FACTORIZATIONS IN BICATEGORIES
by
R. Betti, D. Schumacher and R. Street

Abstract. For bicategories, the notion of “monic” and “epic” maps
are relativized to a suitable set of “weights” used as indexing types for
limits. In this way, known factorization systems are recovered and condi-
tions are given in order to analyse them by the process of taking a kernel
followed by a quotient.

1. Introduction

Many functorial factorizations are known in Cat and in other bicategories
(see e.g. Street and Walters [11], Johnstone [7] and [8], Bénabou [2], Bousfield [4],
Makkai [9]). The aim of this paper is twofold: first, to investigate the common
features of these factorizations, second to study the conditions under which they
correspond to the general pattern, known from the 1-dimensional (regular) case
(see [1]), of taking a “kernel” process followed by a “quotient”.

In between the two processes, a notion of “monomorphism” and a corre-
spondig notion of “strong epimorphism” remain defined. This is the first problem:
what is it a “kernel”, what a “quotient” and, mainly, which is the correct notion
of monomorphism for an arrow in a bicategory?

It is known that in different bicategories, different and useful factorizations are
used. In [5] e.g. the choice of the conservative arrows to mimic monomorphisms
leads to the notion of “conservational bicategory”, while in other cases the most
natural generalization of the epi-mono factorization in Cat utilizes the fully-faithful
functors in place of monomorphims.

Following an idea of the unpublished paper [10], the notion of monomorphism
is here relativized to a suitable set W of functors a : C — D in Cat, called
weights, which are used as indexing types for limits. In this way, one can also
study how the notion of monomorphism varies when the set of weights is varying.

The set W of weights is regarded as a full sub-bicategory of Hom(2, Cat), the



bicategory of homomorphisms, strong transformations and modifications, where 2
is the category with two objects {0, 1} and one arrow i : 0 — 1. The kernel of an
arrow in a bicategory X is the functor W — X, obtained by the limit process
indexed by W, monic arrows are defined by trivial kernels, and strong epic arrows
by the orthogonality condition which is appropriate to bicategories.

We then define quotients by the corresponding colimits and prove that the
process of taking kernels is right biadjoint to that of taking quotients:

K

—
Hom(2,X) . Hom(W°, X)
Q

This is a basic result. Under the mild assumptions that ¥V contains the
representable weight 2(0,—) : 2 — Cat, any arrow can be factored canonically
through the quotient of its kernel: lax descent results, such as those of Zawadowski
[12] and [13] and of Makkai [9], can be understood in the context of this adjointness,
with respect to a suitable bicategory W (see also Betti [3]).

Quotients are easily shown to be strong epic, but the second arrow in the
canonical factorization needs not to be monic. This is true provided X satisfies
suitable conditions which take into account a form of W-regularity and moreover
it satisfies a finitary condition with respect to YW. Under those assumptions, we
have a factorization structure for the bicategory X', which extends the regular one
and comprehends known factorizations for C'at and other bicategories.

Two generalizations are possible (which however we don’t follow): first to con-
sider a monoidal 2-category instead of Cat, i.e. a base 2-category whose underlying
category is equipped with a monoidal structure for which the tensor product is a
2-functor and associativity and unity conditions are 2-natural. However, contrary
to this level of generality, here we deal as if bicategories were 2-categories, in order
to avoid unnecessary coherence problems.

Yet another generalization regards the fact that the arrows in a bicategory
X are usefully regarded as homomorphisms 2 — X': in many cases, considering a
general (small) bicategory A instead of 2, provided other aspects are accordingly
adjusted, leads to general, still valid, properties.

The indexed limits and colimits of the paper are defined up to equivalence in
X and should better be called bilimits and bicolimits: when convenient, we omit
the prefix “bi”. To fix terminology, next section introduces main definitions: as



already said, for convenience we often suppress the 2-cells relating to associativity
and unit laws.

The second author is indebted to R. Paré for pointing out early in this work
that taking the quotient should be and indeed is left adjoint to taking the kernel.

2. Definitions relevant to bicategories and factorization structures

Recall that a homomorphism of bicategories F' : B — X is given by a function
on objects, together with functors

F,p: B(a,b) = X (Fa, Fb)

(indexed by pairs of objects in B) and with invertible 2-cells in X’

Ira = F(I,)
Fg-Fh2 F(g-h)

(as usual, we omit subscripts when not necessary) respectively indexed by ob-
jects and composable pairs of arrows in B. These invertible 2-cells are subject to
appropriate functoriality and coherence conditions.

Given two homomorphisms F,G : B — X, a strong natural transformation
o : FF —— G assigns to each object a of B an arrow o, : Fa — Ga, and to each
arrow h : a — b in B an invertible 2-cell o}, as in the following diagram:

FaL)Ga

Fhl i JGh

Op

Fb — Gb

These data are subject to three axioms, expressing the compatibility of oy,
and oy, for a 2-cell h — k in B, the behavior of ¢ on identities, and the behavior
of o with respect to composition of arrows in B.

