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Introduction.

This essay is based on the paper [JSV] by the same title, and presents a vast generalisation of the
construction of the integers from the natural numbers. To construct the integers we take pairs (m, n) of
natural numbers which we think of as m — n. The integers are given by the equivalence classes defined
by (m,n)= (m’,n) when m+n"=m’+n in N which we think of as m—n=m'—n»". Here, we construct a
tortile monoidal category from a traced one, that is, we add duals. We define a new category Int/ by
taking pairs (X U ) ‘of objects of the traced category I/, and we think of this pair as a formalisation of
X ®U™. We give definitions for the required structure, and prove that Int}/ is actually tortile. We finish
with a universal property for this construction. '

‘To prove that our constructions are the right ones, an exact correspondence between algebra and
geometry is described and validated, then used to prove the categorical results. We begin by giving
proofs both algebraically and pictorially, to familiarise the reader with this correspondence. We see that
the pictorial reasoning is often much more enlightening and easier to use in the proofs than the algebra,
hence we discontinue the algebraic proofs. However, these can be constructed from the pictorial proofs,
as each step in the three dimensional reasoning corresponds precisely to an algebraic equality.

We do extend [JSV]’s paper somewhat, providing detailed algebraic proofs which were not a part of
- § the original paper, and providing more details for all of the pictorial proofs. A new axiom is given, and

£ proved to be equivalent to one of the original axioms, and we complete the proof of Proposition 5.1 by
§ including the proof that the twist is natural in Int}/, which had previously been omitted.

We also add an extra initial chapter, presenting the necessary categorical definitions for the reader’
1 who is familiar only with the basic ideas of category theory.

In section 2.1 we present a 3 dimensional geometrical representation for some of the basic algebraic
¢ components of a balanced monoidal category. It has been shown [JS2] that any progressive 3

¥ dimensional reasoning is valid in the balanced case. We extend the diagrammatic methodology in part to
¢ atraced monoidal category in that the algebraic definition of this is also presented pictorially.

Section 2.2 gives both algebraic and pictorial proofs of some useful results that follow from the
T axioms and establishes a new axiom, swallowing, which is proved to be equivalent to the original
% superposing axiom. To use the geometric reasoning in the traced case, we must be careful to use only the
% reasoning that is either part of the definition or has been proved to be a consequence of it. We cannot use
& all 3-dimensional progressive reasoning as in the balanced case. We also give a definition of a traced

{trace preserving) monoidal functor.

Chapter 3 concerns tortile monoidal categories, giving the diagrammatic representation for unit and
geounit in these, and defining a canonical trace in terms of these. We show that this is a trace for any
tortile monoidal category, and that any balanced monoidal functor between tortile monoidal categories

Epreserves this canonical trace.
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We then describe a new category Int}/in section 4.1. We define objects, arrows, composition and
identity, which we prove do give a category, and we define a functor N :7/ — Int}/, which we prove is

fully faithful, | '

- Section 4.2 adds a tensor product to Int7/ which we prove gives it a monoidal structure.

Chapter 5 then defines a twist, a braiding, dual of objects and arrows, unit and counit, which are
proved to give IntY/ a tortile monoidal structure. We then state a universal property for this construction,




Chapter I
Introductory Definitions

The aim of this chapter is to provide the reader, who is familiar with the basic ideas of category
. theory, with the necessary definitions to understand [JSV], and hence this essay. The readér should be
familiar with notions such as category, functor, natural transformation, and isomorphism, since, in the
interest of space, these will not be defined. This chapter does give definitions of (strict) monoidal (or
tensor) category, (strict) monoidal functor, braiding on a monoidal category, braided monoidal category,
braided monoidal functor, twist on a monoidal category, balanced monoidal category, balanced monoidal
functor, dual, unit and counit, autonomous monoidal category, and tortile monoidal category. These
definitions all come from [JS1].

Definition 1.1 Monoidal category, monoidal functor, and strictness
A monoidal category (or tensor category) Y/ = () ,®,1,a,l,r) consists of a category J/ia functor
& Yxy -V (called the tensor product), an object I (called the unit object), and natural isomorphisms

a=a,,.:(A®B)®C—5A®(B®C)
I=1I®A— 4

- § (called the associativity, left unit and right unit constraints, respectively) such that the following two
i diagrams (called the associativity pentagon and the triangle for unit) commute.

| | | | (A®B)®(C® D)
a a
{(a®B)®C)®D A®(B®(C® D))
‘N o a 18a
(taofr® Cip p——— 48((B® C)® D)
(A®N®B ————> A®(I® B)
r®1 1®17

A®B

A monoidal category is called strict when all the constraints a ancs la» 7, are identities.
Suppose 7/ & are monoidal categories. A monoidal functor F =(F,¢,,¢,):7/ — 1’ consists of a

f”nnctor Fy >, a family of natural isomorphisms ¢, , , : FAQ FB———F(A®B) and an

wmorphism @o:1—— FI such that the following three diagrams commute:




FA®(FB® FC)

/ 28
(FA®FB)Q FC FA® F(B®C)
¢, ®1 @3 1 b,

F(A®B)®FC F(ﬁ\f@()?@c))
x‘ L /
| Fla®£BR CY

FA®I d > FA I®FA

FA

v

1® ¢, Fr  ¢,®1 Fl

¢, ¢

F(I® A4)

Y

FA® FI

v

F(A®I) FIQFA
_where, is defined by the above diagram.

The monoidal functor is called strict when each of the isomorphisms ®» 48> 9o is an identity.

Difinition 1.2 Braiding; braided monoidal category and functor.
. A braiding for a monoidal category ¢ consists of a natural family of isomorphisms

' €8¢, 5t AQ B———>B® A in [/ such that the two diagrams (B1) and (B2) commute.

a

i 1) 5 (B®A)®C > BR(A®C)

{(A®B)® - B®(C® A)

\ CA,B®C /
A®(B®C) >(B®C)® A

-1

2 as(cen L (48C)®B '

®(B®C) (c®A)®B

\ o /
(A®B)®C > CQ(A®B)




A braided monoidal category is a monoidal category I/ with a chosen braiding c.

