

Branches of higher dimensional algebra

Ross Street

Macquarie University

30 September 1998

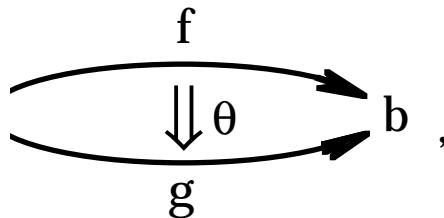
ABSTRACT

The talk will survey recent advances in the study of higher dimensional categorical structures involving the higher operads of Michael Batanin defined in terms of plane trees.

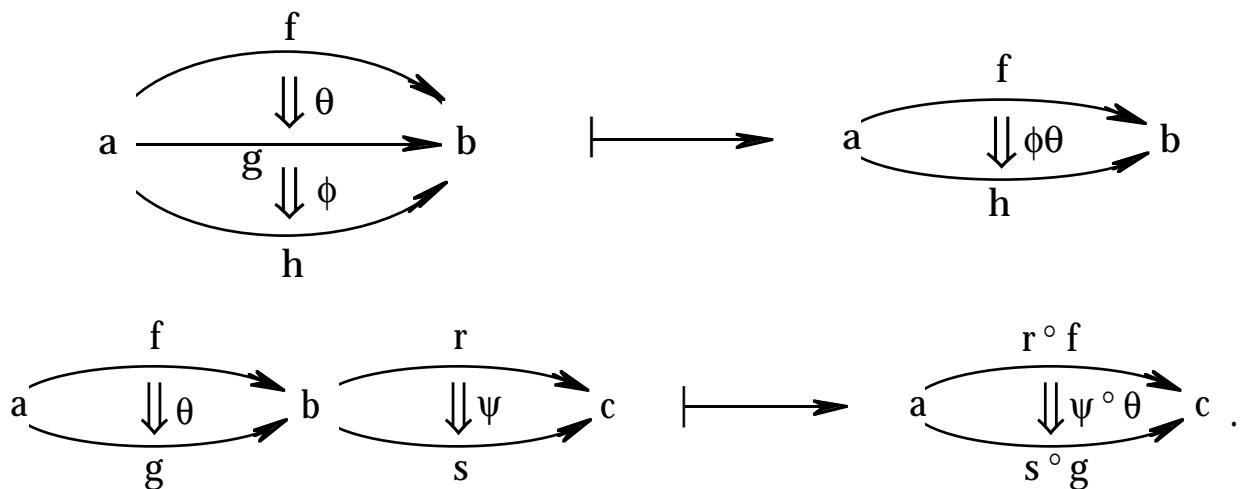
2-categories

A *2-category* \mathbf{A} consists of objects a, b, c, \dots , arrows

$f: a \rightarrow b$, and 2-arrows $\theta: f \Rightarrow g: a \rightarrow b$ displayed thus

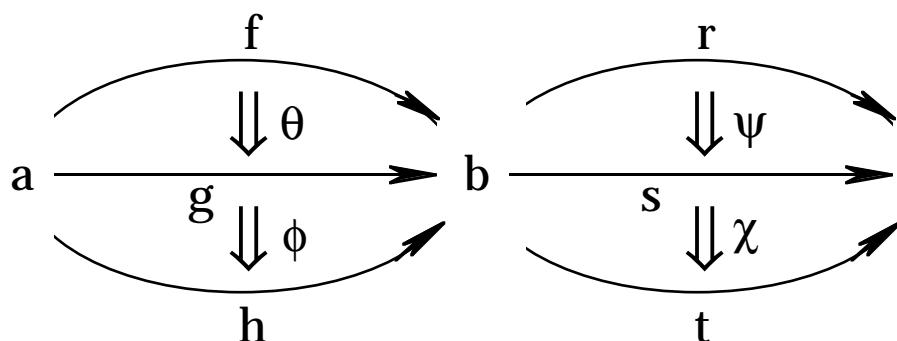


together with vertical and horizontal compositions



These compositions are required to be associative and unital; moreover, horizontal composition must preserve vertical units and the following *interchange law* is imposed.

$$(\chi\psi) \circ (\phi\theta) = (\chi \circ \phi) (\psi \circ \theta)$$



EXAMPLES

Cat is a 2-category:

objects are categories,
arrows are functors, and
2-arrows are natural transformations.

