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Abstract. Simple and semisimple additive categories are studied. We prove, for example, that an 
artinian additive category is (semi)simple iff it is Morita equivalent to a division ring(oid). Semiprim­
itive additive categories (that is, those with zero radical) are those which admit a noether full, faithful 
functor into a category of modules over a division ringoid. 
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The idea that additive categories are rings with several objects was developed 
convincingly by Barry Mitchell [8] who showed that it is unusual for a theorem 
of (non-commutative) ring theory not to carry over to additive categories. Here 
we would like to further argue that insight and efficiency (in concepts, statements, 
and proofs) are to be gained by dealing with additive categories throughout, and 
that familiar theorems for rings come out of the natural development of category 
theory. In other words, we attempt to apply additive category theory to ring theory 
rather than to generalize ring theory to additive categories. As a typical advantage 
to this approach we point to the fact that a ring and its category of finitely generated 
projective modules can be treated on an equal footing. 

The radical of an additive category was defined by G. M. Kelly [7]. One 
of our purposes is to analyse this radical in more detail and to investigate its 
relation to a notion of semisimple additive category. An additive category is called 
semiprimitive when its radical is zero, and we provide a characterization of these 
categories in terms of a categorical concept called noether fullness. We were 
inspired by a preprint of Karlheinz Baumgartner [2], and, while we claim little in 
the present paper is really new, the results seem largely unknown and without a 
uniformly categorical published treatment. 

I am grateful to George Ivanov, Todd Trimble and Dominic Verity for very 
helpful discussions. 

Let Ab denote the category of (small) abelian groups. All categories and functors 
will be additive (meaning Ab-enriched) without further mention. So a category with 
only one object amounts to a ring (with identity). 
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For any category A, a (right) A-module is a functor M A 0P --. Ab; if 
f E A (A , B ) and m E M (B ), we write mf for M(f )(m ) E M (A ). We write 
ModA for the category of A-modules and natural transfonnations between them. 
There is a fully functor YA: A--. ModA, called the Yoneda embedding, which 
takes each object X of A to the representable module YA (X ) = Ax where 
Ax(A) = A (A, X). Let QA denote the full subcategory of ModA consisting of 
those modules which are retracts of finite direct sums of representable modules 
Ax, X E A. A module Mis in QA iff the representable functor (ModA)(M , - ) : 
ModA --. Ab preserves colimits. The category QA is called the projective (or 
Cauchy) completion of A. If A is a ring, QA is the category of finitely generated, 
projective A-modules. A category A is called projectively complete when it has 
finite direct sums and splittings for all idempotents; this holds iff YA : A --. QA 
is an equivalence of categories. Clearly QA is projectively complete for all A. 
Categories A, Bare called Morita equivalent when ModA is equivalent to M odB. 
A basic Morita-style theorem (true very generally for enriched categories; see [9] 
for example) is that A, Bare Morita equivalent iff QA is equivalent to QB. For 
any A, clearly A and QA are Morita equivalent. 

An object of a category X is called artinian (respectively, noetherian) when 
every descending (respectively, ascending) chain of subobjects is finite. Call A 
artinian when each Aa is an artinian object of ModA. In this case, each object of 
QA is an artinian A-module, and QA is artinian. 

For additive categories A, B, the tensor product A ® Bis the additive category 
whose objects are pairs (A, B ) of objects A E A, B E B, and whose horns are 
given by 

(A ® B)((A , B ), (A', B') ) = A (A, A' )® B(B , B'). 

For each A, there is a horn functor 1-(A: A 0P ® A--. Ab given by 1-lA(A, B ) = 
A(A, B). In other words, 1-(A is an (A ® A0P)-module. 

Before discussing the radical, we make some remarks about general ideals. 
Given an object X E A, a right X-ideal R of A is a submodule of Ax E ModA. 
It can be regarded as a set R of arrows into X such that, if f , g: A--. X are in R 
and v : C --. A, then (! + g )v is in R. This agrees with the definition of right ideal 
when A is a ring. Note that R = Ax iff R contains a retraction. 

