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INTRODUCTION

With category theorists at each of the three universities
in Sydney -~ Ross Street at Macquarie, R.F.C. (Bob) Walters
at Sydney, and Max Kelly and his students (Geoffrey Lewls,
Andrew Macfarlane, Robert Blackwell) at New South Wales -
we decided 1In the middle of 1972 to meet, nof for an hour
a week, but for one whole day a week. This proved a
fruitful enterprise, the more so as we were jolned for
four months by Brian Day, visiting his home town after

two years at Chicage before going on to Aarhus for 8

"months.

A good deal of mathematics emerged in these sessions; and
since this will take a while to write up and publish
formally, we concelved the idea of preparing and distributing

these abstracts.

The idea seemed all the better, in that we 1In Australia
have less opportunity tﬂén Europeans and Americans to
disseminate our ideas by personal contacts. Indeed Ross
Street 1s the only one of us who, by an unusual munificence
on the part of his university, was able to attend the recent

conference at Oberwolfach.
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For the same reason, we now appeal to our colleégues overseaf
to keep us in mind in sending out thelr preprints and reprints.
If we ourselves have sometimes been lax in this regard (as
Michael Barr has often chided Kelly), well, we apologise

with firm resolutions to sin no more. We are in fact better
organised than before, and these present abstracts are an-

earnest of our repentance.

We ha@.. hoped to get these to you by Christmas (or even by
Hanukah), to carry our greetings as well as our ideas: but
it was beyond the cépacity of us and our secretaries. No
matter - our belatéd greetings are still sincere, and are

written if not received at the season of goodwilll.

Some personal notes: Kelly, after 6 years at the University
of N.S.W., is to return at the end of January to the University
of Sydney, where he ﬁas an undergraduate and, on returning
from Cambridge, taught for 10 years. The address is

Pure Maths. Dept., University of Sydney N.S.W. 2006, Australia.
Lewls 1s to désert pure mathematics for a Lectureship in

Economics at Sydney. We hope to see Day back late in 1973.

Finally as editors we thank all who have so €arnestly
cooperated, and Pat Roze who has done the typing with her
usual excellence.

Max Kelly

December 22, 1972.
Ross Street
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1. Elementary topoil

1.1 The ordered objects in a topos (Street)

As soon as we begin to study elementary topoi,‘we come
up against ordered objects.' An ordered obJect is of course
an object A together with a refle¥ive - transitive relation
on it. If T is the topos, these form a 2-category Ord-T. The
parts of topos theory that have to do with "internal
completeness" are assertions about adjunetions and Xan
extensions in Ord-T. This part of the theory of topoi can

in fact be summed up in the following result:

Theorem The ordered objects in a topos form a small cosmos,

For the definition of (elementary) cosmos, see §2 below:
the basic results about cosmoi were announced in Street [30],

and some more recent insights are described here in §2,

Given A,B € Ord-T, a profunctor from A to B turns out
to be an order-ideal on A x Bop‘ The obJect TA which_
represents the profunctors out of A is a subobject of-

PA = QA, corresponding in the case T = Seis to the set of

order-ideals of A.

1.2 The elements of topol (Kelly-Street)

e

In spite of the above theorem of Street, it may still be

of some interest to give a simple account of the elemeﬁts of




topos theory,particularly internal completeness, independently
of cosmos theory. We have found the followling order of
development to be simpler than most that we have seen, and

we offer 1t for what it is worth,

(a) Define a topos T as a finitely complete category in which
the relations Rel(A,B) from A to B, made functorial in B by
pullback, are representable in the form T(B,PA). The
"universal relation” for this representation is célled €,

from A to PA; the reverse relation from PA to A is 3. The

singleton map o: A + PA corresponds to the identity relation.

(b) As Kock has observed, we can prove T to be carteslan

closed, defining the internal~-hom [A,B] as the pullback of
1 = PA (corresponding to the whole of A) along a suitable

map P(AxB) » PA: the map which in Sets takes R C AxB to

{a € A|(a,b) € R for a unique b € B}.