A modification p: 0 — 7 : F' — G of strong natural transformations consists
of 2-cells g, : 0, — 7, for each object a in B, such that the following diagram of
2-cells commutes, for any f:a — bin B



Gh")u'a
Gh-0, — Gh-T1,

wp-Fh
O'b-Fh e Tb'Fh

From bicategories B and X we can form the bicategory Hom(B, X') of homo-
morphisms, strong natural transformations and modifications.

Given homomorphisms a : A? x B — Cat and F : B — X (with B small,
or finite, and in such cases we say that a is a small, or finite, indexing type with

extra variables A), the bilimit of F indexed by «, if it exists, is a homomorphism
{a, F} : A — X which birepresents

Hom(A? x B,Cat)(a, X(—, F)): Hom(A,X) — Cat

in the sense that, for any homomorphism H : A — X, there is an equivalence of
categories

Hom(A,X)(H,{a,F})~ Hom(A° x B,Cat)(a, X(H, F)).

More properly, the indexed bilimit is given by the pair ({«, F'},p), where
p:a— Hom(A,X)({«a, F}, F) is the unit of the above birepresentation.

Bicolimits in X are just bilimits in X°P, the bicategory obtained by reversing
all arrows of X'. The bicolimit of G: B — X indexed by (3 : B°? x A — Cat (with
extra variables in A) is denoted by [ * G, and is a birepresentation:

Hom(B? x A,Cat)(8,X(G,K)) ~ Hom(A, X (6 G, K))
for every K : A — X, with counit ¢ : 8 — Hom(A, X (G, 3 *Q)).

We now give the definition of a factorization structure, which extends the
known one to bicategories, as in Johnstone [6].

A factorization structure in a bicategory X consists of two classes of mor-
phisms (£,M), both closed under composition and containing all equivalences,
and such that

i) for every arrow f : A — B in X there exist m € M and e € &, and an
invertible 2-cell m - e & f.

ii) The elements of £ are orthogonal to those of M, in the sense that given a
square



X — 5 vy
hJ{ o k
m
4 -2, B

commuting up to an invertible 2-cell a : ke — mh, with m € M and e € £, there
exist a dwgonal arrowt:Y — A unique up to an invertible 2-cell, and invertible

2-cells 3: te —> h and 7 : k —» mt, such that a = (m - 8)(7 - ).

The following properties can be easily proved, as is usual for factorization
structures in categories.

1. £ N M consists precisely of equivalences in X.
2. Any arrow which is orthogonal to every m € M is in £.

3. The factorization f ~ m - e is unique up to an equivalence which is
uniquely determined up to a unique invertible 2-cell. In such cases, we loosely say
“determined up to equivalence”.

3. Kernels and monic maps

Let X be a finitely complete and cocomplete bicategory. This means that
X admits indexed limits and colimits of homomorphisms A — X when A is a
finite bicategory. In particular, for limits, this means that X has a biterminal
object, bipullbacks (preserved by representables) and admits cotensoring by finite
categories.

The notion of “kernel” depends on a suitable set W of “weights”, i.e. arrows in
Cat. More precisely, we consider a full sub-bicategory W of Hom(2, Cat), taking
value in finite categories.

For any arrow f : A — B in X, regarded as a homomorphism f : 2 — X,
consider the homomorphism {—, f} : W — X such that {«, f} is the limit of f
indexed by the weight o : 2 — Clat.

It is known that, when X admits all indexed limits, the homomorphism
{—, f} can be defined on Hom(2,Cat)°? and provides the right Kan extension
of f through the Yoneda embedding:



2 — Hom(2,Cat)?
£\ J{—,f}
X
Thus, in this case, {—, f} admits as a right biadjoint the homomorphism
(=, f-)
X(y,{a, f}) = Hom(2,Cat)”(X(y, f-), )
for any v in Hom(2, Cat).

Definition 3.1
Denote by Ky the homomorphism {—, f} defined on WP and call it the ker-

nel of f.
Clearly, K () is defined up to equivalence.

Remarks 3.2
1. K¢(a) can be calculated by bipullbacks and cotensors in X'

Ki(a) —— BP

(1) J p.b. JBQ

C r° C
A —— B

fora: C — D in W.

Denote by I4 the identity of A in X'. There is a canonical comparison map

@) K1) = K(a)

uniquely defined up to invertible 2-cells, induced by the universal property of
K¢(a). In particular Kj, (o) ~ AP.

2. The comparison map Ky, (o) — Ky(a) can be seen also in the follow-

r
ing way: any object f in Hom(2,X) comes equipped with an arrow I4 — f,
precisely



Ia
A — A

177
f
A — B

Taking indexed limits amounts to a homomorphism:

K
Hom(2,X) ——— Hom(W°? X)
and the comparison Kp, (o) = K¢(«) is the image of f under this homomorphism.

3. For any finite category V and for any arrow f : A — B in X there is a
canonical natural equivalence of homomorphisms W — X:

(Kp(=)Y = Kpv(-)

For any o : C — D in W, the bipullback (1) defines K¢(«). Exponentiation
to V preserves bipullbacks, hence

Ki(a)V ——  (BY)P

e

(F¥)°

(AV)C s (BV)C

is a bipullback and
Kf(Oé)V ~ (Kfv)(a).

