COFIBRANT SIMPLICIAL SETS

RICHARD GARNER

ABSTRACT.

1. ELEGANT REEDY CATEGORIES

1.1. Reedy categories. Recall that a Reedy structure on a category C is given by:
a pair of identity-on-objects subcategories C_ and C, of C together with a degree
function |-|: obC — N such that:

e For all non-identity o: ¢ — d in C_, we have |c| > |d|;

e For all non-identity ¢: ¢ — d in C4, we have |c| < |d|.

e Fvery map 7v: ¢ — d of C admits a unique factorisation v = §o where o € C_
and 0 € C.

1.2. Presheaves and degenerate elements. Given a presheaf X on a Reedy
category C, we will write x+y for the action of a map v: d — ¢ of C on an element
x € X(c); thus a2y = (X7)(x) € X(d). We say that = € X(c) is non-degenerate if,
whenever © = yo with ¢ € C_, we have ¢ = 1., and say that it is degenerate if
x = yo for some non-identity o: d — ¢ in C_. We write X,q(c) and X4(c) for the
sets of non-degenerate and degenerate elements of X (c).

1.3. Elegant Reedy categories. A Reedy category C is called elegant ([]) if,
for every presheaf X: C°? — Set and = € X(c), there is a unique pair (o, €
C_(d,c), 7 € Xpa(d)) with x = To,.

Proposition 1. C is an elegant Reedy category if and only if every span of maps
in C_ can be completed to a commutative square in C_ which is an absolute pushout
in C. It follows that every map in C_ is a split epimorphism.

Proof. See Proposition 3.8 of [] and the remarks following. O

2. CATEGORIES OF NON-DEGENERATE ELEMENTS

2.1. Degeneracy-reflecting maps. It is immediate that a map of presheaves
f: X — Y on a Reedy category C preserves degeneracy and reflects non-degeneracy,
in the sense that f(Xq(c)) C Ya(c) and f~1(Yaa(c)) € Xna(c) for all ¢ € C. We say
that a map of presheaves f: X — Y on a Reedy category reflects degeneracy or
preserves non-degeneracy if one of the two equivalent conditions

F(Xna(e) € Yoa(e) and  f71(Ya(c)) € Xa(c)
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holds for all ¢ € C. We write [C°P, Set],q for the subcategory of [C°P, Set] containing
every object but only the degeneracy-reflecting maps.

Proposition 2. If C is an elegant Reedy category, then the inclusion functor
[C°P Set|,q — [C°P, Set]| creates small colimits.

Proof. Let D: T — [C°P,Set],q be a diagram, and (p;: Di — V);cz a colimiting
cocone for D in [C°P, Set]. We first show that this cocone lies in [C°P, Set],,q, which
is to say that each p; reflects degeneracies.

So let « € (Di)(c) be such that p;(z) is degenerate in V(c); we will show that
x is itself degenerate. Since C is elegant, we can write p;(z) = yo for a unique
non-identity o € C_(d,c) and y € Vjq(d). Since the p;’s are jointly surjective,
there exists j € Z and z € (Dj)(d) such that p;j(z) = y; and thus we have
pj(z0) = pj(2)o = yo = p;i(z) € V(c). Due to the way that colimits are computed
in Set, this means that there exists a zig-zag

1 13 19n—1

NN T

iZZQ 19

in Z and elements x; € Di; with

Ton—1
o e e
Ton =

T =0

But now as x2, = zo is degenerate, and each D fy, preserves and reflects degeneracies,
each x; must be degenerate; in particular, z = xg is degenerate as required.

It remains to show that the cocone (p;: Di — V) is colimiting in [C°P, Set],q.
Given any other cocone (¢;: Di — W) under D, we have, because V is colimiting
in [C°P, Set], a unique induced map q: V. — W with g = gpy for all k € Z. It
suffices to show that ¢ in fact lies in [C°P, Set],q. So let x € V(¢) with ¢(x) € W(c)
degenerate. Because the p;’s are jointly surjective, there is j € Z and y € (Dj)(c)
with p;(y) = . Now ¢;(y) = qpj(y) = q(z) is degenerate, and so y is too, since g;
reflects degeneracies. Thus also x = p;(y) is degenerate as required. O

2.2. The Reedy factorisation system. Recall that a pair of maps (f,¢g) in a
category are said to be orthogonal—written f 1 g—if, for every commuting square
as in the solid part of the diagram

AL>B

h k

C —> D
there exists a unique filler j: B — C' as indicated making both triangles commute.
Given a class of maps J, we write J+ for the class of maps k such that j L k for

all j € J; dually, we write -7 for the class of all k such that k L j for all j € J.
A pair of classes (£, M) is a factorisation system if € = *M and M = £+ and
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every map factorises as an £-map followed by an M-map; such factorisations are
necessarily unique up to unique isomorphism.

Proposition 3. If £ is a locally presentable category (so in particular, a presheaf
category) and J is any small class of maps in &, then (“(J+), T+) is a factorisation
system.

