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ABSTRACT

The talk will survey recent advances in the

study of higher dimensional categorical

structures involving the higher operads of

Michael Batanin defined in terms of plane

trees.



2-categories
A  2-category A  consists of objects  a, b, c, . . . ,  arrows  

f : a   → b,  and 2-arrows θ : f ⇒ g : a  → b    displayed thus
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together with vertical and horizontal compositions
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These compositions are required to be associative and
unital; moreover, horizontal composition must preserve 

vertical units and the following  interchange law is imposed.

(χψ) ° (φθ)  =  (χ ° φ) (ψ ° θ)     

a b

 f

 g

h

⇓ θ

⇓ φ

r

s

t

⇓ψ

⇓χ



EXAMPLES

Cat is a 2-category:  

objects are categories, 
arrows are functors, and 

2-arrows are natural transformations.

Surf is a 2-category:
objects are finite subsets of the real line,

arrows are progressive plane strings, and
2-arrows are deformation classes of progressive singular 

3D surfaces.



A weak 2-category or bicategory consists of the data and
conditions of a 2-category except that the associativity and

unital equalities for horizontal composition are replaced by
the extra data of invertible natural families of 2-arrows

α λ ρf r m f b f am r f m r f f f f f, , : ( ) ( ) , : , : ,o o o o o o⇒ ⇒ ⇒1 1

called associativity and unital constraints, such that the
associativity pentagon (or 3-cocycle condition)
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and unit triangle (or normalisation condition)
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are imposed.  

EXAMPLES

Each monoidal category  V gives a one object
bicategory  ΣV whose arrows are objects of  V,  whose 2-
arrows are the arrows of  V,  whose horizontal composition is
the tensor product of  V,  and whose vertical composition is
the composition of  V.

Each topological space  X  has a homotopy bicategory

Π2(X)

whose objects are points of  X,  whose arrows are paths in  X,
and whose 2-arrows are homotopy classes of homotopies.



A globular set X  is a sequence  ( Xn )n ≥ 0 of sets  Xn
together with functions  

sn , tn : Xn+1  → Xn

such that  sn ° sn+1 = sn ° tn+1 ,  tn ° sn+1 = tn ° tn+1 .  
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Another name might be ω-graph: the higher arrow notation
is used:
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Each 2-category  A  has an underlying globular set  X :  

X0 =  { objects },     X1 =  { arrows },     X2 =  { 2-arrows },   X3 = ∅.

The definition of ω-category should now be fairly clear:

we have a 2-category structure on each 2-graph of three
consecutive sets  Xn , Xn+1 , Xn+2 .  There are no new kinds of

conditions: just associative, unital and interchange laws.



Tricategories
A tricategory T is a 3-graph   

T0 
← 
← 

T1 
← 
← 

T2 
← 
← 

T3

together with compositions like those for a 3-category,
constraints making  T1 

← 
← 

T2 
← 
← 

T3 a bicategory,

constraints for  T0 
← 
← 

T1 
← 
← 

T2  like those for a bicategory

but merely equivalences (not necessarily isomorphisms)
and, instead of the commutativity axioms on those
constraints, further higher-dimensional constraints
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;

and even a further invertible 3-arrow constraint
representing the failure of the precise interchange law:

γ :  (f⊗g) ° (h⊗k)  ⇒ (f ° h) ⊗ (g ° k) ;



subject to natural axioms including the equality:
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EXAMPLE  

Each braided monoidal category  V  gives a tricategory  

Σ2 V with only one object, only one arrow, with 2-arrows the 

objects of  V,  and with 3-arrows the arrows of   V. 

What kind of algebraic theory is needed to describe these
higher order structures?

Instead of operations  An  → A  whose arities are natural
numbers  n,   Batanin's idea was to use operations whose
arities are plane trees.
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A  tree  of  height  2

Each tree   T   gives a globular set  X  =  
  
T as illustrated in

the diagram above:

X0 = { 1, 7, 9, 13 },     X1 = { 2, 4, 6, 8, 10, 12 },     X2 = { 3, 5, 11 }.
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A globular pasting diagram in a globular set   A  is a pair  

(T, f)  where  T  is a tree and  f :  
  
T  → A  is a map of

globular sets.   

If   A   is an ω-category,  each such pasting diagram has a

unique n-arrow  paste(T, f)∈An obtainable using the

compositions of  A   where  n   is the height of the tree  T. 

Trees form an ω-category  Tree: 

the n-arrows are the trees of height  n;

the m-source and m-target of a tree are equal and are 
obtained by pruning off all the stuff above height  m;

the compositions are illustrated by

  ,

a b c d e f g h i a b c d e

jaA

f g h i

.

Theorem Tree is the free ω-category on the globular

set with a single element in each dimension.



The simplest kind of operad

Consider sets   A   equipped with a function α : A  → N into
the natural numbers, called arity .

There is a substitution operation of graded sets:  

given  
α : A  → N , α : B  → N ,

put 

B(A) =  { (b, a1 , a2 , . . . , ak ) :  b∈B , ai∈A  and  k = α (b) }

where   α(b, a1 , a2 , . . . , ak )  =  α(a1) + .  .  .  + α(ak) .

A (non-permutative) operad is a graded set  A  together with
a function

sub :  A(A)   → A ,

written   sub (b, a1 , a2 , . . . , ak) = b (a1 , a2 , . . . , ak),  and an 

element  1  of arity  1,    such that 

1(a) = a ,    b(1, . . . , 1) = b,   
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An  A-algebra is a set  X  with an n-ary operation for each

element of  A  of arity  n  subject to two obvious conditions.



Batanin operads

Consider globular sets  A  equipped with a globular function
α : A  → Tree,  called arity.

There is a substitution operation of tree-graded sets:  

given  
α : A  → Tree, α : B  → Tree,

put 

B(A) =  { (b,  a : 
  
T  → A) :  b∈B , a  is a globular pasting

diagram in A,   and  T = α (b) }
where

   
α

α
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

paste Tree .

A (Batanin) operad is a tree-graded set  A  together with a

function

sub :  A(A)  → A ,

written   sub (b, a) = b (a),  and,  for each  n,  an element

un∈An of arity the tree of height  n  having one node at each

level up to  n ,    satisfying the natural conditions. 

An  A-algebra is a globular set  X  with, for each  a∈An ,  an

assignment of an element  a(x)∈Xn to each globular pasting

diagram    x a X: ( )α  → in   X   subject to obvious



conditions.

EXAMPLES

1)  Take  A  to be the globular set with a single element in

each dimension.  There is a canonical operad structure on

A.   An  A-algebra is an ω-category.

2)  There is an operad  K  which is the free (initial) one
generated by some basic operations and satisfying a

contractibility condition.   A  K-algebra is a weak ω-category.