Definition 3.3
An arrow f : A — B in X is said to be monic (relative to W) when, for all
a € W, the comparison map of Remark 3.2.1 is an equivalence

Kr,(a) ~ Kf(a).

In other words, f is monic when the image K f of the canonical f: Ipa— f
in previous Remark 3.2.2 is an equivalence in Hom (W, X).

This is clearly equivalent also to the fact that, for every a: C — D in W, the
following is a bipullback :



A . pBPb

A"‘J p.b. JBQ

A¢ ——» B¢

Remarks 3.4
1. Monic maps can be characterized also by bipullbacks and cotensors in Cat.

Namely, for any object X in X and any C i) D in W:

X(X,f)P
xX(x,AP ———  Xx(X,B)P
X(X,A) ».b. X(X,B)*
X(X,f)°

X(X,A¢ —— X(X,B)°

is a bipullback. This uses the universal property of the cotensor and that X' (X, —)
preserves bipullbacks.

f
2. For any composable pair A — B i) X in X, the object g - f in
Hom(2, X) comes equipped with an arrow gy : f — g - f, given by

A — B

g-f

A — X

By the universal property of K,.f(a), there is a canonical comparison map

Ki(a) = Kg.f(a)

generalizing that of Remark 3.2.1. This comparison map can be seen as the image
under the homomorphism

K
Hom(2,X) ——— Hom(W°? X)

of the canonical gy. Moreover, when g is monic, the comparison Ky — K. is an
equivalence in Hom(W®°P  X'). For this, given any weight a : C — D, consider the
bipullback



D

Kgp(@) — BP 25 XD

l L

C 1 c 9 C
A — B — X

which provides the definition of K .r(«). The right hand square is a bipullback
because g is monic. Hence the left hand one is, proving that K. f(a) ~ K¢(a).

Theorem 3.5

1) Monic maps are closed under cotensoring with finite categories, composition
and bipullback.

2) Equivalences are monic maps.

3) [ is monic in X if and only if X (X, f) is monic in Cat, for all objects X
mn X.

4) If g - f is monic and g is monic, also f is.

Proof. 1) By Remark 3.2.3, for any weight « we have

Kiv(a) ~ Ki(a)V ~ Kr, (o) ~ Kpv(a)

when f is monic. This proves closure under cotensoring.

f 9
Suppose now that A — B and B —— C are both monic. Then, in
Hom(2,X), we have a composite

~ ~

f g
Ip — f—9g-f

and, applying the functor K, by previous Remark 3.4.2 we have
K s = K f= K g-f
Hence g - f is monic.

Consider now the closure with respect to bipullbacks. Suppose that

Y
O

—~
w
~—
3

—

«—
Q

f
e
!
ey

S
&
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is a bipullback in X and f is monic. Then, we get a bipullback

J(_'D
PD QD
7_‘_D gD
fD
AP~ pb
A B*

fC
A¢© — 5 B€
by composition of two bipullbacks: the bottom square is a bipullback because f is
monic, the upper one because it is obtained by exponentiating diagram (3). Hence
also the following is a bipullback:
i

PD \ QD

P~ J{D"

c * c
P — Q

ﬂ_C ch

C al C
A — B

Here, the bottom square is a bipullback, so the upper one is and this proves
that f is monic.

2) is obvious.

3) We have already seen that, when f is monic, also

X(X,f): X(X,A) - X(X,B)
is monic, for any X in X (Remark 3.4.1). Conversely, if X'(X, f) is monic in Cat
for any X, we have a bipullback for any weight a:
X(X,AP) ——  X(X,BP)
J JX(X,B"‘)

X(X,f°)
X(X,A¢) ———  X(X,B°)
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and this proves that f is monic.

4) Consider the following commutative diagram in Hom(2, X):

Ia L, [
9f lff
9f
Applying the bifunctor K, in Hom(W? X') we get the diagram:

~

Kf
KIA e Kf
N kg

K9~f

commuting up to an invertible 2-cell. Here two sides are equivalences so also the
third one, namely K f, is an equivalence and f is monic. O

Examples 3.6
We now show that known notions of “monomorphism” can be easily obtained
as in Definition 3.3.

1. The simplest, original case, is obtained for categories (= discrete bicate-
gories), when W consists only of the arrow « : 2 — 1, where 2 is the discrete two
objects category. In this case, K¢(«) is the domain of the kernel pair of f, and
“monic” has the usual meaning.

The following examples are relative to Cat. Observe however that they remain
true for the sub-bicategory Lez, of categories with finite limits and left exact
functors and for other sub-bicategories.

2. Suppose W consists of the only weight o : 2 — 2. For a functor F': A — B,
the category Kp(a) is (equivalent to) the comma category F/F, whose objects
are triples (a, Fa — Fa',a'). Now, Kj, (o) ~ A? and an easy calculation proves
that the condition Kz (a) ~ A? means exactly that F is a fully faithful functor.

