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ABSTRACT

The talk will survey recent advances in the
study of higher dimensional categorical
structures involving the higher operads of
Michael Batanin defined in terms of plane

trees.



2-categories
A 2-category A consists of objects a, b, c,..., arrows

fra — b, and 2-arrows 6:f=g:a— b displayed thus
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These compositions are required to be associative and
unital; moreover, horizontal composition must preserve
vertical units and the following interchange law is imposed.
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EXAMPLES

Cat Isa2-category:
objects are categories,
arrows are functors, and
2-arrows are natural transformations.

Surf is a 2-category:
objects are finite subsets of the real line,
arrows are progressive plane strings, and

2-arrows are deformation classes of progressive singular
3D surfaces.



A weak 2-category or bicategory consists of the data and
conditions of a 2-category except that the associativity and
unital equalities for horizontal composition are replaced by
the extra data of invertible natural families of 2-arrows

Of rm-(Mor)of = mo(rof), A;ilyjof =F, peifol, =1,

called associativity and unital constraints, such that the
associativity pentagon (or 3-cocycle condition)

Op m,rof Cpom,r,f = (1p°am,r,f) OCp,mor,f(ocp,m,ro:l-f)
and unit triangle (or normalisation condition)
(lrokf)af,r,m = prols

are imposed.

EXAMPLES
Each monoidal category ‘1 gives a one object
bicategory =9/ whose arrows are objects of ‘I, whose 2-
arrows are the arrows of ‘7. whose horizontal composition is

the tensor product of ‘. and whose vertical composition is
the composition of ¥/

Each topological space X has a homotopy bicategory
IT,(X)

whose objects are points of X, whose arrows are paths in X,
and whose 2-arrows are homotopy classes of homotopies.



A globular set X is a sequence ( X,),>o Ofsets X,
together with functions

Sn'tn:xn+1 —)Xn
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Another name might be w-graph: the higher arrow notation
IS used:
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Each 2-category A has an underlying globular set X :
X, = {objects}, X, ={arrows}, X,={2-arrows}, X;=0.

The definition of w-category should now be fairly clear:
we have a 2-category structure on each 2-graph of three
consecutive sets X, X,,41, Xpso . There are no new kinds of
conditions: just associative, unital and interchange laws.



Tricategories
Atricategory 7 isa 3-graph
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together with compositions like those for a 3-category,
constraints making 7, < 7, < ‘I, a bicategory,
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constraints for 7, < 7, < ‘I, like those for a bicategory

— —

but merely equivalences (not necessarily isomorphisms)
and, instead of the commutativity axioms on those
constraints, further higher-dimensional constraints
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and even a further invertible 3-arrow constraint
representing the failure of the precise interchange law:

Yy - (f®g) ° (h®k) = (f°h) ®(g°k);



subject to natural axioms including the equality:
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EXAMPLE

Each braided monoidal category ‘V/ gives a tricategory
22 7/ with only one object, only one arrow, with 2-arrows the

objects of V. and with 3-arrows the arrows of V.

What kind of algebraic theory is needed to describe these
higher order structures?

Instead of operations A" — A whose arities are natural
numbers n, Batanin's idea wasto use operations whose
arities are plane trees.
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A tree of height 2

Each tree T gives aglobular set X = ‘T‘ as illustrated in
the diagram above:

X,={1,7,9,13}, X,={24,6,810,12}, X,={3,511}.
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Aglobular pasting diagramin a globular set A is a pair

(T, f) where T isa tree and f: ‘T‘ — A is a map of

globular sets.

If A is an w-category, each such pasting diagram has a
unique n-arrow paste(T, f)e A, obtainable using the
compositions of A where n is the height of the tree T.

Trees form an w-category Tree:

the n-arrows are the trees of height n;

the m-source and m-target of a tree are equal and are
obtained by pruning off all the stuff above height m;

the compositions are illustrated by

Theorem Tree is the free aw-category on the globular

set with a single element in each dimension,




The simplest kind of operad

Consider sets A equipped witha function o.: A — N into
the natural numbers, called arity .

There is a substitution operation of graded sets:

given

o:A — N, o:B — N,
put

B(A) = {(b,a;,ay,...,a¢): beB,a,ceA and k=o (b) }
where o, a;,a,,...,q) = a(a)+ ... +o(q).

A (non-permutative) operadisa graded set A together with
a function

sub: AA) — A,

written sub (b,a;,a,,...,a)= b (a;,a,,...,a), andan
element 1 ofarity 1, such that
l(a)=a, b(,...,1)=Db,
c(by(ayy, - .. ’aljl)’ oo bm@mysees@mj )

=C(bl,...,bm)(all,---1alj1;---’am1’-"’amjm) '

An A-algebra is a set X with an n-ary operation for each
element of A of arity n subject to two obvious conditions.



Batanin operads

Consider globular sets A equipped with a globular function
oA — Tree, called arity.

There is a substitution operation of tree-graded sets:
given

o:A —Tree, o:B —Tree,
put

B(A) = {(b, a: ‘T‘ — > A): beB, a is a globular pasting

diagram in A, and T=a(b)}
where

a o
a(b,a) = paste (\T\ > A 5 Tree).
A (Batanin) operad is a tree-graded set A together with a
function

sub: AA) — A,

written sub (b, a) = b (a), and, foreach n, an element
u,c A, of arity the tree of height n having one node at each
level up to n, satisfying the natural conditions.

An A-algebra is a globular set X with, for each aeA,, an

assignment of an element a(x)e X, to each globular pasting

diagram  x:|o(a)]——X in X subject to obvious



conditions.

EXAMPLES

1) Take A to be the globular set with a single element in
each dimension. There is a canonical operad structure on

A. An A-algebrais an w-category.

2) There is an operad K which is the free (initial) one
generated by some basic operations and satisfying a

contractibility condition. A K-algebra is a weak w-category.