Suppose 7, 1 are braided monoidal categories. A monoidal functor F:7/ — 10 is said to be braided
when the following square commutes:

¢
FA® FB > F(A®B)
c Fe
FB®FA > F(B® A)
& '

7 Definition 1.3 [JS1]: Twist; balanced monoidal category and functor :
Suppose ¥/ is a braided monoidal category. A (full ) twist for [/ is a natural farmly of isomorphisms

such that 8, = 1, and the following diagram (T) commutes.

9A®B 98 ®9A
' Ca.B
A®B > B® A

A monoidal category equipped with a braiding and a twist is called balanced.
For }/1 balanced monoidal categories, a monoidal functor F:}/ — 17 is called balanced when it is

ided and preserves the twist (that is, F6, = 8,). We write B7a(t/i)) for the category of balanced
sonoidal functors and morphisms of monoidal functors.

finition 1.4 : Dual, unit, counit, autonomous and tortile monoidal category.
When the following adjunction triangles commute for n: 1 - B®A, £€: A® B— I, we say that the

(11 E) is an adjunction between A and B, and that A (respectively B) is left adjoint or left dual to B

gﬁp@ctwely right adjoint or right dual to A) We write (n 8) :A— B, and call n the unit and € the
founit of the ad_]unctlon

A— > A®B®A B2 ;BRA®B
\lg@ \ll@a
A B

A monoidal category is left (right) autonomous when every object has a left (right) dual. It is
Biononious when it is both left and right autonomous. In this case we write A" for a chosen left adjoint




el

=

L fer Al ‘We obtain a duality functor ( )':7/® — 1/ by defining, for all f:A—> B, the arrow f B A"
o be the composite B"—21 38" @ A® A" —18/8L ,p* @ p® A*— O, 4"
A rnon01dal category is called rorfile when it is autonomous and balanced, and, for all objects A,
9 . A", where ( ) :A” > A is the adjunction (or duality) functor.




Chapter 2
Pictures and trace

The material in this chapter covers section 2 of [JSV] and includes some extra material. We look at
- ihe representation of expressions in traced monoidal categories by pictures. In section 2.1, we look at the
. mctures for a balanced monoidal category, and their extension to a traced monoidal category, which we
define, In section 2.2 we make some slight improvements or modifications to [JSV]’s corresponding
material, giving an equivalent axiom for superposing, and giving detailed proofs algebraically and

- halanced monoidal category is valid, and this chapter extends the diagrammatic methodology to a traced

seed to be careful then, in all our pictorial proofs, that the reasoning used where trace is concerned has
- actually been justified. However if we are careful, we no longer need the algebraic proof, just the
gictorial, which is much easier to follow. ?
We also note that by the coherence theorem for monoidal categories [JS1], each such is equivalent to
¢ = strict one, hence for simplicity we write as if our monoidal categories were strict,

2.1 Pictures and definitions for a traced monoidal category

We start with the pictures for a balanced monoidal ca;tegdry. We have composition and tensoring of
#yows, that is, we compose arrows f:A - B B —C to get gf:A— C and tensor arrows
CFiA-4B f:A> B oget f®f:A®A — BOB", depicted (respectively) as follows.

R

We will use the pictures for f ® f interchangeably from now 0‘11.:_" g

We also have pictures for an arrow f:A® B — C® D® E, the braiding ¢, 3:A®B - B® A, and
 fwist 0,: A — A, respectively, as follows. ' - '

4 A
B A

A o +1
A B

A

‘fo represent the braiding we need three dimensions (under and over crossings), and to accommodate
twist we need ribbons. However, for ease of drawing we use lines labelled with +1 for a twist on a
e, and labelled with -1 for a reverse twist.

7
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pictorially for the lemmas stated in [JSV]. [JS2] rigorously shows that three dimensional reasoning on a -

monoidal category, although we do not prove all three dimensional reasoning is valid in this case. We -~




Definition 2.1: A trace for a balanced monoidal category I/ is a natural family of functions
Tryz:/ (A®U,BOU)— 1/ (A.B)

satisfying three axioms

vanishing: :
VD Teh(f)=r. - (v2) TS (9) = Tel o Trley o (2)
superposing: ng@c,a@o((ls ® CI_)I,U) ° (f ® 8) ° (IA ®cc, U)) = ng,s(f) ®g |

= TTX@C,B@D((IB ®CU,D) °(f® ) (1A ®C ))

and yanking: _
TI'g,U (CU,U °(951 ®1y, )) =1y = ng,u (CU,U_I °.(BU 1, ))

A traced monoidal category is a balanced monoidal category equipped with a trace.
For 7/ 2 traced monoidal categories, we say a monoidal functor F :}/— 7 is traced when it is

Inglanced and preserves trace in the following sense:
$2.80

Trft FB(FA@ FU—*42 s p(A@U) 2 5 F(BOU)—222 S FB® FU)

= F(T:Y,(f)): FA— FB.

For a traced monoidal category ¢/, we have the follbwing pictures:
The trace of f:A®U ~> BOU ; that is, Trf.{,B(f):

vanishing:

uev

(VD) (V2)

I

N\

>/
i

B
b




superposing

N
'-.h
©
I
N
e
(o)
N
I
N
",’

and yanking

Maturality of Trﬁ’,é gives diagrams for di-naturality in U and naturality in A, B.