(¢) PA is an ordered object, indeed a lattice-object, in T

because Rel(A,B) is so in Setg. For any ordered object C

==

and maps r: A » C, s: B » C we can define the comma object

dy

B

r/s




as the pullbacek

T/ 3 3 $C

AXB et % (0
XS
where ¢C i1s the order-relation on C. We can then regard
r/s as a relation from A to B. We use this construction in
particular when C = PD so that r: A + PD and s: B .+ PD
correspond to relations R from D to A and S from D to B.l

We also then write R/S for r/s.

(d) In particular, given a relation R from A to B, and
taking the relation € from A to PA, we get the relation ;
R/€ from B to PA; we write the corresponding map

PA - PB as VR' Three special cases are important: when R

is a function f, i.e. the relation A + A + B, we write'vf;
' 1 f

when R is the reverse of a functioh, i.e. A + B > B, we write
g 1

Pg for VR; and when R is the relation 5 from PB to B, we write

N: PPB = PB for V.. (Added in this reprinting: T. Brook has

pointed out that N is not as given but 1s (&/3)%.)
(e) We now construect the image fA of f: A + B; in an obvious

notation it is NP, where P C PB is the pullback along Pf

of the map 1 + PA corresponding to the whole of A. This gives




an epi-mono factorization. The ldea is due to Mikkelsen.

(f) We shall know that epis are preserved by pullbacks when
we know that T/B -» ﬂfﬁinduced by f:+ A » B has a right adjoint.
As Freyd pointed out, it suffices to know that 7/B is

cartesian closed. In fact we can now prove the fundamental

theorem that T/B is a topos; we produce P(E 5 B) as the

object €/S, where € 1is the relation from E to PE, and S is
the relation E 1 E 3 B from E to B; €/S has an evident map

into B.

(g) We now define the composite of relations by pulling

back and taking images. In view of (f), this composition is
assoclative, as shown by Freyd; so that we obtain a
2~category Rel. Indeed Rel is a"iclosed 2-category"; we
have, for relations R from D to A, S from D to B, and T from

A to B,

TeR < S if and only if T < R/S,

where o is composlte of relations.

{h) Let R be a relation from A to B. Composing the reverse
relation R¥ from B to A with the relation € from A to PA
glves the relation € » R*¥ from B to PA; the corresponding

map PA - PB is called c From (g) it is easily seen that
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dp is left adjoint in Ord-T to VRa-  we get the special cases

gp when R is a map f, and U PPB = PB when R is 3.

(1) More generally, for any ordered object A in T, the
order-relation on A gives an order—preser#ing map A = PA,

and A can be said to be cocomplete if this has a left adjoint

U, Thus PB may be said to be complete and cocomplete.

However'we are now saying things that belong in cosmos theory,
is
and further development .along these lineﬁ(best'carried out in

terms of Street's theorem in §l.1 above.

1.3 Topological objects in a topos (Macfarlane)

A left topological obJject in an elementary topos T is an

object X of T together with a map c: PX + PX satisfyling

c =z 1, c2 = ¢, and ve(cxe) = gov, Similarly a right

topological object is (X,i) where i: PX » PX is such that

3 €1, 12 = 1, and Ae(ixi) = iea,

The equalizer T, of 1PX and ¢ is closed under N and v;

c
the equalizer 7, of 1PX and 1 is closed under Y and a.
Moreover any T € PX closed under M and v is such a To for some
left topology ¢, and simllarly for right topologies. So a

left topologlcal objeect is equally an X with such a T,

This allows one to define the object of left (or right)

topologies on X, and to show that this objeet 1s closed under 1,
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A continuous morphism f: (X,t) - (Y,0) is an f: X » Y

such that ¢ - PY + PX factors through 1. We thus obtain
Pf

categories Topl(T) and Topr(T) of left and right topological
objects in T. These are T-categories (hom-objects in T), and

are moreover finitely complete and cocomplete.