An A-module M is called simple (or "irreducible") when it has precisely two 
distinct submodules 0 ~ Mand M ~ M. An A-module Mis called semisimple 
(or "completely reducible") when it is a direct sum of simple modules. Recall ([3] 
Ch. 1, Proposition 4.1) that a module is semisimple iff each submodule is a direct 
summand (the proof there works for A-modules without change). 

An ideal Kin a category A is a submodule of 1-lA E Mod(A 0 P ® A ). We 
can identify an ideal K with the union of all the sets K(A, B ) of arrows in A; 
a set K of arrows in A is an ideal iff, for all f, g : A --. B in K, the arrow 
u(f + g)v : X --. Y is in K for all u : B - Y, v : X --. A. We recapture 
the submodule via K(A, B ) = A(A, B) n K. Each K(A, A ) is an ideal of the 
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endomorphism ring A(A, A). For any functor T : A ---+ B, the kernel kerT, 
consisting of the atTows f in A with T(j) = 0, is an ideal in A. A functor is 
faithful iff its kernel is 0 (that is, contains only the zero arrows). If T : A ---+ Bis a 
functor then each ideal L in B has a restriction ideal T - 1 ( L) in A with f E T - 1 ( £ ) 
iff T(j) E £. 

A category A is called simple when it has precisely two ideals 0 and A. Any 
nonzero full subcategory of a simple category is simple since any proper ideal in 
the subcatego1y would generate a proper ideal in the whole category. 

PROPOSITION 1. For any division ring D, the category VectD (= ModD) of 
vector spaces over Dis not simple; however, the (VectD )-module represented by D 
is simple. 

Proof The ideal of V ectD consisting of the arrows with finite dimension­
al image is neither 0 nor VectD. A submodule R of the (VectD)-module M 
represented by D is a right D-ideal in V ectD; if R contains a non-zero aITow 
F : A ---+ D then f is a retraction and so R = M . D 

PROPOSITION 2. Restriction of ideals along YA : A ---+ QA provides a bijection 
between ideals in QA and ideals in A. 

Proof Let RA denote the catego1y of modules which are finite direct sums of 
Ax's. Then restriction along YA : A ---+ RA provides a bijection between ideals 
in RA and ideals in A [K; Lemma 2]. It remains to examine restriction under the 
inclusion RA <--+ QA. Given an ideal JC in RA, we extend it to an ideal L in QA 
by defining f : M ---+ N in QA to be in L when j fr E JC where j : N ---+ Y is a 
coretraction (=split monic), where r : X ---+ Mis a retraction(= split epic), and 
where X, Y E RA. It is routine to check that this criterion is independent of the 
choice of r, j, and that L is the unique ideal in QA whose restriction is JC. D 

The category QD of finite dimensional D -vector spaces is thus simple since the 
division ring D is . 

PROPOSITION 3. An additive category A is simple iff it is Morita equivalent to 
a simple ring E. In fact, the ring E can be taken to be A(X, X) for any non-zero 
object X of A. If E contains a minimal right ideal then A is Morita equivalent to 
the category QD of finite dimensional vector spaces over a division ring D. Hence, 
a category is simple artinian iff it is Morita equivalent to a division ring. 

Proof We shall use the following (general enriched) categorical lemma: if 
U : [ ---+ A is a fully faithful functor whose composite YAU : E --+ M odA is 
dense then QU : QE ---+ QA is an equivalence of categories. We shall supply a 
proof. The denseness of YAU means that restriction along U0

P is a fully faithful 
functor R: ModA--+ Mod[, while it is standard that left kan extension along a 
fully faithful U0 P is a left adjoint functor K : ModE ---+ ModA with RK ~ 1. 