Di-naturality in U is represented by the following commutative square, where w:U =V

‘ \ Try 5
/(A®U,BOU) 2 1/(A.B)

4 (1A @ u,lpey ) : TIX,B

/(A®V,BOU) V (1A®V’IB®”L,V(A®V,B®V)

“W¥We call this sliding; that is, for f: A®V — B®U , it means
TeY (o (1, ® )= T} s (A5 ®2)o £):
of diagrammatically




Naturality in A,B is represented by the following commutative square, where u: A" — A, v:B — B’,

\ T,
/(A®U,BU) 2 1(A,B)

Yu®l,,v®1,) | | U(u,v)
V(A’@U,B’@U)'—IELV(A’, B’)

We call this zightening; thatis, for f:A®U — B®U, it means

voTrys(f)ou =TIX',B’((V®1U)°f° (®1y))

Bl

AI

Hemark 2.2: In addition to [JSV], we observe that if we replace twists with their reverse and
sings ¢, 4 A®B— B®A with inverse crossings cp, A”1 :A®B— B®A , we get another balanced

idal category with the same trace as the original since the axioms for trace either do not involve
BEAgs or twists, or are symmetric. This means that any results that we prove containing ¢,0 are also

d if we replace ¢ ap Withcg A_l and replace @ with 0.

10




2.2 Consequences of the trace axioms

We now look at making the definition of trace slightly easier to use. Our first modification is to
- show the equivalence of superposing and swallowing. Then we look at sliding, and find that we can
- weaken it Lo sliding of crossings which imply all other slidings in the presence of the axioms. We also
sepsent ¢ few properties that we will use in later proofs. To start with, the proofs will be done both
sigebraically and pictorially. Looking at the pictorial proof gives the motivation for the steps taken in
e algebraic proof. Once we have set up the pictures, we will no longer need to do the algebraic
jennfs, but putting a few of them in shows why it really is easier to use pictorial proofs. Properties of
talanced categories are used in the proofs, labelled explicitly to start with, and later labelled with just

fugbiniee,

. Hefore we start proving things we need to look at a subtlety in the pictures. In a balanced category
' ga@ have

® @ - G

1 wng this reasoning in a fraced monoidal category, we obtain g ®Tr(f) = Tr(g ® f); pictorially

s

We call this swallowing, and prove it is equivalent to superposing, hence it is true in a traced
wsidal category. This means we can use the above picture to represent both.

However, in the proof that superposing implies swallowing, we cannot assume swallowing, but
the picture forTr(g ® f) reduces much of the pictorial proof te an algebraic proof within the

Instead, we rather awkwardly use the following pictures to distinguish g ®Tr(f) andTr(g ® £),
stively: '

(®» ™| (& x| @

we return to the pictures for a balanced category until we again haveTr(g ®f ) or g ®Tr( f ) in
lgebra. In other proofs where swallowing has been used, we will just use the picture for

je T¢(f ) us this is more enlightening.
11




W Swallowing < superposing

Fhaf dx, | !I'(@A

f "f:@r.ﬂ@:)((ls‘g’cz_)fu) °(f®3)°(1A®C0,U))=Trg:5(f)®g

D®3(8®f) g®TrAB(f)}<:>

hi’@;&@n((la ®CU.D) (f®g) °(1A ®Cl;fc))}

Freofi Assume superposing.

 Fham 2@y, (f) =

s
= ﬁrw hen

&

t%k@ﬁ;

Then

naturality

Cp.p lo(TrAU,B(f)®g)°CC,A

- 5’:).5.‘ e ng@c.mo ((13 ® CL_)EU )° (f ® 8)" (IA ®ccy ))" Cc,a

((cps ®14) (1, ®cily)o(f®g)e(1, ®CC,U)0(CC,;4 ®1,))

vy, EF -1
N tfmafma(cu,mu °(f®8)°CC.A®U)

I« Ttheapss(e ®f), and so we have swallowing.

o (13) (14, 15)

/

(12)
(13)
(14)
(15)

(16)

We also give the proof pictorially, and since we are trying to prove swallowing, we use the
stive pictures,
Assume superposing:

© | - 8@@9 6;.

U

12




Moo ansume swallowing, that is, Tl'gm,D@B (3 ® f)= g ®Trj{3 (f)
ihas .rf‘f:@{f‘mo((lB ® CB]’U) o (f ® g) ° (]'A ®CC,U ))

. I i'f'i?:w--‘mb((co,ﬂ ®71U ) o CBI,B®U ° (f ® 8) °Cc.avU ° (c‘_:}“" ®ly ))

U -1 -
RV 01['(_3&,1.0@3(6'0'3@0 °(f®g)°CC,A®U)°CC,A

B ratpcalivy

) 7, -1
«  €p40Tregapes (8 ® f)" Ce.a

Bo siisfiton

* Cnag 9(g®TI'X_B(f)) ° CE}A
E ()0
R

eglpo (g ®Try 4 (f))" Cac

- 3 i B $ i
i * fan gTrC@A,D@B(g ®f)o Cac

Ey Trncpo0{(1s ®cu o) o/ @ 8) o (1, ®c7lc))-

: w¢ liave superposing from( 2), (6) and (11).

ive form of picture. The proof is as follows:

(1)

@
3)
@
®
(6)
(7
(8
€)
(10)

(11)

We give the proof pictorially, and since we assume swallowing, we do not need to use the

13




Fhen

| |

/ | |

sl A @ ® @5)
DIONR- @ () | - @ O/t
ANV |

We now can use swallowing and superposing interchangeably.

oo

T S o e e e

31 0y = Tl oy ) and 0,7 = Tedy (cp 7).

by = Tl gy 0 2 (6,77®1)) yanking
L ﬁwggﬁ(‘&m o(6,”! ®1u)) ° by

Tl (eyy) 00,7 06, - tightening
# Ty ("ftw )

ity. Oy AR Ttgu (ca.u - )

1.8 Stiding of crossings implies all other slidings in the presence of the other axioms,

* Firsl we will prove that sliding of crossings implies sliding of twists, and then that these two -
it shidings in the presence of the other axioms. Actually, we only use the axioms yanking,
. and superposing/swallowing, as well as some observations about a balanced category.