3. Considering only the weight 3 : II — 2 where II denotes the category

- __, - with two objects and two distinct parallel arrows between them (no 2-cell),

it is easy to check that Kg(f3) is equivalent to the category of those parallel arrows



1Z

in A which become equal under F'. Thus the equivalence Kr(3) ~ Ky, provides
faithful functors.

4. Now consider in W the only weight o : 2 — 2, where 2 denotes the
category with two objects and an isomorphism between them. In this case, Kr(«)
gives the domain of the kernel pair for the functor F' : A — B, namely the category
whose objects are triples {(a,h : a — d’,a’)|Fh iso}. The condition Kp(«a) ~

K1, () ~ A? thus says that F is conservative (i.e. reflects isomorphisms).

5. As a further example, take the weight o : 1 — 2 which associates to the
only object of 1 the domain of the non trivial arrow in 2. Then, for a functor
F : A — B, the kernel Kr(«a) is the comma category F/Ig, whose objects are
triples (a, Fa — b,b). So, K1, (o) ~ A% and Kp(a) ~ K1, (o) means that F is a
discrete cofibration.

4. Quotients and strong epimorphisms

Strong epimorphisms in X are defined by the “orthogonal property” with
respect to the monomorphisms. For a finitely complete category X', the orthog-
onality condition can be expressed by a bipullback in Cat, as in the following
definition.

Definition 4.1
An arrow e : X — Y in X is said to be strong epic relatively to W, when
the following square is a bipullback, for all monic maps m : A — B:

X(Y,m)

x(v,4) —%  x(,B)
(4) X(87A)J( pb J{X(QB)
X(X,m)

X(X,A) — X(X,B)

In the situation of diagram (4), we say that the arrow e is above m, or equiv-
alently that m is below e.

Theorem 4.2

0) An arrow which is both strong epic and monic is an equivalence.
1) Strong epic maps are closed under composition.

2) Equivalences are strong epic maps.
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3) If the composite k - h is strong epic and h is strong epic, also k is.
4) Each o in W is strong epic in Cat.

Proof. 0) is obvious. 1) Suppose that h : X — Y and k : Y — Z are strong
epic maps and f : A — B is monic. In the following diagram, both squares are
bipullbacks, so the diagram is a bipullback:

X(Z.f)
X(Z,A) —  X(Z,B)
X(k,A) X (k,B)
X(Y,f)
(5) X(Y,A) —%  X(V,B)
X (h,A) X(h,B)
X(X,f)

X(X,A) —%  X(X,B)

2) Obvious. 3) Consider again diagram (5). Now, the diagram is a bipullback
and the bottom square is a bipullback. Hence the above square is, and this proves
that k is a strong epic map.

4) Let f: A — B be any monic in Cat. By definition, this means that for all
weights « : C — D in W, the following is a bipullback:

D r® D
A —— B

oo

C r*© C
A — B

and this means exactly that « is epic in Cat. g

Definition 4.3
For any homomorphism G : WP — X, define the quotient of G as the
homomorphism Qg : 2 — X given by the indexed colimit

Qala) =ev(—,a)xG

for a in 2, where ev(—,a) : W — Cat denotes the homomorphism of “evaluation
at a”: ev(w,a) = afa).

Say that an arrow ¢ : A — B is a quotient if, regarded as a homomorphism
2 — X, it is equivalent to Q¢ for some G : WP — X.
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Remark 4.4

Observe that, using the evaluation homomorphism ev(a, —) : 2 — Cat, the
kernel K¢(c) can be described as the indexed limit {ev(a, —), f}. Moreover, con-
sidering the evaluation homomorphism in two arguments

ev: Wx2—=Cat

and taking indexed limits and colimits with extra variables, we have

Ky ~{ev, f}
Qg ~evx(G

Lemma 4.5

The arrow e : X — Y i X 1s strong epic if and only if for any monic
f:+A— B, any arrow H : e — f in Hom(2,X) factors uniquely, up to an
wnvertible 2-cell, through the canonical arrow f: Ipa— f.

Proof. If e is a strong epic map, the factorization of the arrow H = (u, 7, v)
in Hom(2, X), given by

1( e T
f
A —
is the following
X —“ 5 v
tel J{t
Iy
A — A
| |
f
A — B

where ¢ is the diagonal.
Conversely, by the factorization of H through I4 one recovers easily the di-
agonal ¢. 0

Theorem 4.6
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Q is left biadjoint to K. In symbols: Q@ —| |K.

Proof. By definition of the indexed limits and colimits which are involved,
we have the natural equivalences of categories:

Hom(W°, X)(G,Kyf) ~ Hom(W x 2,Cat)(ev, X(G, f)) ~
~ Hom(2,X)(Qg, [)
for any homomorphism G : WP — X and any homomorphism f:2 — X O

Theorem 4.7
Quotients are strong epic maps.

Proof. Consider Lemma 4.5: let f be monic and let be H : Qg — f be

an arrow in Hom(2,X). By adjointness we recover an arrow H : G — Ky in
Hom(W?°P, X) and we have the situation

H Kf

A

where fdenotes, as before, the canonical arrow I4 — f in Hom(2, X). Here, Kf
is an equivalence because f is monic and, again by adjointness, we recover the
requested factorization of H. O

We represents simply by
G — Ky (Hom(W°P, X))

ev — X(G, f) (Hom(W x 2,Cat))

Qe — f (Hom(2, X))

the correspondences on objects of the equivalences involved in the biadjointness
@ —|| K of Theorem 4.6.