The contradictions between left and right topologies are
summed up in the commuting diagram

R
Topl(T) Jiq___qp_Topr(T)

L
forget \\\\\\ ’///// forget
T

However the struggle to resolve these contradictions has only

Just begun and 1t is not known what direction it will take.
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2. Elementary Cosmoil

2.1 What cosmoil are for. (Street)

Cosmos theory arose from attempts by Walters and myself
to characterize that structure on a 2-~category whlch allows
the hom-set statement of the Yoneda lemma and the development
of its consequences., This Yoneda theory 1s known to work well
in 2-categories of the form V-Cat (including the 2-categories
of categories, of ordered sets, of additive categories, ...),
but apparently not in Mon (see §4 below). For each object A
in ¥-Cat one has the object TA = [A°P V] of contravariant
V=valued V=functors on A, and one has the representation

arrow A—TA, Our aim was to find an appropriate
Ia

characterization of the arrow A A which could be expressed
I

in an arbitrary 2-category, and to deduce theorems in the
2-category corresponding to those theorems of category theory

whose statements require hom-sets (for example, the hom-set

formulation of adjunction).

An account of such a theory appears in Street [ 30].
This theory is of the same elementary nature as topos theory.
The central point 1s the right characterization of those spans

which correspond to profunctors. In Lat a profunctor is a
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bifibration with discrete fibres. The notion of bifibration
can be expressed in a 2—category_(see §2.2 below), we can
define fibres (see below), and we ean express discreteness
(fixlty under suspension). However, bifibrations with
discrete fibres are not the right notion for a cosmos. One
might expeect "discreteness" not to be a good notion in V-Cat.
from A to B i1s an order-ideal in AXBOP; or better, as a span,
a profunctor is a bifibration which i1s Jjointly monic (that
is, which is a relation). The definition of a profunctor
which we take, and which includes these examples, is simply
a span which occurs as a comma object (size considerations

aside).

We may ask whether elementary cosmoi bear to 2-categories
of V-Caf-valued sheaves on a site the same relation as do
elementary topol to categories of Set-valued sheaves on a site.
Thls has not yet been investigated. Ofher questions may be
asked. Further axloms on a topos are known (Tierney [341)
such that the topos should provide a model for the elementary
theory of sets (Lawvere {221). What further axioms on a cosmos
are needed in order to capture the elementarily expressibly

properties of Cat? What are the relationships with Lawvere [23]7

Progress made on the programme explained above will now

be outlined.
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2.2 Conceptusl view of Yoneda. (Street)

A 2-category K is called stable (or "strongly representable"
by Gray [14]) when each object A has a cotensor 9A, called the

suspension of A, with the category 2. Thus there is an

enriched-natural isomorphism of categories

K(X, ®A) = K(X,A)E,
from which we obtain a category object $AT—_5A in Ko. Any
]
limits which may exist in KO are then automatically enriched
in K.

Suppose K is a stable 2-category with pullbacks. Let Spn
denote the 3-category whose objects are those of K, whose
hom=2-category Spn(A,B) is the 2-category of isomorphism

classes of spans from A to B in K,

S

Yo

—-

N7

T
and whose compositlon 2-functor

£+
Spn{B,C) x Spn{(A,B) —3 Spn{Aa,C)
is given by pulling back (see Benabou [ 3]). For each A then,

Spn(A,A) is a monoidal (2-)category and A-g—=>bA — A is

dy dq
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a monoid therein. Composition on one side with ®A and on the

other with ¢B yields a monad

Spn(A,B) ————3— Spn(4,B)
s —— s? = eBoseon

on Spn{A,B). The (2-) category of algebras Spn(A,B)# for
this monad is denoted by Bim(A,B); spans which are algebraé
for this monad are called bilmodules. from A to B. (With
coequalizers preserved by pullback we can make Bim into a
3-category using the usual definition of "tensor product of

bimodules").