Surf is a 2-category:

objects are finite subsets of the real line,
arrows are progressive plane strings, and
2-arrows are deformation classes of progressive singular
3D surfaces.

A *weak 2-category* or *bicategory* consists of the data and conditions of a 2-category except that the associativity and unital equalities for horizontal composition are replaced by the extra data of invertible natural families of 2-arrows

$$\alpha_{f,r,m} : (m \circ r) \circ f \Rightarrow m \circ (r \circ f), \quad \lambda_f : 1_b \circ f \Rightarrow f, \quad \rho_f : f \circ 1_a \Rightarrow f,$$

called *associativity and unital constraints*, such that the *associativity pentagon* (or *3-cocycle condition*)

$$\alpha_{p,m,r \circ f} \alpha_{p \circ m, r, f} = (1_p \circ \alpha_{m, r, f}) \alpha_{p, m \circ r, f} (\alpha_{p, m, r} \circ 1_f)$$

and *unit triangle* (or *normalisation condition*)

$$(1_r \circ \lambda_f) \alpha_{f, r, m} = \rho_r \circ 1_f$$

are imposed.

EXAMPLES

Each monoidal category \mathcal{V} gives a one object bicategory $\Sigma\mathcal{V}$ whose arrows are objects of \mathcal{V} , whose 2-arrows are the arrows of \mathcal{V} , whose horizontal composition is the tensor product of \mathcal{V} , and whose vertical composition is the composition of \mathcal{V} .

Each topological space X has a *homotopy bicategory*

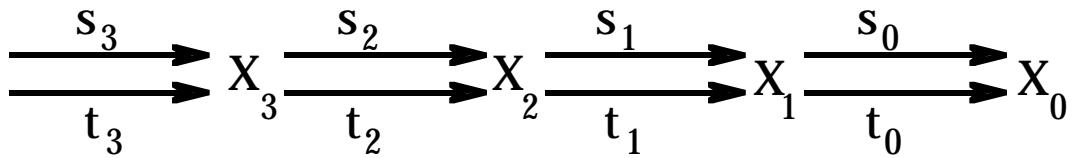
$$\Pi_2(X)$$

whose objects are points of X , whose arrows are paths in X , and whose 2-arrows are homotopy classes of homotopies.

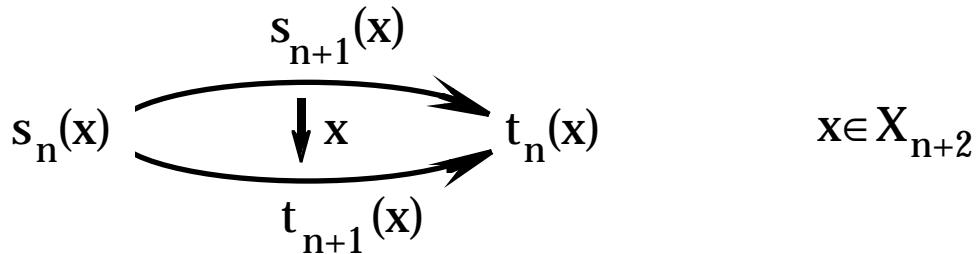
A *globular set* X is a sequence $(X_n)_{n \geq 0}$ of sets X_n together with functions

$$s_n, t_n : X_{n+1} \longrightarrow X_n$$

such that $s_n \circ s_{n+1} = s_n \circ t_{n+1}$, $t_n \circ s_{n+1} = t_n \circ t_{n+1}$.