14




vswane siiding of crossings; thatis, for f: AQU®V - BRV U,

Ligebraically, the first of these can be written as either

¥ géﬁ,;@u 88U ((13 Qcy U) °of )) TrA,B (TrA®V,B®V (f ° (IA Qcyy )))
ﬁ&ﬁs ((18 ®CVU) f) TTX (IAOCVU))

g that, in the presence of axiom (V2), these are equivalent, and we use the first of these in the
. Eimilarly, we express the second diagram algebraically as

m@g(ﬁm_ﬂ@u((15®cw o f)) Tr&B(TrA@V’B@V( fo (1A®cw-l))).

it fiARU — BOU,

Is®0,)es)

sl o, con)or) | @
ct) ing@f s ou (15 @CU’U) 0 f) 2)
ﬁﬁ&iﬁgﬁvsw (15 ®cyp)o(r®1, )) | ©
%gﬁéﬁféﬁmﬁu (F@1y)e (s ®cyy )) | (.4)
ﬁi;gi » Trhuaou (14 ® )) ®
U0y + (10 ® Tl son (e ) ©
Fredelro0,90,) 7

15




) (1,2)( ® d A
'ff

i

I

¥

(5;6) <@

. 1a{1 00,7 )e 1)1, (r b, 00,

¢ of the other axioms.
ABY < QU , u:U—>V,

gﬁia‘f)ﬁTMB((la ®“) (13 ®1y )o f)

;;;@;g Bu)o (’-5 ®Tryy (cu_.u o (eu_] ®ly )))" f )
Wil @lo 1, by 005 01, ) )
Wty @0ty («®1, )oc0y o007 @1, ) 1)
@'ﬁﬁgﬁf&w@s {(u®lu szu(f’ ®1u) )

th ol (s ©1u @1 )oc 20,7 01, ] (7 01,)
¥l or s ©kuy <0, 9006, @1, )k (r 1, )
F ol el 00, ) 0, 0l 9006, 01, o (r01,)
b 0t e s 000, @0):6, 01, D 01, e, 04, )

B 005 s 00, 01, 00000, 81,)

%&iﬁ&fgﬁm; ((1 s @6, ®1, ) (F®1,)o (1, ®1, ®u)oll, ®cyy )))

& Wish to see that sliding of crossings and twists imply all slidings inthe -

(8

©)

(10)

(11)

(12)

(13)

14)

(15)

(16)

16




BT (’l'f:ew,mu ((13 ®6," ®1y, )° (re)e (IA ®cyy )° (1, ®u®1, )))

: o be) g (U y ®0," )° Tt s0v.5ev ((f ®1y )o (lA cyy )) °(la ®u) )
mezw ‘o i ) i{l \ ®9U -1 )o f o TI'X@]/,A@V (1A ®CV,V )o (IA ®u))
1090, o @y o ) (4 00)

_ “‘jh; aﬂggiﬁ ﬁﬂuﬂl )° fe (IA @0y )'° (lA ®u))
000,90, )0,90):(, 06,7)

%fh @éf '**‘([A ®“))

(14,15,16)

-1
17

(23,24)

- -1
) (10,11)>@ (12)

17
(18)
(19)
(20)

@1

(22)

(23)

(24)

17




-1 -1
R A— 5 ARU—f 5 BRU— sU®B— ,BOU.

: O -1
ek haﬂ%‘ﬁ,("‘ °Cy.p ofocU,AocA,U)

B o

| - by ooy o((lg o1B)®(9U OBU_I))"fOCU,A °CA.U)

¢ 1, @0, )ocsy ocy ol @ Ty ey Vo Focy 4 ccsr)

= NL101, ®0, ) gy 0,57 o Ty o (1s ® a5 ) o S oy 4 0a0)
LTI (((( 1,6,y oy 57 ) @1y ) o (1@ 57Y) o (focssocay)® 10)))
0o i e (1 90,2781, s o ocua o)1) ‘
L (el nou (1 ®0, )0 e )®@14 )olly ©(F oy s ocap o cpasn™)

it e (05 000 o0, ) by O o 0o b 01, ) (s 820 7)

ﬁgﬁg‘ﬁémf ((18 ® CU.U—I)° (((18 @0y )° "‘B.tf1 )® 1y )° (1U ® (f °Cy A °Cay ))° ("U,A_I ®1y )))

o ewou ™ 20, ©1, 1) 1y ®(F oy 4 004 ooy @1,)
elevase (7004 0040)®8, Jochous™ o sa? ©1,))
Voo mwo{[( 20 0c10) 84 ) o (1, @y Yo (0 o) @1,
el a0 (o con o can)®1)o (L (™ o 05 ®15 ) oy ™ ocua™)01,))
47 o {f < cun > cns < e non 4 ® oy ™ol @8, Jocyy ™ ocy.,)

44 éf FlpACar® (IA ® ng,v (CU,U_I ))° (lA ® 0y )° CA,U_I ° CU,A"] )

#7)

‘--3$ semmin 2.8 (Mlipping) The trace TrY of [A®QU — B®U isequal to the trace of the composite

7 # éf?géu,m ((18 ®CU,U_1)° (CB,U_I ®1, )° (BU 1y ®1y, )o (1U ®&(fococ))e (CU,A__1 ®1, )))
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©)
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&)
(10)

(11
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(13)
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o
)

1

5 Y

m
=

TS
g

(3.4

0 6 0O

A PR D) N
Q/ rg ‘ o
: (1.8) ©) (10)° an
" = = f -
- i

u\f\y@

(13,14) (15,16) S oan (

N @

/

g the (ollowing balanced result:

. \) - \//
{ Yeagre pwapping) Forall f:A®B — C®D , the following composites have the same

5 B AODOB—2 5 ARBOD—I® ,CcRDOD—2" 5cRDOD

T ABBEH 2, AQBRB2 5 ARBRB—L® sC®D®B
w2 C®BOD2 scODRB¥® ,c®D®B

N 19




EAr EisrmHy'

o -'1‘-‘.;' tighten’ Slide / bala:].ce’
Y Superpose, crossing superpose,
5 % balance yank
R,
i /91 _/
%

¥ Suppose F:Y) =10 is a fully faithful balanced monoidal Junctor with I traced monoidal.

