is the Yoneda embedding) yields
a factorisation system (E ,M) on [Cop,Set]. Explicitly, this factorisation system
(E ,M) has classes

M = {g : X → Y | y(σ)⊥ g for all σ ∈ C−}
E = {f : X → Y | f ⊥ g for all g ∈M}

Proposition 4. When C is elegant, every E-map is an epimorphism.

Proof. Every map in y(C−) is a split epimorphism. Since epis and monos are
orthogonal in presheaf categories, every monomorphism is an M-map; whence
every E-map is an epimorphism. �

Proposition 5. For any Reedy category C, the M-maps in [Cop,Set] reflect de-
generacies; if C is elegant, then every degeneracy-reflecting map is in M.

Proof. We first show that any M-map f : X → Y reflects degeneracies. Let
x ∈ X(c) such that f(x) is degenerate in Y (c); thus f(x) = zσ for some non-
identity σ ∈ C−(d, c) and z ∈ Y (d), and so we have a commutative square

(*)

y(c)

x

��

y(σ)
// y(d)

z

��

X
f
// Y

in [Cop,Set]. Since f ∈ M, there is a filler w : y(d) → X, and so an element
w ∈ X(d) with wσ = x. Thus x is degenerate as required.

Suppose now that C is elegant; we show that every degeneracy-reflecting map
f : X → Y is an M-map. Thus, we must show that every diagram (*) admits a
unique filler. Because C is elegant, y(σ) is (split) epimorphic, and so uniqueness
is forced; thus we need only show existence. Thus, given elements x ∈ X(c) and
z ∈ Y (d) with f(x) = zσ, we must find w ∈ X(d) with wσ = x and f(w) = z.
Since C is elegant, we can write x = x̄τ and z = z̄ρ with τ, ρ ∈ C− and x̄, z̄
non-degenerate. Since f reflects degeneracies, it preserves non-degeneracies, and so
f(x̄) is non-degenerate; and now

z̄ρσ = zσ = f(x) = f(x̄)τ

exhibits f(x) as the image of a non-degenerate element in two different ways;
whence, by elegance of C, we have f(x̄) = z̄ and τ = ρσ. Now taking w = x̄ρ, we
have wσ = x̄ρσ = x̄τ = x and f(w) = f(x̄)ρ = z̄ρ = z, as required. �
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2.3. [Cop,Set]nd is a presheaf category. Let C be an elegant Reedy category,
and let K be a set of isomorphism-class representatives of objects X ∈ [Cop,Set]
which admit an E-map from a representable; note that K is indeed only a set,
since there are only a set of representables, each E-map is an epimorphism, and a
presheaf topos is well-copowered.

Proposition 6. For any K ∈ K the functor [Cop,Set](K, –) : [Cop,Set] → Set
preserves colimits of diagrams of M-maps.

Proof. Given a diagram D : I → [Cop,Set] of M-maps, let (pi : Di → V ) be a
colimiting cocone; by Proposition 2, each pi is again an M-map. We must show
that the induced map of sets

colimi∈I [Cop,Set](K,Di)→ [Cop,Set](K,V )

is invertible, or equally that the fibre of this map over each f ∈ [Cop,Set](K,V ) is
a singleton. This fibre is the set of connected components of the category Fact(f)
whose objects are factorisations (f = pig : K → Di→ V ) and whose morphisms
(pi, g)→ (pj , k) are commutative diagrams

Di

Df

��

pi

''
K

k ''

g 77

V .

Dj
pj

88

Thus we must show that Fact(f) is connected. Note that this will be so in the
special case where K = y(c), since then [Cop,Set](y(c), –) is the cocontinuous
functor given by evaluation at c. For a general K ∈ K, we first choose some E-map
q : y(c) � K; now Fact(fq) is connected by the above, so it suffices to show that
the functor q∗ : Fact(f)→ Fact(fq) sending (pi, g) to (pi, gq) is an isomorphism
of categories. But given (h, pi) in Fact(fq), we have a square as in the solid part
of the diagram:

y(c)
q
//

h
��

H

f

��
j

~~

Di pi
// V ;

since q is in E , and pi inM, we conclude that there is a unique filler j making both
triangles commute. So q∗ is bijective on objects, and clearly is faithful; for fullness,
suppose that (pi, g) and (pj , k) ∈ Fact(f) and that we have a commuting diagram

Di

Df

��

pi

&&
y(c)

kq ''

gq 77

V .

Dj
pj

88

We must show that in fact Df ◦ g = k. For this, it suffices to show the equality
on precomposition with the E-map q and postcomposition with the M-map pj ;
and the first of these is true by assumption, and the latter by the calculation
pj ◦Df ◦g = pi ◦g = f = pj ◦k. Thus q∗ is fully faithful, and hence an isomorphism
of categories as claimed. �
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Proposition 7. The set of objects K is dense in [Cop,Set]nd.

Proof. Let K ↓ X be the full subcategory of [Cop,Set]nd/X on objects of the form
(K ∈ K,m : K → X ∈ M), and let Φ: K ↓ X → [Cop,Set]nd send (K,m) to K.
We must show that the cocone θ : Φ⇒ ∆X with θ(K,m) = m is colimiting. Since
[Cop,Set]nd is closed under colimits in [Cop,Set], it suffices to show that the cocone
is colimiting in [Cop,Set]; and as colimits in [Cop,Set] are pointwise, it suffices for
this to show that [Cop,Set](y(c), –) sends θ to a colimit in Set.