Another name might be *ω -graph*: the higher arrow notation is used:



Each 2-category A has an underlying globular set X :

$$X_0 = \{\text{objects}\}, \quad X_1 = \{\text{arrows}\}, \quad X_2 = \{\text{2-arrows}\}, \quad X_3 = \emptyset.$$

The definition of *ω -category* should now be fairly clear: we have a 2-category structure on each 2-graph of three consecutive sets X_n, X_{n+1}, X_{n+2} . There are no new kinds of conditions: just associative, unital and interchange laws.

Tricategories

A *tricategory* \mathcal{T} is a 3-graph

$$\mathcal{T}_0 \leftarrow \mathcal{T}_1 \leftarrow \mathcal{T}_2 \leftarrow \mathcal{T}_3$$

together with compositions like those for a 3-category, constraints making $\mathcal{T}_1 \leftarrow \mathcal{T}_2 \leftarrow \mathcal{T}_3$ a bicategory, constraints for $\mathcal{T}_0 \leftarrow \mathcal{T}_1 \leftarrow \mathcal{T}_2$ like those for a bicategory but merely equivalences (not necessarily isomorphisms) and, instead of the commutativity axioms on those constraints, further higher-dimensional constraints

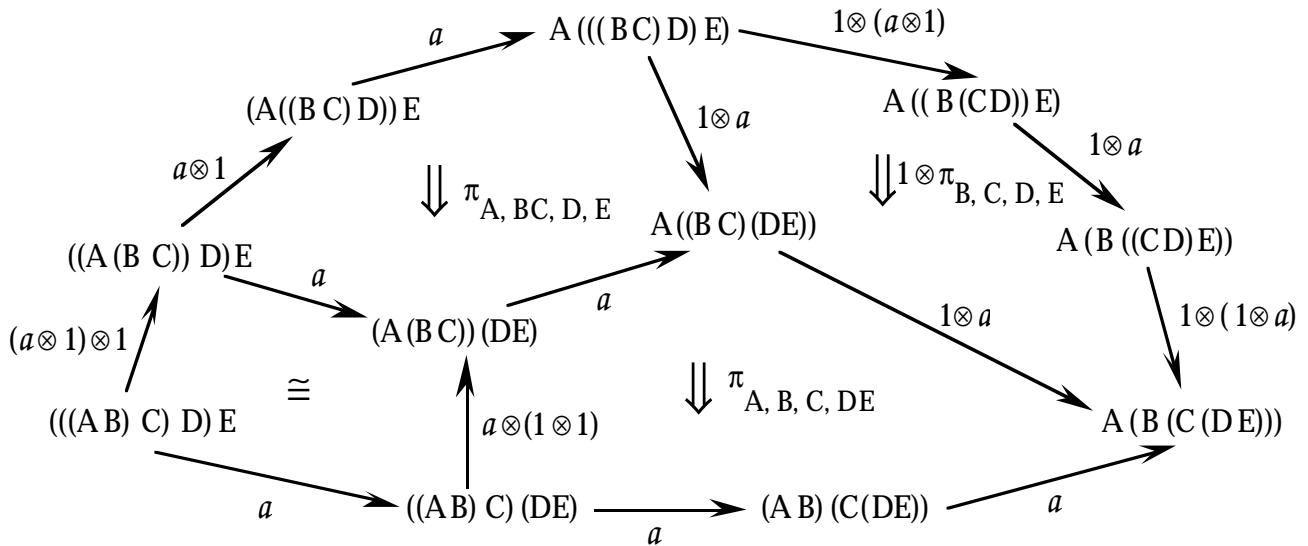
$$\begin{array}{ccccc}
 & (A \otimes (B \otimes C)) \otimes D & \xrightarrow{\alpha} & A \otimes ((B \otimes C) \otimes D) & \\
 \swarrow \alpha \otimes 1 & & & & \searrow 1 \otimes \alpha \\
 ((A \otimes B) \otimes C) \otimes D & & \Downarrow \pi_{A, B, C, D} & & A \otimes (B \otimes (C \otimes D)) \\
 & \searrow \alpha & & \swarrow \alpha & \\
 & (A \otimes B) \otimes (C \otimes D) & & & ;
 \end{array}$$