#+ ot unique trace on |/ for which F is a traced monoidal functor. (This is called the trage on |/
Prown Ealong F.)

§ ¢ 17 is a fully faithful balanced monoidal functor with %7 traced mon01da1
‘ %ﬁ + BOU in 7 let

,gﬁ FAB FU 25 F(AQU) 7> F(B@U)LFB@FU]in Y
: ﬁﬁﬁlﬂy faithful, there exists a unique h;:A— B in Y/ with Fh;=g.

wiy £ A®] - B®] in J, we must show that Tr} z(f)= 7, soitis enough to prove
F(’I‘rjys ( f))z Ff . Starting on the left:

' ggifB}as Teht s FA@FI-%F(A@I)LF(B@I)"@-»FB(@FI] |

'\l Bdo

FAGTFI %" s FA®]

g 2l sl FA® FI— > FA®IF(A® 1) —Z 5 F(B®1)—4—s FB® FI—1o%"_, g ®1)
F (ﬁ“‘(A ®1)—Z-F(B ®1)) as required.

i smsugh (o prove that

YA F(UOV)—4s F(ABU ®V)—2 s F(BRU OV)—% 5 ;B F(U ®V))

Bl FABFU 25 F(ABU) {tclow sov /) >F(B®U)—4-’L>FB®FU)
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The last of these is equal under tightening to the value of TrFA 5 0 Tthns ru reepy at the composite”
FAQU)®FV — 5 F(ARU ®V)—2L 5 F(BOU V)2 S F(BRU)®FV

¢2 @ IEV ¢2 o -1 IFB_1®¢2_I
2

PAOFUQFV —82% , FAR F(U @V) FB®F(U ®V)—22%" s FR® FU ® FV

which equals, under (V2) and sliding, the value of Trﬂ%?v) at the composite

E FARF(U ®V )2 F(AQU ®V)—Z 5 F(BOU ®V)—*%_ 3 FBR F(U ®V)

-1
S l \

FBO®FU®FV 2% R F(U®V)
as required.

Swallowing: We need to prove for f: AQU — B®U,g:C— D that
F (3 ®ng,s (f ))= F (Trgm,z)@ﬂ (g ®f ))

The right hand side is equal to the value of Trlfgm A)LF(Dop) &t the composite

FC®A)®FU— 5 FC® AQU)—FE%) s r(D®BOU)—% S F(D®B)® FU

| ¢! ¢ #,®1
FC®FA®FU —8% , FC@ F(AQU)—28% , FD® F(BOU)—%%" , FD® FB®FU ,

which, by tightening, is equal to _
F(C® A"y FC @ FA—THermon(cretsle Fr) | pryo pp_ & p(p@ B)

swallow

u
2" re® FA—EEE0) | pp o pp

| J»

Flc® A)—"ee50) , (D& B), as required.

Yanking: F(Trg v (cU,U o (BU’I ®1, )))= Fl, = F(Trgf v (cU’U_l o (0, ®1, )))

Fhe left hand side is equal to the value of Trf z; at the composite

FU®FUi—>F(U®U)—f—(M)—>F(U®U) rlyy) FU®U)—¥ 3 FU®FU )

Nl oy e T

FU @ FU 2 Blev_, pj @ FU —' FU ® FU —%-3 FU @ FU

his is the identity under yanking in 7
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Yanking in the other dlrectlon gives the value of TrFU ry atthe composite
FU®FU —nlm

FU® FU—1 U®FU—- SFURFU)
¢2 \ ¢2”l
U ®U) F(ay ®1[,

FURU) Py — L L FU®U), as required.
We also need to see that trace is natural. The def1n1t10n amounts to the following commutative diagram

/(A®U,BOU)—"—/(4,B)

W(F(A®U)F(BEU) F

wlp9:!)

v v :
W(FA® FU,FB® FU)—=—J(FA,FB)
shows that trace is natural because all the factors are

F—l

22




Chapter 3
Canonical Trace In A Tortile Monoidal Category

In a tortile monoidal caiegory I, each object has both a left and right dual. Let U be an object in it,

then U is its left dual, and the corresponding counit is £ :U ® U™ — I and the unit is 1: 1 »U QU ™,
with diagrams:

As justified in [JS3], the appropriatc counit and unit for {/* as a right dual of U are

& URU —2 L y* ®U~—Jﬂ-+u QU —7

-1
T IV U — 2y ey ey

ich are illustrated by the following diagrams:

+1

gsition 3.1: In any tortile monoidal category, a trace, called the canonical trace, is defined by the
towing formula

Trjp(f)=A—"> AU QU L= 1%, peu Ut 1% 5

tthermore, every balanced monoidal functor between tortile monoidal categories is traced with respect
canonical trace. ‘

roof: We do not use three dimensional reasoning in the tortile monoidal category, as this has not

rigorously proved as in the balanced case. Instead, we will use algebra.
e need to see that the trace as defined above does satisfy the axioms for trace.
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(VD) Trla(f)=4a—2L 5401012 BRI 1% 55
=A—E S ARI®I L2 5 BRI®I 18 =

{V2) Trﬁ{?v ()= Trf’ B (Trjlf@u, ssu f )) is shown by the following commutative diagram.

A—Bwer AU VRV QU v JpeUeveV eUt e ,p

L,® 1, ®¢]
\ o A;, ®n, ®1,. Laoy B, @1 . 528

ARURU” >BRURU"
TrX@U,B@U (f )

TTXB &IX®U,B®U (f ))

Bwallowing: Trlg, pes(g® f)=
§OFBIL .