142 ROSS STREET 

Since R is faithful, it follows that K is an inverse equivalence for R. By Morita 
theory, QU is an equivalence. 

From Proposition 2 it follows that, if l3 is simple, so it QB. So " if" follows. 
Suppose A is simple and take any non-zero object X of A. We prove that the 
representable module Ax is a generator in the category ModA; that is, if B : M --+ 

N is a non-zero module map then we must show there exists a map~ : Ax --+ M 
with B~ i 0. By Yoneda's Lemma, this means we must show that the component 
Bx : M(X) --+ N(X) is non-zero. Let L be the image of B; it is non-zero since B 
is. Since A is simple, the kernel of L : A 0

P --+ Ab is zero; so Lis faithful. Thus 
X i 0 implies L(X) i 0. So the image of Bx is non-zero, as required. 

Take E = A(X, X) which is a simple ring since it is a non-zero full subcategory 
of A. We have a fully faithful functor U : E --+ A which composes with YA to give 
a fully faithful functor T : E --+ ModA picking out the A-module Ax; we have 
proved that the image of T is a (strongly) generating full subcategory. It follows 
from [ 4] that T is a dense functor. The above quoted lemma yields that E and A 
are Morita equivalent. 

Consider the third sentence of the Proposition. A minimal right ideal I of E is 
a simple E-module and is easily shown to be finitely generated projective (see [6], 
p. 171-2). So I E QE and D = ( QE)(I, I ) = (ModE)(I, I) is a division ring 
by Schur's Lemma. By the above applied to QE in place of A, we see that E and 
D, and hence A and D are Morita equivalent. The last sentence of the Proposition 
follows since A ru.tinian implies E a1tinian, so certainly E has a minimal right 
ideal. D 

It follows that, if A is simple artinian, then QA is an abelian category in which all 
short exact sequences split. Also, in that case, by ([3], Theorem 4.2, p.1 1), every 
A-module is projective and injective. 

DEFINITION 1. The radial rad(A) of an additive category A consists of those 
arrows f : A --+ B in A such that I A - g f : A --+ A is a retraction for all arrows 
g:B--+A. 

This definition agrees with the Jacobson radical for a ring ([6] Theorem 4.1, p. 
196). 

PROPOSITION 4. The radical is an ideal. 
Proof First we show rad(A) is closed under addition. Take f , f' : A --+ B in 

rad(A) and take any g: B --+ A. There exists h such that (IA - gf)h = 1 A· But 
then 

IA - g(f + f') =(IA - gf)(lA - hgf') 

is a composite of retractions and so a retraction. So f + f' is in rad(A). 
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No trick is required to see that rad(A) is a left ideal. Take f : A --+ Bin rad(A), 
u: B --+ C, and g: C--+ A. Then lA - g(u f ) = lA - (gu)f is a retraction. So 
uf E rad (A ). 

To see that rad( A) is a right ideal take f : A --+ B in rad( A) and any v : X --+ A. 
For any g: B --+ X we know that IA - vgf is a retraction; so we have h such that 
(lA - vgf)h = lA. Then (motivated by a "geometric series formula" for h) we 
have 

(Ix - gfv)(lx + gfhv) Ix - gfv + gfhv - gfvg f hv 

= lx - gfv + gf(IA - vgf)hv 

lx - gfv + gf lAv 

Ix. 

So lx - gfv is a retraction. So fv E rad(A). 0 

Now we can show that our radical agrees with Kelly's ([7] Lemma 6) and is 
self dual. 

PROPOSITION 5. An arrow f : A --+ B is in rad(A ) if! 1 A - g f is invertible for 
all g : B --+ A. 