As in the previous proof, this is equally to show that, for each map f : y(c)→ X,
the category Fact(f) of factorisations of f through maps m : K → X in K ↓ X
is connected. To see this, form an (E ,M) factorisation f = me : y(c)→ K → X;
we claim that (m, e) is an initial object in Fact(f), which immediately implies its
connectedness. Indeed, for any (m′, e′) ∈ Fact(f), we have the diagram:

y(c)
e

}}

e′

!!

K

m ""

j
// K ′

m′||

X

with e an E-map and m an M-map, whence there is a unique filler as indicated.
Thus (m, e) is initial in Fact(f), which is therefore connected as required. �

2.4. The E-map classifier. Let C be an elegant Reedy category. For each object
X ∈ [Cop,Set], write Qu(X) for the set of E-quotients of X: isomorphism classes
of E-maps q : X � Q, where we identify two such maps just when they are
isomorphic in the coslice X/C. Note that Qu(X) really is a set, as every E-
map is an epimorphism (by elegance) and a presheaf has only a mere set of
epimorphic quotients. Now note that any f : X → Y in [Cop,Set] induces a
function Qu(f) : Qu(Y ) → Qu(X) by sending q : Y � Q to the E-part of the
(E ,M)-factorisation of qf . In this way we obtain a functor

Qu: [Cop,Set]op → Set .

Proposition 8. Qu preserves small limits.

Proof. Given D : I → [Cop,Set] a diagram and (pi : Di → V )i∈I a colimiting
cocone, we must show that the induced cone(

Qu(pi) : Qu(V )→ Qu(Di)
)
i∈I

is limiting. So suppose that we are given a compatible family of elements of the
Qu(Di)’s: thus we have E-quotient maps qi : Di� Qi for each i ∈ I such that, for
each f : i→ j in I, we have a (necessarily unique) factorisation as on the left in:

Di
Df

//

qi
����

Dj

qj
����

Qi
Qf∈M

// Qj

and

Di
pi

//

qi
����

V

q
����

Qi
`i∈M

// W .

We must show that there is a unique E-quotient q : V �W such that for each i ∈ I,
there is a (necessarily unique) factorisation as on the right above. For existence of
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q, let (`i : Qi→W ) be a colimiting cocone for Q and let q be the unique map with
qpi = `iqi for all i ∈ I. Thus q is the colimit of the qi’s in [Cop,Set]2, and so is an
E-map since each qi is so. Moreover, because each Qf is in M, so too is each `i by
Propositions 2 and 5.

To show uniqueness of q, suppose that q′ : V � W ′ is another E-quotient for
which we have factorisations `′iqi = q′pi with `′i ∈M. It follows from the fact that
each qi is epimorphic that we have a cocone of maps (pi, `

′
i) : qi → q′; since q is a

colimit of the qi’s, we induce a map

V

q
����

V

q′
����

W
h
// W ′

in V/[Cop,Set]. Now h is an E-map because q and q′ are; but it also an M-map,
because each Qf and each `′i is in M. It is therefore invertible and so q = q′ in
Qu(V ). �

Since Qu preserves small limits, it is representable; more explicitly, we have:

Proposition 9. Qu is represented by the object L with L(c) = Qu(y(c)) and
L(γ) = Qu(y(γ); the natural isomorphisms

θX : [Cop,Set](X,L)→ Qu(X)

witnessing the representation send f : X → L to the E-part of its (E ,M) factorisa-
tion. The inverse of θX sends an E-quotient q : X � Q to the map X → L which
sends x ∈ X(c) to Qu(x̄)(q).

Proof. Clearly the maps θX are natural in X; we must show they are invertible.
Since both [Cop,Set](–, L) and Qu send colimits in [Cop,Set] to limits in Set, and
since every presheaf is a colimit of representables, it suffices to show that each θy(c)
is invertible with the given inverse. That inverse sends q ∈ Qu(y(c)) to the map
q̄ : y(c) → L corresponding to it under the Yoneda lemma; hence we must show
that, for every q ∈ Qu(y(c)), the (E ,M) factorisation of q̄ : y(c)→ L is of the form

q̄ = y(c)
q
−� Q

`−→ L .

First we show that q̄ factors through q; since q is regular epi, this is equally to
show that whenever f, g : y(d) ⇒ y(c) satisfy qf = qg, we also have q̄f = q̄g. But
q̄f and q̄g are the elements of Qu(y(d)) obtained as the E-parts of the respective
(E ,M) factorisation of qf and qg; thus they will certainly agree if qf = qg. Thus
we have a factorisation q̄ = `q; and it remains to show that ` is an M-map.

So let x ∈ Q(d) be a non-degenerate element. Since q is surjective, we can choose
some γ ∈ y(c)(d) = C(d, c) with q(γ) = x. Now `(x) = q̄(γ) = Qu(γ)(q) ∈ Qu(y(d)),
and we have a commutative diagram as on the left in:

y(d)
y(γ)

//

`(x)
����

y(c)

q
����

Q′
h∈M

// Q .

and

y(d)
y(σ)
// //

`(x)
����

y(d′)

z
����

Q′ Q′ .
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Suppose that `(x) were a degenerate element of L, `(x) = zσ, say. Then we
would have a commutative diagram as on the right above; consequently, `(x) sends
1d ∈ y(d)(d) to a degenerate element of Q′(d), and so the composite q ◦ y(γ) sends
1d to a degenerate element of Q(d); but (q ◦ y(γ))(1d) = q(γ) = x, contradicting
non-degeneracy of x. �
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