Observe that these correspondences are natural in f and in G. In particular,
unit and counit of the adjointness correspond to the canonical injection in a colimit
gc (resp. projection from a limit py):

nag
G— K QG
qac
ev — X(G,Qq)

QG—1>QG
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and
€f
QK; — f
pf
ev — X (Ky, f)

1
Kf—)Kf

The following Corollary of Theorem 4.6 is proved by naturality of the above
correspondences.

Corollary 4.8
The following triangles in Hom(W x 2, Cat) commute up to invertible 2-cells:

pQG
ev — X(KQa, Q)
N6 J{X(WG;QG)

X(G,Qq)

and

49K ¢
ev — X(Kf, QKf)
N2} X(Ky,ef)
O
From the previous Corollary in particular we obtain the triangular isomor-

phisms

K¢
Kf _— KQKf

\‘IKf J{st
Ky
and
Qna
Qo — QKQg
\‘IQG €Qq

Qa
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5. Examples

We refer to the examples 3.6. Let £ denote the class of all arrows in Cat
which are essentially surjective on objects (eso). In other words, £ consists of all
functors £ : A — B such that any object b in B is isomorphic with an object of
type Fa, with a in A.

Theorem 5.1
A functor F : X =Y s fully faithful if and only if it is below each E in &.

Proof. Given a natural isomorphism

E
A — B

F
X — Y

it is easy to define a diagonal D : B — X and to check that it is uniquely defined,

up to a unique natural isomorphism, when F' is fully faithful.
Conversely, it is enough to observe, as already implicit in example 2 of 3.6,
that a functor F': A — B is fully-faithful if it is below the eso functor a : 2 — 2.
(|

The above proof clarifies the role of the weights. Here a functor F': A — B is
said to be a projection when B ~ A(X~1) is equivalent with a category of fractions
of A, and recall that a functor £ : A — B is said initial when any category E/b
is non empty and pathwise connected (see Street and Walters [9]).

Formally with the same proof as above, in relation to the corresponding ex-
amples of section 3, we have:

Corollary 5.2.
A functor F is faithful (conservative, discrete cofibration) if and only if it is
below all eso and full (projection, initial) functors.

It follows that every eso (eso and full, projection, initial) functor is above all
fully-faithful (faithful, conservative, discrete cofibration). If an arrow f is above
all monics of a factorization system, then it is in particular above its monic factor
with respect to this factorization system. Which renders this factor an equivalence.
In other words:

Corollary 5.3
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In Cat, a functor E : A — B is eso (eso and full, initial) if and only if it
is above all fully-faithful (faithful, discrete cofibration) functors. In Lex, it is a
projection if and only if it is above all conservative functors. O

6. The canonical factorization

So far we don’t have yet any factorization. From now on we assume that the
given sub-bicategory W of weights satisfies the following assumption:

Representability axiom. The representable weight p = 2(0,—) : 2 — Cat
is in W.

Observe that this assumption does not change the notion of monomorphisms.
However it has an immediate consequence:

Lemma 6.1
For any f : 2 — X, the components at p and 0 of the following natural
transformations:

1) ev — s X(K;. f)

aK;
2) €U4)X(Kf,QKf)
are equivalences in X. Respectively:

ev(p,0) = 1 22705 2(K (), £(0))

a4 (p,0)

Moreover, for any G : WP — X, the component at 0 of the natural transfor-
mations

3) QKjy — Ly

Qg Qn

4) QKQeq »y Qo ——— QKQq

are equivalences in X.

Proof. 1) The projection ps(p,0) is a “Yoneda equivalence” connecting limits
indexed by representables with values taken at the representing object.
2) The indexing functor
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ev(—,0): W — Cat

of the colimit QK;(0) = ev(—,0) = Ky is representable. Indeed, for any weight a
in W, by Yoneda, we have the natural equivalence (in Cat):

ev(a,0) ~ W(p, a).

Hence, the injection gg,(p,0) is again a “Yoneda equivalence” connecting
colimits indexed by representables with values taken at the representing object.

3) follows from Corollary 4.9. Consider the component at p and 0 of the
natural transformations involved in the second diagram:

qu (P,O)
ev(p,0) = 1———X (K (p), QK£(0))
\pf(P,O) X(Ky(p),es(0))

X (K (p), f(0))

and recall that gk, (p,0) and ps(p,0) are equivalences by 1), 2) above.
4) Consider the triangular isomorphism

€Q¢ * QT/G = IQG

and take the component at 0. We have

€Qc(0) - Qna(0) = Ig, (o)

and we know that €g (0) is an equivalence (by 3) above), so also Qng(0) is an
equivalence and

Qnc(0) - g (0) = Igr s (0)-
0

Given any arrow f : 2 — X, now consider the quotient QK and the counit
€ QKy — f:

QK (i)
QK(0) ——— QKy(1)

5f(O)J JEf(l)

fO) =4 —— B=f()

1
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By Lemma 6.1 we have the factorization f ~ €;(1)-¢, where ¢ is the composite
of Qnc(0) with QK (i), the image under QK¢ of the only arrow ¢ of 2. Observe
that ¢ is epic by Theorem 4.7 and Theorem 4.2.

