Macquarie Mathematics Reports

THE COMPREHENSIVE CONSTRUCTION OF FREE COLIMITS

Ross Street

Sydney Category Seminar Reports

MACQUARIE UNIVERSITY

REPORT 79-0002 MAY 1979

AND GLADIVIPPAR

THE COMPREHENSIVE CONSTRUCTION OF FREE COLIMITS

Ross Street

- (1) Let Γ denote a set of categories. A Γ -colimit in a category M is a colimit of a functor into M with domain in Γ . When all Γ -colimits in M exist then M is said to be Γ -cocomplete. A functor $f: M \longrightarrow N$ which preserves Γ -colimits is said to be Γ -cocontinuous. (See Mac Lane [4] for unexplained terminology.)
- (2) This article asserts the existence of Γ -cocompletions and provides a construction:
 - Theorem. Let Γ be any small set of small categories. For each small category X, there exist a small Γ -cocomplete category \widetilde{X} and a functor $n: X \to \widetilde{X}$ with the property that, for each Γ -cocomplete category M, composition with n yields an equivalence between the category of Γ -cocontinuous functors from \widetilde{X} to M and the category of all functors from X to M.
- (3) The problem of freely adjoining colimits has been investigated by Kock [3] and Wood [8] who, because of combinatorial difficulties created by the formation of the free categories on certain graphs, required conditions of stability on Γ. There is compelling a priori evidence that no conditions on Γ (apart from size) should be necessary. To wit, for category-valued 2-functors J,S with the same domain and such that S lands in the 2-category of Γ-cocomplete categories and Γ-cocontinuous functors, the category of pseudo-natural transformations (Kelly-Street [2]) from J to S is Γ-cocomplete; in other words, Γ-cocomplete categories are closed under "indexed bilimits" in the sense of Street [6].

- (4) The case where Γ is the set of categories which have cardinality less than some regular cardinal γ has been dealt with by Gabriel-Ulmer [1]; regularity is itself a stability condition. (In this case we use the prefix " γ -" rather than " Γ -" in the above definitions.) They show that $\widetilde{\chi}$ can be taken to be the skeleton of the full subcategory $K_{\gamma}(X)$ of $[X^{op}, Set]$ consisting of the γ -colimits of representable functors (= the γ -presentable objects). Clearly each object of $K_{\gamma}(X)$ can be obtained as a coequalizer of two arrows between γ -coproducts of representables in $[X^{op}, Set]$. If γ is small, so too then is $\widetilde{\chi}$.
- (5) Before proceeding with the general construction, we must recall some details from Street-Walters [7] and Street [5]. Each functor $w:C\longrightarrow X$ can be factored as a composite

$$C \xrightarrow{j_W} E(w) \xrightarrow{p_W} \chi$$

where j_w is a final functor and p_w is a discrete 1-fibration. If C,X are small, E(w) is the category of elements of $col X(-,wc): X^{op} \longrightarrow S$ and so is also small. For each commutative square

in which j is final and p is a discrete 1-fibration, there exists a unique functor $f: C \longrightarrow E$ such that fj = u and pf = v. The pointwise left Kan extension k of a functor $h: C \longrightarrow M$ along a 0-fibration $q: C \longrightarrow A$ is given on objects by the formula

$$ka = col(C_a \longrightarrow C \xrightarrow{h} M),$$

where C_{a} is the fibre of q over a.

lity
rielris case
tions.)

resentable $K_{\gamma}(X)$

cts of

: $C \longrightarrow X$

If : X^{op}→Sea

s a se

- (6) Suppose Γ is any set of small categories. For each ordinal θ , a set Γ_{θ} of small categories is recursively defined as follows:
 - Γ_0 consists of the terminal categories (one of which is denoted by 1);
 - for each ordinal θ , $\Gamma_{\theta+1}$ consists of the small categories C for which there exists a 0-fibration $q:C\longrightarrow A$ such that A is in $\Gamma\cup\{\underline{1}\}$ and each fibre C_a of q is the codomain of some final functor with domain in Γ_{θ} ;
 - for each limit ordinal θ , $\Gamma_{\theta} = \bigcup_{\phi < \theta} \Gamma_{\phi}$. Observe that $\Gamma \subset \Gamma_1$ and $\Gamma_{\phi} \subset \Gamma_{\phi}$ for $\phi \leq \theta$.
- (7) Suppose M is a Γ -cocomplete category. For all ordinals θ , M is Γ_{θ} -cocomplete and any Γ -cocontinuous functor $f: M \longrightarrow N$ is Γ_{θ} -cocontinuous. For $\theta = 0$ this is trivial. Suppose M is Γ_{θ} -cocomplete and take a functor $h: C \longrightarrow M$ with C in $\Gamma_{\theta+1}$. There is a O-fibration $q: C \longrightarrow A$ as in the definition of $\Gamma_{\theta+1}$ so that the left Kan extension k of h along q can be calculated by the formula