$$\begin{array}{ccc}
 (A \otimes I_T) \otimes B & \xrightarrow{\alpha} & A \otimes (I_T \otimes B) \\
 \uparrow r \otimes B & & \downarrow \mu_{A, B} \\
 A \otimes B & \xrightarrow{1} & A \otimes B ;
 \end{array}$$

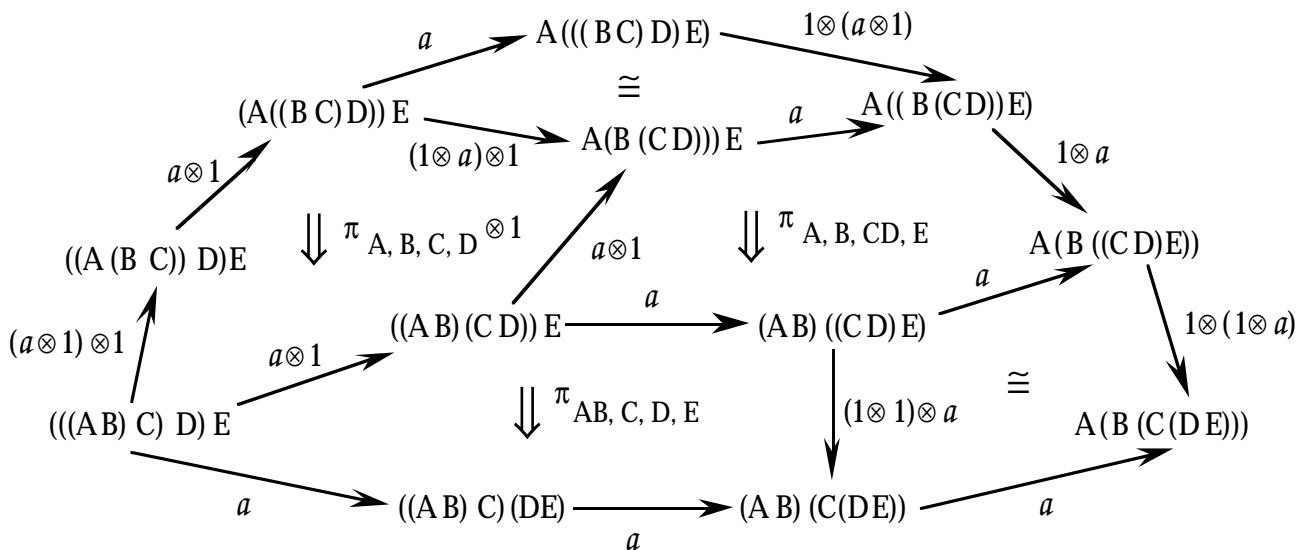
and even a further invertible 3-arrow constraint representing the failure of the precise interchange law:

$$\gamma : (f \otimes g) \circ (h \otimes k) \Rightarrow (f \circ h) \otimes (g \circ k) ;$$

subject to natural axioms including the equality:



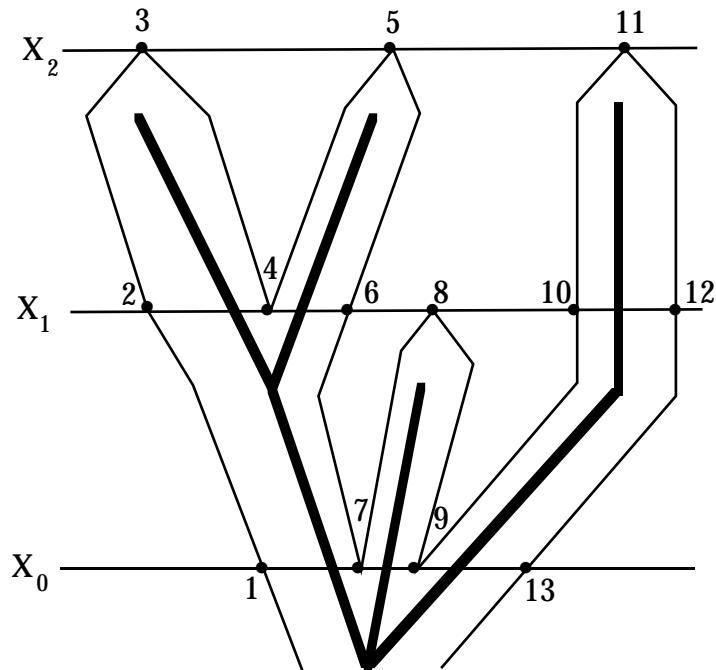
\equiv



EXAMPLE

Each braided monoidal category \mathcal{V} gives a tricategory $\Sigma^2 \mathcal{V}$ with only one object, only one arrow, with 2-arrows the objects of \mathcal{V} , and with 3-arrows the arrows of \mathcal{V} . What kind of algebraic theory is needed to describe these higher order structures?

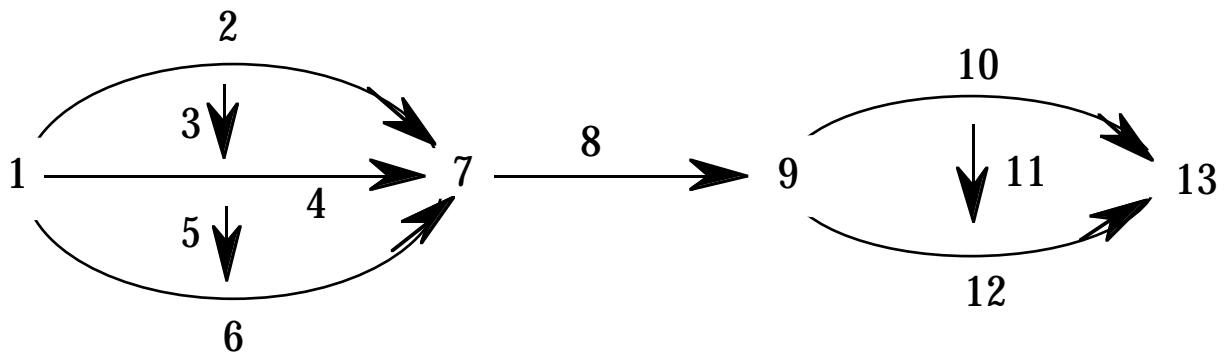
Instead of operations $A^n \rightarrow A$ whose arities are natural numbers n , Batanin's idea was to use operations whose arities are *plane trees*.



A tree of height 2

Each tree T gives a globular set $X = |T|$ as illustrated in the diagram above:

$$X_0 = \{1, 7, 9, 13\}, \quad X_1 = \{2, 4, 6, 8, 10, 12\}, \quad X_2 = \{3, 5, 11\}.$$



A *globular pasting diagram* in a globular set A is a pair (T, f) where T is a tree and $f : |T| \longrightarrow A$ is a map of globular sets.