Given arrows A + C « B, the composite of the three spans
I s '

ZNTTN,

is called the comma object of r,s and denoted A =~ r/5s — B,

dq dy

The further projection r/s =+ ¢C corresponds to a 2-cell

r/s
P
K L
\\\\‘A)(////B
ol
r 3
C.

with the obvious universal property.
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We will give evidence below for considering the following

theorem as expressing the heart of the Yoneda Lemma.

~For arrows

Theoremn. ./(’Am—x- C -=——B, the composite 2-cell
——— r S

d /sd

<> a2 N\
B

induces an arrow of spam&-(r/s)# = rdl/sdo—a—r/s which gives

r/s a "canonical” structure of bimodule from A to B. Further-

more, any arrow of spans

u/v

automatically preserves the canonical bimodule structures.

In practice our 2~category K has a distingulshed class of
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objects which are called small (this is what makes category

theory more involved than the theory of ordered sets), Given
u v a b
a span A ~e«— S —»=PB and arrows K— A, L— B, the span

—= [ obtained as the composite

N NN

is called the fibre of S over a,b. We say S has small fibres

K*Sa,b

when, for all a,b with K,L small, Sa b is small. An arrow
>

f
A —>» B is admissible when f/B has small fibres. An object

A is legitimate when A —» A 15 admissible.
1
A

Let Bif(A,B) denote the full sub-(2-)category of Bim(A,B)
consisting of those blmodules with small fibres; the objects

of Bif(A,B) are called bifibrations from A to B. Let

Prof(A,B) denbte the full sub-(2-)category of Bif(A,B) consisting

of those bifibrations which are spans of the form
49 4
A ~g— r/s —3 B wlith the canonical bimodule structure;

the objects of Prof(A,B) are called profunctors from A to B,

The last theorem tells us that Prof(A,B) is also a full

sub-~(2~)category of Spn(A,B).
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r
Corollary If A——» B is admissible then the reflection

1 f
of the object A w———A —s B of Spn(A,B) in Prof(A,B) 1is

A e-f/B-=B.

Proof. 'The free #-algebra (= bimodule) on thespan

1 £ dq -9
A=g— A —> B is precisely A -«—— /B —p B; and this is

a profunctor already.

The above corollary is called a Yoneda lemma in Street [30],
and the Yoneda lemma of Gray [14] is a consequence. The arrow
" of spans A »~ /B which gives the reflection in the corollary
corresponds to the functor which takes an object a of A to
the identity arrow in B of fa. So the reflection property -
may be stated as a bijection determined by "evaluating at
the identity".
There is a simllar corollary concerning the reflection
of the span A 3 B i B which also is a form of the Yoned
lemma. The original theorem hence provides the common

setting for both corollaries.

2.3 Definition of a cosmos (Street)

Note first that pulling back makes Prof (4,B)

o-functorial in B as an object of K in such a way that both
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l=-cellis and 2-cells are revefsed.

A pre-cosmos consists of a 2-category K and a distinguished

class of small objects satisfying:

Axlom 1. K is stable and has pullbacks, and the small objects

are closed under suspension and pullback formation;

Axiom 2, For each legitimate object A, there exists an object

I'A and an enriched-natural equivalence of categories

K(B,TA) = Prof(A,B);

Axiom 3. If A 1s small then TA is legitimate.

For each legitimate object A, the profunctor oA from A

to A corresponds to arrow A~ I'A called the representation
y .
A

arrow of A. As shown in Street [30], using the corollary of
§2.2, the equivalence of categories in Axiom 2 is determined

by Y, as follows:

¥,/h
- A
B— T4 f————» ‘.,/’/ \\\\‘k
| A B.