Proof If f E rad( A ), we have (lA - gf)h = lA for some h. Then h = IA+ f h. 
By Proposition 4, we have - f h E rad( A), so l A - (- f h) = h is a retraction. 
So h is a retraction and a coretraction. So h is invertible. So 1 A - g f = h-1 is 
invertible. The converse is obvious. D 

For any ideal JC in A, we write A / JC for the category with the same objects as A 
and with horns given by the quotient groups (A/ JC)(A , B) = A(A, B) / JC (A, B ). 
There is a canonical quotient functor A --+ A/ JC which is the identity on objects 
and takes each arrow to its JC-coset. The following characterization was taken as 
the definition in [7]; we include a proof for completeness. 

PROPOSITION 6. The radical rad(A ) is the largest ideal of A such that the 
quotient functor A --+ A / rad (A) is conservative ( = reflects isomorphisms). The 
quotient functor also reflects retractions and coretractions. 

Proof We first prove that the quotient functor reflects retractions. Suppose f 
becomes a retraction in A / rad( A). Then there exists g : B --+ A such that 1 - f g is 
in rad(A). So 1 - ( 1 - f g) is a retraction. So f g is a retraction. So f is a retraction. 
Dually, the quotient functor reflects coretractions. As an arrow is invertible iff it is 
both a retraction and coretraction, the quotient functor reflects isomorphisms. 

Suppose JC is an ideal of A for which A --+ A/ JC is conservative. We shall 
show that JC ~rad( A). Take f E JC. We must see that 1 - gf is invertible for all g. 
Since A --+ A/ JC is conservative, it suffices to see that 1 - g f becomes invertible 
in A/ JC. But g f E JC since JC is an ideal. So 1 and I - g f become equal in A/ JC, 
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yet 1 is already invertible in A. D 

PROPOSITION 7. An arrow f: A-+ Bis in rad(A ) iff g f E R (A )for all objects 
X , all maximal right X-ideals R, and all arrows g : B -+ X. 

Proof Take f E rad( A ). Suppose Risa maximal right X-ideal and g : B -+ X. 
Suppose g f ti R (A ). Since R is maximal, Rand gf generate Ax. In particular, 
Ix = gf k + r where r E R (X ). By Propositions 4 and 5, 1 - gfk = r E R (X ) 
is invertible. So R = Ax, a contradiction. So g f E R (A ) as required. 

Conversely, suppose f ti rad( A ). Then there exists g : B --+ A such that 1 - g f 
is not a retraction. Then 1 - gf generates a proper right A-ideal S c A A. By Zorn 's 
Lemma, there is a maximal right A-ideal R containing S. Then (1 - gf) + gf = 
1 ti R (A ), so gf ti R (A ). D 

LEMMA 8. A module M is simple iff M ~ Ax/ R for some maximal right ideal 
R. 

Proof Suppose Mis simple. Then there exists a non-zero element x E M(X ) 
for someX.Thenaturaltransfo1mation~: Ax -+ M,determinedby ~x ( lx) = x, 
is epic since M is simple. Let R ~ Ax be the kernel of'. If R ~ S c A x then 
Ax / S ~ Ax/ R = M; so the simplicity of M gives S = R. So R is maximal. 

Conversely, suppose we have a short exact sequence 

o - R - A x - M - o 

with R maximal. Take any submodule N of M . The kernel S of the composite 

A x-+ M-+M/N 

has R ~ S ~ Ax, and so either R = Sor S = A x . So either N = 0 or N = M . 
So M is simple. D 

PROPOSITION 9. An arrow f is in rad (A) if! M(j) = 0 for all simple modules 
M. 

Proof Suppose ' : A x -+ M is epic with kernel R. For any anow f : A -+ 

B, 

M (j) = 0 iff M(j )'B = 0 

iff (AAx(f) = 0 

iff Ax(f)(g) E R (A ) for all g : B -+ X 

iff gf E R (A ) for all g : B -+ X . 