$$ka = col(B_a \longrightarrow C_a \longrightarrow C \xrightarrow{h} M)$$

where $B_a \to C_a$ is final and B_a is in Γ_θ . Since A is in $\Gamma \cup \{\underline{1}\}$, the colimit of $k:A \to M$ exists. The left Kan extension along the composite $C \xrightarrow{q} A \xrightarrow{} \underline{1}$ can be obtained by first left Kan extending along q and then left Kan extending the result along $A \to \underline{1}$. So the colimit of k is the colimit of h. So M is $\Gamma_{\theta+1}$ -cocomplete. If θ is a limit ordinal and M is Γ_{ϕ} -cocomplete for all $\phi < \theta$, clearly M is Γ_{θ} -cocomplete. So M is Γ_{ϕ} -cocomplete for all θ asserted. The statement about f is now clear from the above construction of

 Γ_{θ} -colimits in M.

(8) For each small category X and each ordinal θ , let X_{θ} denote the category whose objects are functors $w:C \longrightarrow X$ with C in Γ_{θ} and whose arrows $f:w \longrightarrow w'$ are commutative triangles:

For $\phi \leq \theta$, X_{ϕ} is a full subcategory of X_{θ} . There is an equivalence of categories $r_0: X \longrightarrow X_0$ which takes x to $x: \underline{l} \longrightarrow X$ and takes $\xi: x \longrightarrow x'$ to

$$E(x) = X \downarrow x \xrightarrow{X \downarrow \xi} X \downarrow x' = E(x')$$
.

The composite $X \xrightarrow{r_0} X_0 \subset X_\theta$ is denoted by r_θ .

(9) There is a fully faithful functor $t_{\theta}: X_{\theta} \rightarrow [X^{op}, Set]$ which is given on objects by:

$$t_{\theta}(w) = \underset{c \in C}{\text{col }} X(-,wc)$$
.

This is because E(w) is just the category of elements of $t_{\theta}(w)$ and because taking categories of elements gives an equivalence between the category $[X^{op}, Set]$ and the category of discrete 1-fibration over X with small fibres.

- (10) Notice that $t_{\theta}r_{\theta}$ is isomorphic to the Yoneda embedding $y_{\chi}: X \longrightarrow [X^{op}, Set]$.
- (11) For each ordinal θ and each functor $u:A \to X_{\theta}$ with A in Γ , we shall now construct a colimit for the composite $A \xrightarrow{U} X_{\theta} \subset X_{\theta+1}$. Write $E:X_{\theta} \to Cat$ for the functor which takes w to its "comprehensive image" E(w) and takes $f:w \to w'$ to $f:E(w) \to E(w')$. Let L be the

e the

ence of $x \rightarrow x'$

ven

ind

he X

'P, Set].

sive

:he

category obtained from the composite $A \xrightarrow{u} \chi_{\theta} \xrightarrow{E} Cat$ via the Grothendieck construction; explicitly, an object of L is a pair (a,e) where a,e are objects of A, E(ua), respectively, and an arrow $(\alpha,\eta):(a,e) \to (a',e')$ in L consists of arrows $\alpha:a \to a'$, $\eta:(u\alpha)e \to e'$ in A, E(ua'), respectively. The first projection $d:L \to A$ is a 0-fibration with E(ua) as its fibre over a. Since ua is in χ_{θ} , there is a final functor j_{ua} into E(ua) with domain in Γ_{θ} . It follows that L is in $\Gamma_{\theta+1}$. This means that the functor $g_{ua} = g_{ua} = g$

We shall show that s is a colimit for the composite $A \xrightarrow{u} \chi_{\theta} \subset \chi_{\theta+1}$. Let $\lambda_a : ua \longrightarrow s$ in $\chi_{\theta+1}$ be the inclusion $i_a : E(ua) \longrightarrow L$ composed with $j_s : L \longrightarrow E(s)$. The following composite is the identity natural transformation.