Definition 6.2. We refer to the factorization f ~ e;(1)-q previously obtained
as to the canonical factorization of f (relative to the given weights V).

Example 6.3: the lax descent problem.

The laz descent problem (see [12]) arises with the following weights, together
with all arrows between them in Hom(2, Cat):

p:1—1
a:2—2
6:3—3

(here 3 is the discrete three object category and 3 is the category generated by

For a morphism f : A — B in X, one takes the resolution Ky : WP — X,
usually represented in the form:

SN f

P —f)f e A . B

-

(here f/f/f ~ K¢(B), f/f ~ K¢(a) and A~ K¢(p)).

By taking the colimit of this resolution, one obtains the descent object Des (f)
and a canonical arrow ¢ : A — Des (f), through which f can be factored: f ~ jq.

This is the canonical factorization relative to the given W.

Now, the problem is to characterize those f’s for which the object B can be
recovered back from the resolution. These are the effective descent morphisms in
X. In this case the comparison j is an equivalence. With the terminology of
Theorem 4.6, the problem is that of characterizing those f’s for which the counit
€s : QKy — [ is an equivalence (see Betti [3]).

7. W-regularity for bicategories
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Ifa:C — Dand g:D — E is a composable pair of weights, then the notion
of monomorphism determined in any category A does not change by adjoining the
composite 3+« to the given set W of weights. Indeed, if f : A — B is monic (with
respect to W), then

Ki(B-a)~Kr,(8-a)~ A®

as results from the following composition of bipullbacks:

FE
AE —~ , BE
AP B?
#D
AP — , BDP
A“ B“
fC

AC ; BC

Analogously, if « is in W and f is monic, then it is easy to see that

KiaxV)~Ki(a)V ~ Ky, (a)V ~ AP*Y

for any finite category V.

Consider now the product a x 3 of two weights «: C — D and f: E — F as
the composite

axE Dxg
CXxXE—DxXxE——DxF.

For any monic arrow f in X', we have:

Ki(a x ) ~ AP*F

hence the class of monics is not altered if we assume that W is closed under
products. In conclusion, henceforth we assume that W is closed under equivalences,
composition and products.

Definition 7.1

A finitely complete and cocomplete bicategory X is said to be regular rela-

tive to W, or W-regular, if strong epic arrows are stable under bipullback and
cotensoring.
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Observe that the regularity condition implies the following property which in
fact is used in the proof of Theorem 7.3:

Lemma 7.2

In a W-regular bicategory, for any strong epic arrow q : A — @ and any
arrow h : Q — B, the comparison map qn(c) : Kpq(o) — Kp(a) is strong epic,
for every weight oo € W.

To prove this property is enough to consider the following composition of
bipullbacks:

(o)
Kng@) %% Kuy(a) —— BP
1 1 1B
qC hC
AC s QC ; BC

In order to ensure the second component of the canonical factorization to be
monic, we want another assumption:

Assumption: finite monicness
Let f: A — B be any arrow in X" that we regard as usual via the canonical
arrow f : Iy — f in Hom(2,X). By applying the functor K, one obtains a

~

comparison arrow K f(«) : K1, (a) = Ky¢(a) for any weight «. Denote simply by

-~

fo the comparison K f(«).

We assume that going on taking successive comparison arrows, the process
eventually arrives to a monomorphism after a finite number of steps.

This means that f,g.. is an equivalence independently from the weights a,
B ..., provided they are sufficiently enough.

The idea behind this assumption is that taking a comparison increases the
“degree of monicness” of arrows. The least n such that f,g.., is a monomorphism
after n steps provides a sort of a measure of how much f is far from beeing monic.

Observe that the assumption is trivially true in the original case of regular
categories: one step is enough.

Theorem 7.3

If f ~ j-q is any factorization in X and j is monic, then Ky ~ K.

Conversely, in a regular bicategory X which satisfies the finite monicness
assumption, let f ~ j-q be the canonical factorization, then Key : KQK; ~ Ky
implies that j s monic.
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We postpone the proof of Theorem 7.3. It will be done after a discussion of
the finite monicness assumption.

Examples 7.4

We have already remarked that the finite monicness assumption holds true
for the regular factorization of discrete bicategories. Here are two more cases in
which the assumption is true.

1. Suppose that X® : XP — X€ is a monomorphism for any object X in X
and any weight o : C — D. This means equivalently that for any other weight
0 : E — F the following is a bipullback in X':

DxF xPx DxE
XX _— XX
XocXFJ ~ JXOLXE
CxF Xexs CxE
X5 X&X

Consider now the comparison f,:

fa
Ki(@)~A® —" 5 Kia) — BP

GJ JBQ

AC , BC

Here, B* and o - f, ~ A® are monic arrows. Hence by the cancellation
property of monomorphisms (4 of Theorem 3.5) also f, is.