The result now follows from Proposition 7 and Lemma 8. D 

PROPOSITION 10. The restriction of the radical of QA is the radical of A. That is, 
rad( QA ) and rad (A ) correspond under the bijection between ideals in Proposition 
2. 
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Proof The Morita theory for emiched categories gives that restriction along 
YA : A ---+ QA provides an equivalence of categories ModQA ~ ModA. So 
simple A-modules are all obtained as restriction of simple QA-modules. So the 
result follows from Proposition 9. D 

An A-module Mis called faithful when M : A 0 P ---+ Ab is a faithful functor; that 
is, when M(f) = 0 implies f = 0. 

DEFINITION 2. An additive category A is called primitive when it has a faithful 
simple module. It is called semiprimitive when, for each arrow f i 0 in A, there 
exists a simple module M such that M(f ) i 0. 

The category V ectD of vector spaces of a division ring D is primitive but not 
simple (Proposition I). 

Suppose (Aie : a E A) is a family of catgories all with the same set of objects. 
The local product of this family is the category l3 with the same objects as all the 
A.ie and with horn groups B(A, B) given by the product over a E A of all the 
horn groups A,le(A, B ): composition is componentwise. There are local projection 
functors Pa : l3 ---+ A,l which are the identity on objects. A category A is said to 
be a local subproduct of the family when there exists a faithful functor A ---+ B 
which is the identity on objects and whose composite with each Pa is full. Clearly, 
A is a local subproduct of the family (A a : a E A) iff there exists a family 
(Ka : a E A) of ideals of A whose intersection is 0 and for which there are 
isomorphisms A/Ka ~ A,1'. 

PROPOSITION I l. The following conditions on an additive category A are equiv­
alent: 

(i) A is semiprimitive; 
(ii) rad(A) = O; 

(iii) A has a faithful semisimple module; 
(iv) A is a local subproduct of primitive categories. 

Proof Proposition 9 immediately shows the equivalence of (i) and (ii). For (i)::::} 
(iii), select a simple A-module Mt for each non-zero arrow f in A; then the direct 
sum of these Mt is semisimple and faithful. For (iii)::::} (iv), suppose (M0 : a E A) 
is a family of simple A-modules whose direct sum M is semisimple and faithful. 
Let Aa = A / ker Ma and let l3 be their local product. Certainly each A-module 
Ma induces a faithful simple Aa-module, so A a is primitive. The functor A ---+ B 
determined by the quotient functors A ---+ A a has the same kernel as M and so 
is faithful. Finally, for (iv) ::::} (ii), suppose there exists a family (K 0 : a E A) of 
ideals of A whose intersection is 0 and such that each A / Ka has a faithful simple 
module Ma. If f E rad(A) then it is taken to the radical of A/ K0 by the canonical 
quotient functor. So Ma(!) = 0 by Proposition 9, whence J E Ka since Ma is 
faithful. Since f E Ka for all a , we deduce that f = 0, as required. D 
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For any additive category A, the category A / rad(A) is semiprimitive, since 
rad(A / rad(A) ) = 0. 

PROPOSITION 12. Every simple category is primitive. 
Proof If A is simple then it has a non-zero object A; then we can use Zorn's 

Lemma to obtain a maximal right A-ideal R. By Lemma 8, we have a simple 
A-module M = AA/ R whose kernel is not the whole of A. Since A is simple, 
kerM = 0. So Mis faithful and A is primitive. D 

DEFINITION 3. A functor T : C -+ X is called noether full when, for all objects 
A, B E C, all noetherian subobjects V of T (A) E X, and all arrows t : T (A) -+ 

T ( B ) in X, there exists an arrow f : A -+ B in C such that the restrictions of T (!) 
and t to V are equal. Every full functor is noether full. Conversely, if each T (A ) is 
noetherian, then noether full implies full. 

PROPOSITION 13. (i) The radical of a product of categories is the product of the 
radicals. 

(ii) Suppose X is a Grothendieck abelian category in which all monies split 
and every object is a filtered colimit of its noetherian subobjects. IfT : A -+ X is 
noether full then the radical of A is contained in the restriction of the radical of 
x. 