QAU e AQURU 2 L pRBRUUt %8, pe B
(15 °3°10)®((1A @1y Jo (f®1U*)° (1 ®83)) |

nking: '
—ven yoyeytublouy L op ey e
U peuey - % reyeu % Lyeu ey
IU®CU.U‘ U®U*®U IU®IU.®9U U@U*@’U Iy @€ U
U Ly eueu— %% peyey
¢, yay® U®U*®U 1U®IU*®GU U®U*®U—IQ&-—)U
U2 5y QU Ut —re Ly @U* QU
IU®IU-®BU_I SURU QU 1y @1, 86y URU' @u lu®E U

URUOU" —uts' sy eu* @y —u®

ly @y Naturality of ¢,, _ wely 1y :
U, d . .
Duality triangie

UL wrly . reu

t sentence of the proposition is true because balanced monoidal functors preserve duals. Let 3/ i/
le monoidal categories, and F:})/ — 17 be a balanced monoidal functor between them. Then
F(redo ()= Fla—25 40U 00" —L2 s pou @ U’ —1%, )

equal to the upper composite in the following diagram. We show, using commutativity of the 4
s in Definition 1.1, functoriality of tensor, and the definition of F1, that this'is equal to the lower
site in the following diagram. This is the following algebraic equality, which means F preserves
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¢2 1

18,7

 PA®Ten

EA ®F1—f‘—®f"—>FA®

(TrAB(f)) (1®£) (¢2~1®1) (Ff®1) (¢z®1) (1®77) TrFAFI;( —1°Ff°¢z)s

1

FB< i) FB® FI ¢ 189, FB®I

Fll®e )I F1®FeI 1®€']\

A —eten) F(A@U@U)—F(f% Fleeveu' 2 srperleu’ )2 rre FUe FU"

NS

FA®U)® FU" —Z8 5 F(BRU)R FU"— %, FB® FU ® FU"

12, $, 81

FA®FUQ®FU"
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Chapter 4
Making a tortile monoidal category from a traced one

In this chapter we start with a traced monoidal category /, and define a new category Inty/ We add a
tensor product functor, a braiding, and a twist, enriching Int}/ with a tortile monoidal structure. This
construction is a vast generalisation of the construction of the integers from the natural numbers. We
finish by stating without proof a unviersal property for this construction.

4.1 The category IntV

We let // be any traced monoidal category, which we can assume to be strict by the coherence
theorem for monoidal categories [JS1]. To define a category we need to define objects, arrows, source
gnd target, composition of arrows, and identity arrows. 'We define the objects of Inty/ as pairs (X U )

of objects X, U in ¢/ , and amrows f:(X,U)—(¥,V) in IntY/ as arrows f:X®V —>Y®Uin 1/ The

tomposite of f:(X,U )= (¥,V) and g:(¥,V)— (Z,W)is defined to be the value of the trace function
Tryow zou V(X ®W RV, ZQU RV )— /(X ®W,ZQU)

at the composite | :

o xewev— 2 yevew L iryeuew— 2 syeweu

_ : B L, 720VeU 2 5Z0U eV
which in pictures is : '

osition 4.1: The above data do define a category Int}/ and a fully faithful functor N Y — Inty is
efined by N(X )=(X.1), N(f)=f.

@ prove this we need to show that

S

Int/is a category:
(a) Associativity, that is Ao (g of ) =(ho g)o f, whenever the arrows are thus composable.
®) Lyyyo f = f=felgy for f:(X,U)=(F.V).
| 26




2) That N is a fully faithful functor:
@ s(N(f))=N(s(r)) and ¢(N(f))= N(t(f)) where s is the source map and  is the target map

() N(go f)=NgoNf
(c) N(lx )=1N(X)

(d) Nisfull
(e) N is faithful

Proof: 1a) Associativity is proved diagrammatically as follows
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R e e

Forf:X —»Y
s(N(F))=(x.1)= N(X)= N(s(f))
(N(f)=(¥,1}=N(¥)=N((r)).

N(go f)=go f=NgoNf since N(f)=f
We need to prove that VX, X' eV, if g:(X,1)— (X’,1), then 3f e [/ with N(f) =g .

R forg:(X,I)_—).(X’,I) inInt), wehave g: X®@I > X'®1 in P} since / is strict,g: X — X’
(g)=¢5.

=

~ We need to prove that, for anyX,X’e}/, and any ﬁ:X—)X’,fZ:X—>X', we have
)=N(f2)=>f1 = f,, which is clearly true, since by definition N(fl)zfl,N(fz)=f2.

28
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4.2 Adding a tensor product to make Int/monoidal

We define a tensor product functor ® : Inty/xInty/ — Int}/ as follows.
On objects: (X,U)&'{X",U')={X & X’,U’'QU)
On arrows: For f:(X,U)— (Y,V),f":(X".U")— (",V’) in Int /]
' fO® XX, U'QU)- (Y®Y,V'®V)

is defined to be the following composite:

XX ®VOV—2 ,x'exeVey 2%  x' ey UV’
e L yeX OV U 2% Ly ey QU QU

with diagram

pposition 4.2: The above tensor product enriches Tnty/ with the structure of a monoidal category, and
functor N :{) —Inti/ is then monoidal.

have shown that Int)/ is a category in Proposition 4.1, and we have, from the definition of & on
ects, that f ®' f":(X,U)® (X,U")— (¥, V)& {¥",V').

emains to prove

That (I A ) i§ the unit object for Inty/x Int}/

That & is a functor; that is, _

@1x,v) ® Yy ) = Lix v iex )

0@ ((5.87)°(f./N)=(g® &) (£ & f);

thatis, (g0 f)& (¢'of)=(s® &) (f & f). :

That we have natural isomorphisms for associativity, left and right unit constraint and that the
associativity pentagon and triangle for unit commute

That we have a natural family of isomorphisms ¢, , 5 : N(X)® N(X)—— N(X ® X’) and an

isomorphism @, : I —=> N(I) such that the three required diagrams commute.