The above condition holds true in the examples 3 and 4 of 3.6. It is not true
however in the important case 2 (again of Examples 3.6). This case needs a lenght
three process of comparison which we illustrate next.

2. For this case we introduce a weakening of the notion of monomorphism.

Say that an arrow f : A — B in X is faithful when for any object X the
composition with f is a functor X(X, A) — X (X, B) which is faithful in Cat.

Now, define an arrow f: A — B in X to be premonic (relatively to W) if for
any weight a: C — D the comparison f, : AP — K(a) is faithful.

The assumption we make is now that pairs of weights are jointly above faithful
functors, in the following sense: for any pair of weights : C > D and §: E — F
and any faithful functor F': A — B consider the diagram:
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Cxp
CxE — OCxPF

axF
axEJ{ J{

Dxp
DxE — DxF

GJ JK
F
A — B

where G:DXE - A, H: CxF — A and K : D x F — B are endowed with
compatible isomorphisms:

H-(Cxp)=G-(axE)
K- (axF)=F-H
K - DxB)~F -G

We assume that, up to invertible 2-cells, there exists a unique functor L :
D x F — A and suitable isomorphisms which make commute all the diagrams
involved. Namely:

It is easy to see that this condition is satisfied by the example 2 of 3.6, when
monic arrows are the fully faithful functors in Cat. Observe moreover that this
condition is entirely expressed within C'at and does not involve the bicategory X
where it is applied.

Theorem 7.5 If pair of weights are jointly above faithful functors, then for
any arrow f in X and any weight o:

i) the comparison fo, is premonic,

i) if [ is faithful, the comparison f, is monic.

Proof. i) We have to prove that, for any weight 5 : E — F the comparison

fap : APF ——— K, (B)

is faithful.
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As a consequence of the assumption that pairs of weights are jointly above
faithful functors, it is easy to see that the functor:

P=(axF)+(Dxp):(CxF)+(DXxE) —— DxF
is co-faithful, i.e. composition with P is a faithful functor — - P in Cat. By
exponentiating one has that
AP
ADXF ACXF % ADXE
is faithful in X. Now it is enough to observe that A factors through fug:

P

AD><F A s AC><F X AD><E
faBJ( /‘
Ky, (B)

i1) Since f is faithful, each X (X, f) is such in Cat. By the assumption,
expressing the fact that pairs of weights are jointly above this functor and using
cotensoring to eliminate the object X from the condition, we obtain that AP*F
is a limit that can be obtained by the following diagram of bipullbacks:

D )\D
ADXF 13 ; Kf(B)D s ADXE
AF BDXxB

o

Kf(Oé)F s BDXF s BD><E

J{BaXF
fC><F

AC><F s BCxF

The top and right diagram yeld the pullback:

Dxpg 1
AD><F s AD><E y AD><E

g g I

F Ky (@)’ E A DXE
Ky(a) — K¢(a) —— B

Since AE is a pullback of fC*¥ and f is faithful, also AP is faithful and the
right square is a bipullback. Hence also the left square is and f, is monic. O
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It is now clear that, if pairs of weights are above faithful functors, the finite
monicness assumption is true with lenght three: for any f, f, is premonic, f,z is
faithful, f,g, is monic.

Proof of Theorem 7.3. Suppose that f = j5-¢. It is not difficult to check
that canonical arrows form a pullback diagram in Hom(2, X):

[
Iec —

where 5 : C' — B. By applying K and recalling that it is a right biadjoint, we
have the pullback square in Hom(W°, X):

K, —— Ky

| |

Kie ——— J

Now, if j is monic, K7, ~ K; and the bipullback of an equivalence is again
an equivalence: K, ~ Ky.

Conversely, for a given weight « : C — D, consider the following diagram of
bipullbacks in a regular bicategory X'

A L5 Q¢ 1 BC

We have to prove that the comparison j, is an equivalence.

By the regularity assumption, it follows that it is strong epic. Indeed, ¢ is
strong epic, hence also ¢©, 7 and o are strong epic: by the cancellation property
3 of Theorem 4.2 also j, is strong epic.

So, it remains to prove that j, is monic. This is obtained by the finite
monicness assumption. The procedure is as follows. First one has to prove that
the property K, ~ K/ lifts to the pair ¢ and 7, in the sense that K, ~ K, (this
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is proved later) and moreover taking a new comparison jug of j, one has again a
strong epimorphism (by regularity).

Now, return to j. After a sufficient number of comparisons j,g.. is strong
epic and monic, hence it is an equivalence and going back with comparisons one
has that j, is an equivalence. Hence j is monic.

The crucial point is to prove that K, ~ K. For this consider the following
diagram of bipullbacks, from which one obtains K, (8) ~ Ks(a x f3):

K.(8) —— Kj(o)Ff —— BDxF

Kj(a)’ BPx?