Proof (i) Let A be the product of categories A a. Let f = Ua ) be an arrow 
of A. If each J a is in rad(Aa ) then clearly J is in rad(A). Conversely, if f is in 
rad( A), take any g in Aa for which 1 - g fa makes sense. Define h in A to be 0 
in all components except a where it is g. Then 1 - hf is invertible; so 1 - gf a is 
invertible. So J a E rad (Aa) . 

(ii) Take f E rad( A ). We must prove 1 - T(J )h is monic for all h. Let V be 
any noetherian subobject of the domain of h. Then, using noether fullness, there 
exists g such that hand T (g) have the same restriction to V. Then 1 - T (J) h and 
T (1 - f g) have the same restriction to V. Since 1 - f g is invertible, certainly the 
restriction of 1 - T(J )h to V is manic. But the domain of h is the filtered colimit 
of such subobjects V. So 1 -T(J )h is indeed (split) manic. So T(J ) E rad(X ). D 

A division ringoid is an additive category in which each non-zero arrow is invert­
ible. Each division ringoid 1J is equivalent to a coproduct (in the category of 
additive categories) of division rings; hence, Mod1J is equivalent to a product of 
categories of vector spaces over division rings. Every division ringoid is artinian 
since the representable modules are simple. 

The weak product of a family (A a : a E A) of additative categories A a with 
zero objects (but this time with no restriction that the object sets should be the 
same) is the full subcategory of the cartesian product 
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consisting of those objects (A.:i< : a E A) such that A0 = 0 for all but a finite 
number of a. 

Notice that, if TJ is a division ringoid, the projective completion QTJ of TJ is 
equivalent to the weak product of categories of finite dimensional vector spaces 
over division rings. 

We now give the easy proof of our version of the so-called Chevalley-J acobson 
Density Lemma ([5] Theorem 2.1.2, pp. 41-2), ([6] Chapter 4 Section 3). 

PROPOSITION 14. For any additive category A, let TJ0P be a full subcategory 
of ModA consisting of simple A-modules. Then the functor T : A 0 P --+ ModTJ 
given by T (A)(M) = M(A) is noether full. If A is artinian then Tis full and 
factors through QTJ. 

Proof Let £ denote the full subcategory of M odA consisting of the finite direct 
sums of modules in TJ. Clearly£ is the projective completion of the division ringoid 
TJ; so restriction is an equivalence of categories Mod£ ~ M odTJ, and we have 
T : A 0

P --+ Mod£ given by the same formula as in the Proposition. Suppose 
t: T (B ) --+ T (A) is an arrow of Mode and V is a noetherian subobject of T (B). 
Then there are modules M1, .. ., Mn E TJ and elements x 1 E V ( M 1), •• ., Xn E 
V(Mn) which generate V. Put M = M1 EB ... EB Mn E £and x = x1 + ... + Xn E 
V(M1) EB ... EB V(Mn) = V(M) ~ T(B)(M) = M(B) . Let ~ : AB --+ M be the 
A -module map determined (via Yoneda's Lemma) by ~B( l B) = x . Let X be the 
image of~ with inclusion i : X--+ M. Clearly XE£, so we have a commutative 
square: 

tx 
X(B) --X(A) 

M(B ) -M(A) 
tM 

it follows that iM(x) E X (A). But X (A ) is the image of ~A. so there exists 
f : A --+ B such that tM(x) =~A(!) = xf = T(J )(x). Since x generates V, it 
follows that t and T(J) agree on V. 