Since p_S is discrete it follows that $j_Si_a=j_Si_{a'}(u\alpha)$ which means that the λ_a are the components of a cocone with vertex s. To see that this cocone is universal, suppose $w:C\longrightarrow X$ is in $X_{\theta+1}$ and $\mu_a:ua\longrightarrow w$ are the components of a cocone with vertex w. This means we have commuting diagrams:

Let $g:L \longrightarrow E(w)$ be the functor given by $g(a,e) = \mu_a e$, $g(\alpha,\eta) = \mu_a,\eta$. Then $p_w g = s = p_s j_s$, so there exists a unique functor f such that the following commutes.

It is easily seen now that $f: s \to w$ in $\chi_{\theta+1}$ is unique with the proper that $\mu_a = f \lambda_a$ for all a of A.

(12) For all Γ -cocomplete categories M, each functor $h: X \to M$ has a pointwise left Kan extension k_{θ} along $r_{\theta}: X \to X_{\theta}$ whose value at an object W of X_{θ} is given by:

$$k_{\theta}(w) = col(C \xrightarrow{w} X \xrightarrow{h} M).$$

To see this notice that the colimit of hw does exist since C is in Γ_{θ} (7). Since j_{w} is final, the colimit is also the colimit of the composite $E(w) \xrightarrow{p_{w}} x \xrightarrow{h} M$. We shall show that $p_{w}: E(w) \longrightarrow x$ is isomorphic to $d_{0}: r_{\theta} \downarrow w \longrightarrow x$ so that the above formula for k(w) is isomorphic to the usual formula (see Mac Lane [4]) for the pointwise left Kan extension of h along r_{θ} . An object of $r_{\theta} \downarrow w$ is a pair (x,f) where x is an object of X and $f: r_{\theta}(x) \longrightarrow w$ is an arrow of X_{θ} . Since the top arrow of the square below is final and p_{w} is a discrete 1-fibration, to give such an object is precisely (see (5)) to give an object of E(w).

 η) = μ_{a} , η .

1 that the

The required isomorphism $r_{\theta} \downarrow w \cong E(w)$ is now clear.

(13) The left Kan extension k_{θ} of (12) has the following two properties:

(i) $k_{\theta} r_{\theta} \cong h$;

(ii) k_θ preserves the colimits of functors $A \xrightarrow{\mbox{ } \mbox{ } \mbox$

Since k_{θ} is pointwise and r_{θ} is fully faithful, property (i) follows (Mac Lane [4; Ch. X §3, Cor. 3, p. 235], Street [5; p. 129]). Since property (ii) is vacuous for $\theta=0$ and since $X_{\theta}=\bigcup X_{\theta}$ for θ a limit ordinal, it suffices to show that, for all ordinals θ , $k_{\theta+1}$ preserves the colimit of each functor $A \xrightarrow{u} X_{\theta} \subset X_{\theta+1}$ with A in Γ . Such a colimit was constructed in (11) and denoted by s. What we must show is that $k_{\theta+1}(s)$ is canonically isomorphic to the colimit of the composite $A \xrightarrow{u} X_{\theta} \subset X_{\theta+1} \xrightarrow{k_{\theta+1}} M$; the latter composite is isomorphic to $k_{\theta}u$. Now $k_{\theta+1}(s) = \operatorname{col}(L \xrightarrow{s} X \xrightarrow{h} M)$ by (12), and this colimit can be calculated by first Kan extending along $d:L \longrightarrow A$ and then along $A \longrightarrow 1$. Since d is a 0-fibration, the value at a of the left Kan extension of hs along d is $\operatorname{col}(E(ua) \xrightarrow{p_{ua}} X \xrightarrow{h} M) \cong \operatorname{col}(h.ua) = k_{\theta}(ua)$. So $k_{\theta}u$ is the left Kan extension of hs along d. So the colimit of hs is $\operatorname{col}(k_{\theta}u)$ as required.

(14) Each object $w: C \longrightarrow X$ of X_{θ} is the colimit of $C \xrightarrow{W} X \xrightarrow{r_{\theta}} X_{\theta}$. For each object c of C, there is an arrow $\lambda_{C}: r_{\theta}(wc) \longrightarrow w$ in X_{θ} uniquely determined by the commutativity of the diagram:

the property

s a at an

is in
the
is
is
se
pair

is

For each $\zeta: c \longrightarrow c'$ in C, we have $p_w \lambda_{C'}(X + w\zeta) j_{wc} = p_w \lambda_{C} j_{wc}$ (both sides equal $wc: l \longrightarrow X$). Since p_w is a discrete l-fibration and j_{wc} is final, it follows that the arrows λ_{C} form a cocone over p_w with vertex p_w . The universal property is easily checked.