Kpa)® ——  K@® —— B>

J{T‘_E BaXE

CXxE -CxXE
ACXE a QCXE J , RBCxE
Analogously, one obtains K, () ~ K,(a x ) by inspection of the following
diagram of bipullbacks:

q
AC><E s QCXE

Now K,(f) ~ Kq(a x ) ~ Kf(a x ) ~ K, (f) for any weight 3 and the
proof is completed. O

8. W-exactness

In this section we consider the case in which the natural transformation Ke :
KQK — K is an equivalence in Hom(2, X).
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First observe that a calculation involving only the triangular isomorphisms of
the @ —|| K adjointness provides:

Lemma 8.1. Ke: K — KQK is an equivalence in Hom(2, X) if and only if
Qn:Q — QKQ is an equivalence in Hom(W®, X).

Proof. For any f and any G

KEf an
KXQK} ‘}{f ‘BXQK}

is isomorphic to IkgK,, if and only if

€Qa Qna
QRKQc > Qo » QK Qc
is isomorphic to Igk Q-
Naturality with respect to f and G follows from naturality of the adjointness.
d

Now the problem is to study when the biadjointess Q —J| K restricts to an
equivalence between the subcategory of functors of the type Ky : WP — X and
that of functors of the type Qg : 2 — X.

As in the one dimensional case, kernels can be described by congruences, in
the following sense.

Definition 8.2

A functor G : WP — X is said to be a precongruence in X (relative to the
weights W) if G(2(0,—)) ~ Qg(0).

It is said to be a congruence if moreover, for any object X in X there exists
an arrow gx : 2 — Cat such that X(X,G) ~ K,

o

Wep

o
&) Cat

In other words, G is a congruence in X when, for any X the functor X' (X, G) :
W — Clat is a kernel in Cat.

Observe that, for any f : 2 — X, the kernel K; is a precongruence by the
Yoneda equivalences of 6.1. It is moreover a congruence because the construction
K is preserved by representables:
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For any arrow f : 2 — X, its kernel K is called the congruence associated
with f.

Definition 8.3

Say that a bicategory X is exact (in the sense of W) when it satisfies VV-
reqularity (Def. 7.1) and moreover every congruence G is equivalent to the kernel
of its quotient: ng : G ~ KQg-

An immediate consequence is now that, in an exact bicategory: KQKy¢ ~ K
for any arrow f and hence also QKQg ~ Q¢ is true for any G (Lemma 8.1).

Here is the result that extends directly to bicategories, provided a family of
weights W is chosen, the known result on exact categories.

Theorem 8.4

In an exact bicategory, if the finite monicness assumption holds:

1) the canonical factorization constitutes a factorization structure,

2) every strong epimorphism is the quotient for the congruence associated to

at.

Proof. i) For any arrow f in X, by exactness KQKy ~ K. Theorem 7.3
applies and the second arrow of the canonical factorization is monic.

i1) If ¢ is a strong epimorphism, consider its canonical factorization g ~ jp.
Here p is a strong epimorphism and j is monic. But 7 is also a strong epimorphism
by the cancellation law 3 of Theorem 4.2. Hence j is an equivalence and g ~ QK.

O

9. Further examples

Consider again the notions of monomorphism given in the examples of 3.6.
The weights:
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I
i

|2

Il

provide in Cat the factorization via an essentially surjective on objects functor
followed by a fully-faithful one. The same factorization restricts to the category
Caty of categories with finite products and products preserving functors i.e. to
the category of algebraic theories.

—_— 3

In [13] Zawadowski shows that the above weights provide a factorization struc-
ture in the bicategory LFP of locally finitely presentable categories: any functor
in LFP is factored into a weakly surjective followed by a fully faithful functor
(F: A— Bin LFP is weakly surjective if the smallest full subcategory of B, con-
taining the image of F' and closed under limits, filtered colimits and isomorphisms
is B itself).

Again in [13], a lex morphism I : C — D is called strongly conservative if
composition with I is a functor I* (in LFP) which is weakly surjective. Moreover,
I is said to be a false quotient if I* is fully-faithful. Hence, with the terminology
of [13] and by means of the Gabriel-Ulmer duality between Lex and LFP, one
has that the above weights provide the “false quotient - strongly conservative”
factorization in Lex (the coregular factorization).

The papers [9] and [13] give more examples of the coregular factorization: it
coincides with the “quotient - conservative” factorization in the bicategories EzP
(Barr exact categories, [1]), in Pretop®” and in BPretop® (pretopoi and boolean
pretopoi respectively).

In Lex, the “quotient - conservative” factorization (recall that Lex is a con-
servational bicategory in the sense of [5]) can be obtained by the weights:

h

The same factorization restricts to the category Ladj of left exact categories
and left adjoints as arrows, considered by Day [6], where it becomes the factoriza-
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tion into a reflection followed by a conservative left adjoint. Moreover, it restricts
to the bicategory Top® of elementary topoi and inverse images of geometric mor-
phisms as arrows: in this case it becomes the “surjection - inclusion” (inverse
images) factorization.

Yet another notion of monomorphism is considered in 3.6 by means of the

weights:
2(07_)
I
nmn —— 2

where II is the category - - with two non trivial parallel arrows. It is easy to

see that these weights provide a factorization structure in C'at and in some of its
subcategories (such as Lex, for instance).
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