Now suppose A is artinian. We prove the last sentence of the Proposition by 
showing that each T(A) is noetherian. If not, there is a strictly increasing infinite 
chain V1 C V2 C V3 C .. . of noetherian subobjects of T(A) . Let Rn be the 
right A-ideal consisting of those arrows f : X --+ A with Vnf = 0. Since A is 
artinian, we have Rn = ~i+l for some n. Since Vn f. Vn+l •there exists M E V 
and x E Vn+I (M) with x fl. Vn(M ). Let t : T(A) --+ T (A) be any TJ-module 
map which has zero components at all N E TJ not isomorphic to M, and whose 
component at M is zero on Vn(M) but non-zero at x E Vn+I (M). Since T is 
noether full, there exists f : A --+ A such that T(J) agrees with t on Vn+ l · So 



148 ROSS STREET 

xf =!= 0 and Vnf = 0. So f is in I4i but not Rn+I • a contradiction. D 

THEOREM 15. An additive category A is semiprimitive iff there exists a division 
ringoid'D and a faithful, noether full functor A 0 P--+ Mod'D. If A is primitive then 
there exists a division ring D and a faithful, noether full functor A op --+ V ectD. 

Proof "If" follows from Propositions 1 and 13. Let A be semiprimitive and let 
D0 P be the full subcategory of ModA consisting of one representative for each 
isomorphism class of simple modules; so, by Schur's Lemma, D is a division 
ringoid. Let T : A 0

P --+ Mod'D be the noether full functor of Proposition 14. 
By Proposition 9, T is also faithful. If A is primitive, we can take D = D in 
Proposition 14 to have a single faithful simple module as its only object. D 

The additive catego1y form of the Artin- Wedderbum Structure Theorem 
becomes: 

THEOREM 16. An additive category is semiprimitive artinian iff it is Morita 
equivalent to a division ringoid. 

Proof Suppose A is semiprimitive artinian. We can suppose A is projectively 
complete since we are only interested in it up to Morita equivalence. From Proposi­
tion 14 and Theorem 15, we can suppose A is a full subcategory of a weak product 
V of categories QDi where each Di, i E J, is a division ring. If there is an i E I 
such that the i -th component of A is zero for all A E A then that i can be discarded 
and so we can assume that I contains no such elements. Let Yi be the object of 
V which is zero in all components except the i-th where it is Di. There exists 
some A E A such that the i-th component of A is non-zero. That component of A 
contains a I -dimensional subspace as a retract. So A has Yi as a retract. Since A 
is projectively complete, A contains Yi; and since we have this for all i, it follows 
that A = V. This proves "only if", while "if" is clear. D 

DEFINITION 4. An additive category is called semisimple when it is a local 
subproduct of a family of simple categories. 

Eve1y division ringoid D is semisimple. For, take A to be the set of connected 
components of D and, for each a E A, let Ka be the ideal whose non-zero anows 
are all those between objects not in the component a. Then D / Ka is equivalent to 
a division ring, and so simple; and the intersection of all the Ka is zero. 

From Definition 4 and Proposition 11 , every semisimple category is certainly 
semiprimitive. Theorem 16 gives the converse for artinian categories. 

PROPOSITION 17. If a semisimple category satisfies the descending chain con­
dition on ideals then it is a local product of a finite family of simple categories. 



IDEALS, RADICALS, AND STRUCTURE OF ADDITIVE CATEGORIES 149 

Hence such a category is Morita equivalent to a finite . product of categories of 
finite dimensional vector spaces over division rings. 

Proof We use an easy lemma of ([6] , p. 202) (the proof there is quite categorical 
and applies to modules over a category as readily as over a ring): If an artinian 
module is a subdirect product of simple modules then it is a finite direct sum of 
simple submodules. Let A be our category satisfying the hypotheses of the Propo­
sition . Then the (A ® A0 P) -module HA : A0 P ® A___, Ab satisfies the hypotheses 
of the quoted lemma since its submodules are the ideals of A. So HA is a finite 
direct sum of simple modules. The conclusion of the lemma gives the first sentence 
of our Proposition. For the second sentence, observe that the local product is a full 
subcategory of the product, and we can proceed as in the proof of Theorem 16. D 
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