- (15) There is an ordinal ψ such that the inclusion $\chi_{\psi} \in \chi_{\psi+1}$ is an equivalence of categories. If Γ is a small set of categories then the first such $\,\psi\,$ is small and $\,\chi_{\psi}^{}\,$ has a small skeleton. Let $\,\gamma\,$ be a regular cardinal which exceeds the cardinalities of all the categories in Γ and is small if γ is. The category $K_{\gamma}(X)$ described in (4) is Γ -cocomplete. The Yoneda embedding $y_{\chi}: X \longrightarrow [X^{op}, Set]$ factors through $K_{\gamma}(X)$ via a functor $h: X \longrightarrow K_{\gamma}(X)$ say. The left Kan extension k_{θ} of h along $r_{\theta}: X \longrightarrow X_{\theta}$ exists and is given by $k_{\theta}(w) = \underset{\alpha \in C}{\text{col }} X(-,wc)$ using (12). Since $K_{\gamma}(X)$ is closed under γ -colimits in $[X^{op}, Set]$, the composite $X_{\theta} \xrightarrow{k_{\theta}} K_{\gamma}(X) \subset [X^{op}, Set]$ is just t_{θ} as given in (9). Since t_{θ} is fully faithful, so too is k_{θ} . Let ϕ be the first ordinal of cardinality exceeding that of the skeleton of $K_{\gamma}(X);$ by (4), ϕ is small if γ is. There is no ϕ -sequence of nonisomorphic objects in $K_{\gamma}(X)$, so there exists $\psi < \phi$ for which $\mathbf{X}_{\psi} \subset \mathbf{X}_{\psi+1}$ is an equivalence. We have shown that each \mathbf{X}_{θ} is equivalent is small.
- (16) For an ordinal ψ as in (15), X_{ψ} is Γ -cocomplete and, for each Γ -cocomplete category M, composition with $r_{\psi}: X \longrightarrow X_{\psi}$ yields an equivalence between the category $[X_{\psi},M]_{\Gamma}$ of Γ -cocontinuous functors from X_{ψ} to M and the category of all functors from X to M. Since $X_{\psi} \subset X_{\psi+1}$ is an equivalence, Γ -cocompleteness of X_{ψ} follows directly from (11). By (12), the functor $[r_{\psi},M]:[X_{\psi},M] \longrightarrow [X,M]$

ration ne over

then

Y be

ategories

n (4)

through

1 X(-,wc) C

of non-

valent

rs

has a left adjoint which, by (13), is fully faithful and lands in $[X_{\psi},M]_{\Gamma}.$ It remains to prove that each Γ -cocontinuous functor $k:X_{\psi} \longrightarrow M \text{ is a left Kan extension of } kr_{\psi} \text{ along } r_{\psi}.$ From (14) we have that each object w of X_{ψ} is the colimit of $r_{\psi}w$. Since k is Γ -cocontinuous it is also Γ_{ψ} -cocontinuous by (7), so k(w) is the colimit of $kr_{\psi}w$. By (12), k is a left Kan extension of kr_{ψ} along r_{ψ} .

- (17) To complete the proof of the Theorem, let ψ be as in the second sentence of (15), let \widetilde{X} be the skeleton of X_{ψ} , and let $n: X \longrightarrow \widetilde{X}$ be induced by $r_{\psi}: X \longrightarrow X_{\psi}$.
- (18) Notice that our construction gives the Γ -cocompletion of a small category X even when Γ is not small, however, the Γ -cocompletion in this case may not have a small skeleton.

REFERENCES

- [1] P. Gabriel and F. Ulmer, Lokal präsentierbare Kategorien, Lecture
 Notes in Math. 221 (Springer-Verlag, 1971).
- [2] G.M. Kelly and R. Street, Review of the elements of 2-categories, Proc. Sydney Category Seminar (1972), Lecture Notes in Math. 420 (Springer-Verlag, 1974) 75-103.
- [3] A. Kock, Limit monads in categories, Aarhus Universitet Matematisk
 Institut Preprint Series 1967/68, No. 6.
- [4] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5 (Springer-Verlag, 1971).
- [5] R. Street, Fibrations and Yoneda's lemma in a 2-category, Proc. Sydney Category Seminar (1972), Lecture Notes in Math. 420 (Springer-Verlag, 1974) 104-133.
- [6] R. Street, Fibrations in bicategories, Sydney (Metropolitan) Category

 Seminar Report (October, 1978).
- [7] R. Street and R. Walters, The comprehensive factorization of a functor,
 Bulletin of the American Math. Soc. 79 (1973) 936-941.
- [8] R.J. Wood, Free colimits, J. Pure and Applied Algebra 10 (1977-78)