X.0)®(1,1)=(xLI”U)=(X,U)=(I®X,U®I)=(1,1)®(X,U), hence(I,I) is the identity
object.
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2a) _I(X,U) ®’1(X’,U') |
(1x ® l(X’,U’) ®1, )° (cx,x'_l ® CU’,U_I )° (lx’ ® I(X.U) ® 1U’)° (Cx,x’ ® CU,U’HI)
(e ®1, ®0,7 @1, Joley 1 @y ™o (r ©1, ®0,7 81, )o oy ®y 7"
= ((lX ® 1X’)° cX,X'_l ° (Ix’ ®ly )° Cx,x )® ((BU’_] @1, )" CU’,U_1 ° 690_] Q1 )° CU,U’_I)
=1y ®ly ® (cu,ﬂ" ° (1,, ®6," ) (BU“ ®1U.)o cU,U,‘l)
=lyoy ® (CU’,U o (9U - ®9r1'~1 )° Cy ,U’hl)

-1
=lyox ®Opey = 1X®X',U’®U = 1(X Dei(x o)
Pictorially,

It

) We prove this diagrammatically as follows:

vanish,
balance
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=
i;;;:
54

slide crossing,
tighten,
balance

} We need a natural family of isomorphisms ,
e e )zw) (XU)® V)& (Z,W) - (X.U)& (7,V)& (2.W))

sing the definition of &, we have
(x.0)& . V)& (Z,W)=(Xx®Y,vQU)& (Z,W)
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=(X®Y®Z,WRVeU) =(X,U) (¥ ®zZ,WweV) =(X,U)e ({r.vV)& (z,W))
showing that ® is associative on objects, so we take a to be the identity, making the associativity

pentagon commute.
Naturality of a requires the following square to commute:

(xU)® ¥ vV)®(z,w)—>(x.U) (¥.V) (2,W))

(refe f Fe(res)

R e

(x.0)& ¥,V (z,w)—2-(x,U0) (r,V)& (z,W))

forany f:(X,U)— (X"U"), f: (0. V)= "V), f":(Z.W)—> (z’,w’). Since a is the identity, we need
to prove that f & (f'® f”)= (f® f)& £, which is the following purely balanced diagrammatic

observation.

\/w (\_/

. Wecantake Iy y =1y y, since iy 4y : (I,1)®(X,U)— (X,U), and (1,1)®" (X, U)=(X,U).
;imilaﬂy, 'y (x,U)-»(x.U )and we need I=r to satisfy the triangle for unit, so we have I=r=1
the naturality conditions for I and r are then satisfied.

We need a natural family of isomorphisms
¢ xx  NX)FNX)->NEX®X),

nd we can take these to be the identity, since
NX)®NX)=(x.1)& (X, 1)=(X®X,I1®T)=N(X ®X’),
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Naturality of ¢, requires commutativity of the following square:

NX)®NX)—LsNEX®X)
N{F)&N(f) N )

NY) NI )LsNYeY)

%;— which, with ¢, the identity, requires NfF @ Nf' = N ( f®f ’) = f ® f’. The easiest way to see this is
§ pictorially as follows, with the identity objects drawn as dotted lines.
P
f _ -
" - - ©® Cfp
\‘.‘ I .
. “.-._-I‘--.‘ X X/

We also need an isomorphismé, : (I,1)— N(I); that is 0o :(1,1)—=(I,1), so we take it to be the
dentity, making all the required diagrams commute.
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Chapter 5
The tortile Structure on IntV

For each pair (X,U),(X’,U’)of objects in Inty, let
o) (XU (XU) - (XU)e (X,U) |
- be the arrow in Int7/given by the composite in / of the following four arrows.

X®X'QUOU —Sx®us” \x'oxeu oy 9970  yve xoU oU

wlony 1
Srx B L X'QU®X QU 2%y XU .

£ Diagrammatically

/

N

- For each object (X,U)of Int7 let Oxv): (x,U0)-(x,U ) be the arrow in Inty/ given by the
composne in / of three arrows,

-1
XQU— vt 7@ x 9% yTR@X —2U _sx QU

tepresented diagrammatically as

~

+1

The dual (X,U)of (X,U) is (U,X). The counit is the arrow £: (U, X )® (X,U)— (1,1} in Inty/
ven by the arrow 1; ®0y :U®X - U ®X in ¢/ The unit n:(1,1)— (X,U)® (U, X) is given by the

oW 1y ®6,™ : X ®U — X ®U in Y/ Thedual f*:(V,V) — (X,U) of an arrow f: (x,U)—(¥.v)
Int/ is the following composite in /-

VX 28 ,yex <, x®V- L3 reu— Uy %" rey
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n

Proposition 5.1: The arrows ¢y p)(x'v7) Ox ), € and 1 enrich the monoidal category IntY/ with a
tartile structure, and the monoidal functor N :/ — Inty/ (fully faithful by Proposition 4.1) is then traced.

We must prove the following
1. Braiding '
a) That ¢y ;) (xy) 18 @ natural family of isomorphisms

b) That Bl commutes
. ¢) That B2 commutes

Twist
B(x ) 1s natural

9(1,1) =1;
Diagram T commutes

. Adjoints :
That dual objects, unit, counit as described are actually these, that is, the duality triangles commute.

6’(x oy~ Ox v

. Nis traced
N is balanced
N preserves trace.

roof:

) Naturality of the braiding is expressed by commutativity of the following square:
x,U)e'(x"U)——{x ) (x,U)
f&F F@F
Y. v)e ., v ) ——y,v)&'r,V)

We prove this diagrammatically as follows.
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superpose,
balance,
swallow,

vanish
balance,
superpose,
slide twist,

superpose,
balance,
swallow.

tighten,
swallow,
balance,
vanigh.

yank,

balance.
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vanish,
balance,
tighten,

superpose,

yank,

balance

1®c

(X,U)@' (Y,V) ® (Z,W} Cx o)y .y ®lzw) >(Y,V)®' (Z,W)@’ (X,U)

\

. v)e'(x,v)e (z,w)

balance

r

&

1b) We have seen that the associativity isomorphism is actually an identity, so diagram (B1) reduces to
the following triangle, which we prove is commutative using the following diagrams,
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1¢) Similarly, commutativity of (B2) reduces to commutativity of the following triangle,