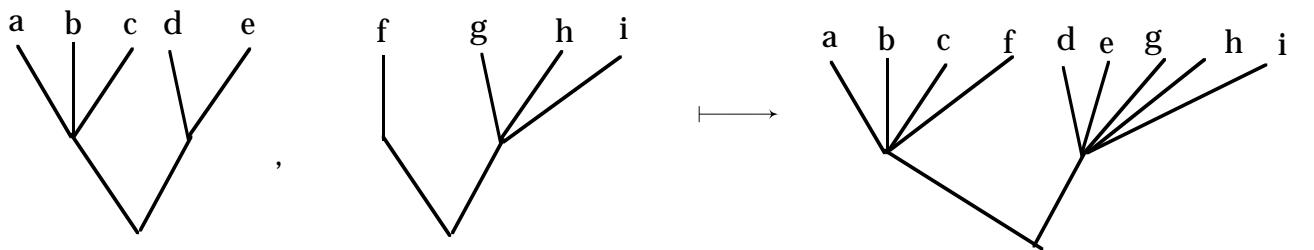
If A is an ω -category, each such pasting diagram has a unique n -arrow $\text{paste}(T, f) \in A_n$ obtainable using the compositions of A where n is the height of the tree T .

Trees form an ω -category **Tree**:

the n -arrows are the trees of height n ;

the m -source and m -target of a tree are equal and are obtained by pruning off all the stuff above height m ;

the compositions are illustrated by



Theorem **Tree** is the free ω -category on the globular set with a single element in each dimension.

The simplest kind of operad

Consider sets A equipped with a function $\alpha : A \rightarrow \mathbf{N}$ into the natural numbers, called *arity*.

There is a substitution operation of graded sets:

given

$$\alpha : A \rightarrow \mathbf{N}, \quad \alpha : B \rightarrow \mathbf{N},$$

put

$$B(A) = \{ (b, a_1, a_2, \dots, a_k) : b \in B, a_i \in A \text{ and } k = \alpha(b) \}$$

where $\alpha(b, a_1, a_2, \dots, a_k) = \alpha(a_1) + \dots + \alpha(a_k)$.

A (non-permutative) *operad* is a graded set A together with a function

$$\text{sub} : A(A) \rightarrow A,$$

written $\text{sub}(b, a_1, a_2, \dots, a_k) = b(a_1, a_2, \dots, a_k)$, and an element 1 of arity 1 , such that

$$1(a) = a, \quad b(1, \dots, 1) = b,$$

$$\begin{aligned} c(b_1(a_{11}, \dots, a_{1j_1}), \dots, b_m(a_{m1}, \dots, a_{mj_m})) \\ = c(b_1, \dots, b_m)(a_{11}, \dots, a_{1j_1}, \dots, a_{m1}, \dots, a_{mj_m}). \end{aligned}$$

An A -*algebra* is a set X with an n -ary operation for each element of A of arity n subject to two obvious conditions.

Batanin operads

Consider globular sets A equipped with a globular function $\alpha : A \rightarrow \mathbf{Tree}$, called *arity*.

There is a substitution operation of tree-graded sets: given

$$\alpha : A \rightarrow \mathbf{Tree}, \quad \alpha : B \rightarrow \mathbf{Tree},$$

put

$$B(A) = \{ (b, a : |T| \rightarrow A) : b \in B, \quad a \text{ is a globular pasting diagram in } A, \quad \text{and} \quad T = \alpha(b) \}$$

where

$$\alpha(b, a) = \text{paste} \left(|T| \xrightarrow{a} A \xrightarrow{\alpha} \mathbf{Tree} \right).$$

A (Batanin) *operad* is a tree-graded set A together with a function

$$\text{sub} : A(A) \rightarrow A,$$

written $\text{sub}(b, a) = b(a)$, and, for each n , an element $u_n \in A_n$ of arity the tree of height n having one node at each level up to n , satisfying the natural conditions.

An A -*algebra* is a globular set X with, for each $a \in A_n$, an assignment of an element $a(x) \in X_n$ to each globular pasting diagram $x : |\alpha(a)| \rightarrow X$ in X subject to obvious

conditions.

EXAMPLES

- 1) Take A to be the globular set with a single element in each dimension. There is a canonical operad structure on A . An A -algebra is an ω -category.
- 2) There is an operad K which is the free (initial) one generated by some basic operations and satisfying a contractibility condition. A K -algebra is a weak ω -category.