Proof. Well-known. U

Suppose now that C is a Reedy category. Applying the preceding result to the
class of maps J = y(C_) (where y: C — [C°P, Set] is the Yoneda embedding) yields
a factorisation system (€, M) on [C°P, Set|. Explicitly, this factorisation system
(€, M) has classes

M={g: X =Y | ylo) Lgforallc e C_}
E={f: X—>Y | fLlgforall ge M}

Proposition 4. When C is elegant, every £-map is an epimorphism.

Proof. Every map in y(C_) is a split epimorphism. Since epis and monos are
orthogonal in presheaf categories, every monomorphism is an M-map; whence
every £-map is an epimorphism. O

Proposition 5. For any Reedy category C, the M-maps in [C°P, Set] reflect de-
generacies; if C is elegant, then every degeneracy-reflecting map is in M.

Proof. We first show that any M-map f: X — Y reflects degeneracies. Let
x € X(c) such that f(x) is degenerate in Y (c); thus f(xz) = zo for some non-
identity o € C_(d,c) and z € Y (d), and so we have a commutative square

y(e) 2% y(a)

lz

x
XT)Y

()

in [C°P,Set]|. Since f € M, there is a filler w: y(d) — X, and so an element
w € X(d) with wo = z. Thus z is degenerate as required.

Suppose now that C is elegant; we show that every degeneracy-reflecting map
f: X =Y is an M-map. Thus, we must show that every diagram (*) admits a
unique filler. Because C is elegant, y(o) is (split) epimorphic, and so uniqueness
is forced; thus we need only show existence. Thus, given elements z € X (¢) and
z € Y(d) with f(x) = zo, we must find w € X(d) with wo = z and f(w) = z.
Since C is elegant, we can write * = 7 and z = Zp with 7,p € C_ and Z, 2
non-degenerate. Since f reflects degeneracies, it preserves non-degeneracies, and so
f(&) is non-degenerate; and now

200 = 20 = f(x) = ()7

exhibits f(z) as the image of a non-degenerate element in two different ways;
whence, by elegance of C, we have f(z) =z and 7 = po. Now taking w = Zp, we
have wo = Zpo = 7 = z and f(w) = f(Z)p = Zp = z, as required. O
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2.3. [C°P,Set],q is a presheaf category. Let C be an elegant Reedy category,
and let KC be a set of isomorphism-class representatives of objects X € [C°P, Set]
which admit an &-map from a representable; note that X is indeed only a set,
since there are only a set of representables, each £-map is an epimorphism, and a
presheaf topos is well-copowered.

Proposition 6. For any K € K the functor [C°P,Set|(K, -): [C°P,Set] — Set
preserves colimits of diagrams of M-maps.
Proof. Given a diagram D:Z — [C°P, Set] of M-maps, let (p;: Di — V) be a
colimiting cocone; by Proposition 2, each p; is again an M-map. We must show
that the induced map of sets

colim;e7[C°P, Set|(K, Di) — [C°P, Set](K, V)

is invertible, or equally that the fibre of this map over each f € [C°P, Set](K, V) is
a singleton. This fibre is the set of connected components of the category Fact(f)
whose objects are factorisations (f = p;g: K — Di — V) and whose morphisms
(pi,9) = (pj, k) are commutative diagrams

Dq

2N

K Df V.
g

Thus we must show that Fact(f) is connected. Note that this will be so in the
special case where K = y(c), since then [C°P, Set](y(c),—) is the cocontinuous
functor given by evaluation at c¢. For a general K € K, we first choose some £-map
q: y(¢) - K; now Fact(fq) is connected by the above, so it suffices to show that
the functor ¢*: Fact(f) — Fact(fq) sending (p;, g) to (p;, gq) is an isomorphism
of categories. But given (h,p;) in Fact(fq), we have a square as in the solid part
of the diagram:

y(c) —— H

7/
7/
h
|7

since ¢ is in &£, and p; in M, we conclude that there is a unique filler j making both
triangles commute. So ¢* is bijective on objects, and clearly is faithful; for fullness,
suppose that (p;, g) and (p;, k) € Fact(f) and that we have a commuting diagram

D1
9q Pi
y(c) / D‘f \ |7
méj%j

We must show that in fact Df o g = k. For this, it suffices to show the equality
on precomposition with the £&-map ¢ and postcomposition with the M-map p;;
and the first of these is true by assumption, and the latter by the calculation
pjoDfog=p;og= f=pjok. Thus ¢* is fully faithful, and hence an isomorphism
of categories as claimed. O
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Proposition 7. The set of objects K is dense in [C°P, Set],q.

Proof. Let K | X be the full subcategory of [C°P, Set],q/X on objects of the form
(K€ K,m: K — X € M), and let ®: K | X — [C°, Set],q send (K, m) to K.
We must show that the cocone 6: ® = AX with 0(x ,,) = m is colimiting. Since
[C°P, Set],q is closed under colimits in [C°P, Set], it suffices to show that the cocone
is colimiting in [C°P, Set]; and as colimits in [C°P, Set] are pointwise, it suffices for
this to show that [C°P, Set](y(c),—) sends 6 to a colimit in Set.