(x,U)® (v,V)® (z,w)—Luetnes) (7 w)' (X,U)®" (¥V,V)

1@¢

c®1

(x,U)® (Z,w)®' (¥,v) |

vanish,
balance,
tighten.

superpose,
balance \
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(X;U)—"(&L(X,U)

(¥, v)—20 5(v,v)
| .
/ \/ \ /
d,
e | balance bala—nce, trace swap. )
tighten. \ t

+1 \ +1 I
+1

a™ A
v/
14

balance
tighten. (

b) By definition, 8;; =¢;; ° (i®0, )ocm"1 , and we have that 8, =1 since J/ is balanced.

rom (B1), with A=B=C=I, and a = 1, we have
cri ® 1)" (1 ®cyp, )= Crier

= Crr°Cry=¢Cy

—

_1 _ —
= CrroCrr°Cry =Cri°Cry
= ¢ =1,

Hence@;; =1, ; as required.
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}- We need the following diagram, (T), to commute: |
(x,U)® (x".U)—=(x"U")& (X,U)
e J/ | J o®e
(x.U0)e (X" U'—-—(x"U)® (x,U)

e prove this diagrammatically as follows:

tighten.
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vanish,
superose,

supelﬁose,
yank,

balance.

7
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% 3a) We need to see that the duality triangles commute.
i The first is

U, X)), x)& (X, U)® U, X)

\ lgm

v.x)

Drawing the correct diagram is somewhat subtle, so some of the reasoning will be pfesented.
We have 1:(U,X)— (U, X) and n:{I,1)— (X ®U,X ®U), hence
19n:(URLI®X)-»URX®U,X®U®BX);

hat is :
1&'n:(USN®(X®USX)->({I®X)eU X ®U))
o we have the following diagram, with identity objects as dotted lines

0 composing gives
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S e

R s A S o i

vanish,
balance,
SUpeTpose,
slide,
yank.

balance, yank

superpose, -1 -1

slide twist,
yank,

balance

+1

‘The second triangle is
(x,U) "2 5(x,0)® [U,X)® (X,U)
1®c
(x.U)

hich is proved diagrammatically as follows:




7 i k"3

| 3b) To prove this, we first verify the formula for the dual of a map, and then apply it to 0.

For A—L B, B*—L 5 A" is defined to be the composite

' B -1 ,B"RARA" 2% ;B oA =L, 4",

hence B'® A—L% 5 4" ® A is the composite .

B RA—1® ,B"RARA ®A— 2 ,B"RBRA AT s A" ®A

181 1®1&e 1B f@s I®1I®e £Qe €

B®A tef > B*'®B £ > T

nd by applying the duality triangle and functoniality of & as described by the commuting diagram
bove, we have that €o (1® f ) =Eo (f* ®1) . Actually, it is easy to show that each of the following

diagrams uniquely determines f~. i

J— 1 s A@A" BRALO 4 ®A
’fal J/f@l 1®fl j/EA
BB 2L ,pA" B ®B—f1

‘f Hence to see that what we have defined as f~ is actually the dual of f, we must show that
£0(1® f)=¢(f* ®1), which is proved in the following diagrams.

LN

+]

balance, balance, flipping .
superpose, - slide crossing,
yank tighten

s
\ »
2 . /[\

+10N

trace swap,
yank.

\) +1 M
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Now we wish to see that 8 )= B(X_U)* , which is the following purely balanced diagrammatic

' observation:

s bj

\

+1

a) We need to see that N is balanced. We have from Proposition 4.2 that N is monoidal. Since
¢, and @, are identities, for N' to be braided we need N(c)=c, which we have from the definition of N.

We need to see that N preserves the twist, thatis 8, = N(@; )=0 w(x) =0, BY definition,
Ox.)=Cx.n)° (1, ®6y )o ¢; x » and from (B1) and (B2), the braiding diagrams, it is easy to see that

cx.)=1x =c¢y x , hence By ;y =0y, s0 N is balanced.

b) We need to see that N preserves trace, that is, for all atrrows f: A®U —- B®U in 1/, the canonical
race of f:(A®U,I)— (B®U,I)inInt/ is N (TrU (f )) That is, we must see that the following
omposite in Int/is equal to Tr” (f):(A,1)— (B, T).

(A, D)AD& U, 1) (1,U)—L25(B,1)e' U, 1) (1,U)
1% (B,1)& (I,U) (U 1) 2 (B, 1)@ (I,U)® (U, 1)—2(B,I)

Two diagrammatic proofs are given. The first presents the diagrams for each factor in the same
rder as in the equation above, and then composes them in pairs, from top to bottom, simplifying at each
tep. The second proof presents all the factors composed from top to bottom in one diagram, which is
hen simplified.

Again we draw the identity object / as a dotted line. We need to draw it initially to keep track of

ow to tensor and compose things, but since crossings with I and twists on I are just identities, we can
emove I from our diagrams.
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+1

+1

il

Composing with

1®'1®°0 gives a |y

@19 - | [T 1T ;

Composing the
above with

/ = 1®'¢ gives

Composing the
above with
- f®'1 gives

Composing the
above with
I1®'n gives
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' The second diagrammatic proof is as follows.

+1

..]'

We now give a universal property for the construction.

Proposition 5.2: Suppose V/is a traced monoidal category and Wis a tortile monoidal category. Then,

or all traced monoidal functors F : [/ — 10, there exists a balanced monoidal functorK :Inty) — &7
which is unique up to monoidal natural isomorphism with the property KN = F .

Y—L Tty

Tra& Amed

monoidal

tortllc

This result is stated without proof, however we give the definition of K, and the proof can be found in
[ISV].

On the object (X,U) of Inty] put K(X,U)=FX ®(FUY .
For f:(X,U)— (¥,V), define

K(f):K(X.U)»KE,V) =(1®9)o(1®c™ o (5f ©101)o (107 ®1).
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