As in the previous proof, this is equally to show that, for each map f: y(c) — X,
the category Fact(f) of factorisations of f through maps m: K — X in £ | X
is connected. To see this, form an (€, M) factorisation f = me: y(c) - K — X
we claim that (m,e) is an initial object in Fact(f), which immediately implies its
connectedness. Indeed, for any (m/,e’) € Fact(f), we have the diagram:

with e an £&-map and m an M-map, whence there is a unique filler as indicated.
Thus (m, e) is initial in Fact(f), which is therefore connected as required. O

2.4. The £-map classifier. Let C be an elegant Reedy category. For each object
X € [C°P, Set], write Qu(X) for the set of £-quotients of X: isomorphism classes
of &-maps ¢: X — @, where we identify two such maps just when they are
isomorphic in the coslice X/C. Note that Qu(X) really is a set, as every &-
map is an epimorphism (by elegance) and a presheaf has only a mere set of
epimorphic quotients. Now note that any f: X — Y in [C°P, Set] induces a
function Qu(f): Qu(Y) — Qu(X) by sending ¢: Y — @ to the £-part of the
(€, M)-factorisation of ¢f. In this way we obtain a functor

Qu: [C°P, Set]°? — Set .
Proposition 8. Qu preserves small limits.

Proof. Given D: 7 — [C°P,Set] a diagram and (p;: Di — V);cz a colimiting
cocone, we must show that the induced cone

(Qu(pi): Qu(V) = Qu(Di)),;
is limiting. So suppose that we are given a compatible family of elements of the

Qu(Di)’s: thus we have E-quotient maps ¢;: Di — Qi for each i € Z such that, for
each f: i — j in Z, we have a (necessarily unique) factorisation as on the left in:

Di—2L ., pj Di— " v
qzi lqj and qzi lq
QZ *Q}Ej\/l% Qj Q'L 7(;6./7/19 W .

We must show that there is a unique £-quotient g: V' — W such that for each ¢ € 7,
there is a (necessarily unique) factorisation as on the right above. For existence of
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q, let (¢;: Qi — W) be a colimiting cocone for @) and let g be the unique map with
qp; = l;q; for all i € Z. Thus ¢ is the colimit of the ¢;’s in [C°P, Set]2, and so is an
E-map since each ¢; is so. Moreover, because each Q f is in M, so too is each ¢; by
Propositions 2 and 5.

To show uniqueness of ¢, suppose that ¢': V' — W' is another £-quotient for
which we have factorisations ¢;¢; = ¢'p; with ¢, € M. Tt follows from the fact that
each ¢; is epimorphic that we have a cocone of maps (p;, ¢;): ¢i — ¢'; since ¢ is a
colimit of the ¢;’s, we induce a map

V=—=V
QL iq’
WTW’

in V/[C°P,Set|. Now h is an E-map because ¢ and ¢’ are; but it also an M-map,
because each Qf and each ¢, is in M. It is therefore invertible and so ¢ = ¢’ in

Qu(V). O
Since Qu preserves small limits, it is representable; more explicitly, we have:

Proposition 9. Qu is represented by the object L with L(c) = Qu(y(c)) and
L(v) = Qu(y(y); the natural isomorphisms

Ox: [C°P,Set](X, L) — Qu(X)

witnessing the representation send f: X — L to the E-part of its (€, M) factorisa-
tion. The inverse of 0x sends an E-quotient q: X — @Q to the map X — L which
sends x € X(c) to Qu(z)(q).

Proof. Clearly the maps fx are natural in X; we must show they are invertible.
Since both [C°P, Set](—, L) and Qu send colimits in [C°P, Set] to limits in Set, and
since every presheaf is a colimit of representables, it suffices to show that each 6,
is invertible with the given inverse. That inverse sends ¢ € Qu(y(c)) to the map
G: y(c) — L corresponding to it under the Yoneda lemma; hence we must show
that, for every g € Qu(y(c)), the (€, M) factorisation of ¢: y(¢) — L is of the form

(j:y(c)i»QﬁL.

First we show that ¢ factors through ¢; since ¢ is regular epi, this is equally to
show that whenever f,g: y(d) = y(c) satisfy ¢f = qg, we also have §f = gg. But
df and gg are the elements of Qu(y(d)) obtained as the E-parts of the respective
(€, M) factorisation of ¢f and qgg; thus they will certainly agree if ¢f = qg. Thus
we have a factorisation § = £¢; and it remains to show that £ is an M-map.

So let z € Q(d) be a non-degenerate element. Since ¢ is surjective, we can choose
some v € y(c)(d) = C(d, ¢) with q(7) = z. Now l(z) = ¢(7) = Qu(7)(q) € Qu(y(d)),
and we have a commutative diagram as on the left in:

y(d) —yl(e y(d) y(d)
Z(ac)l q and e(gj)i lz
@ em 9 =0
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Suppose that f(xz) were a degenerate element of L, ¢(x) = zo, say. Then we
would have a commutative diagram as on the right above; consequently, ¢(x) sends
14 € y(d)(d) to a degenerate element of Q'(d), and so the composite ¢ o y(y) sends
14 to a degenerate element of Q(d); but (qoy(vy))(1q) = ¢(v) = x, contradicting
non-degeneracy of x. O
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