Of course, Prof(A,B) i1s 2~functorial in A, so that T
becomes a 2-functor reversing both 1-cells and 2-cells between

legitimate objects in K.
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. . f rf
Theorem. If A 1s small and A - B 1s admissible then 'B ——TA

has a right adjoint TA—» I'B,

The generalized Chevalley (or Beck) condition in the cosmos

context is:
Hdl
r'{r/s) ——————— I'B

o

the 2-cell rd, ' I's induced by the

rg —=TIC

Ir
4
r/s ~—————B
2-cell do A 8 of a legltimate comma object, is an
isomorphism.
A — > C
r

Presumably this condition holds in a pre-cosmos, although we
have at present only verified it in the presence of Axioms 4,

5, 6, 7 below. Note that the "pullback" Beck condition of
Lawvere {25] does not hold for the hyperdoctrine Cat with
PX*=“[X°p;§g§] (we have a counterexample) but the "comma object"
version does (of course this requires the consideration of C t

as a 2-category, not just a category).

After the last theorem one naturally asks: does I'f have a

left adjoint? It seems that in a pre-cosmos it need not.
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A eounter-example should be pro?ided by V-Cat where V is not

cocomplete,

A pre-cosmos 1s called a cosmos when the following axiom
holds, as we henceforth suppose.
f

#xtom 4, If A is small and A - B is op-admigsable then I'B—=TA

has a left adjoint TA-——3TB.
If

That the notion of cosmos is the "right" one is not yet

clear. The fundamental theorem of c¢cosmoil should be: for small =

A,B, the 2-category Bim(A,B) is a cosmos; I am trying to prove
this. |

Tt
Theorem, For small A,B and op-admissable B—X, any arrow

h _
B—aTA has a pointwise (see below) left extension along t.

The "pointwise" property referred to here makes sense

in any 2-category. A 2-cell

i1s said to exhibit k as a pointwise left extension of f along

b
j when, given any arrow C » B for which j/b exists, the




composite 2-cell

exhibits kb as a left extension of fdo along dl.' The generalized
Chevalley condition mentiocned above expresses internal point-

wiseness of right (and left, on taking adjoints) extensions.

A "bilclosed bicategory" Profs-is then obtained whose
objects are the small objects of K, whose hom-categories are
given by Profs(A,B) = Prof(A,B), and whose composition functors

correspond under egquivalence to

K(C,IB) x K(B,TA) - K(C,TA)
(k,h) |— h'k

where h' denotes the pointwise left extension of h along Vge

In our attempt to capture V-Cat, cosmoi with further
structure have been consldered.

e
Axiom 5. There is a 2-functor K x K —» K such that A®B is small

or legitimate when A,B are, and a small object I which determine
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the structure of an enriched-monoidal 2-category on K,

Axiom 6. There is a 2-functor ( )°P on K which reverses 2-cells,

takes small objects into small objects,is involutory, and

strictly preserves the monoidal structure,.

Axiom 7. For each legitimate objeet A, there is an evaluation
o e
arrow (FA)@AOP————p-FI which determines an isomorphism of

categories
K(B,TA) = K(B8A®P r1)

for all B.

A pre-cosmos 1s called small when all the objects are small,

in a topos).

For ordered sets, completeness implies cocompleteness, so

one might expect Axiom 4 to be redundant in a small COSmoes.

Theorem. A small pre-cosmos satisfying'Axioms 5,6,7 and

condition (%) below is a cosmos.

The following Chevalley-like conditon is possibly a

consequence of Axloms 5,6,7 on a pre-cosmos:
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f
(#) for any arrows A —» B, C —»D between legitimate

objects, the canonical 2-cell

n(18g)
T (ARC) >~ TI'(A®D)

r{re1i) \&\\\5 r(fel1)

I(B8C) ————epm T (BED)
1(10g)

is an isomorphism. It is true in V-Cat.

2.4 Cosmol without comma objects (Walters)

There are many 2-categories which are similar to cosmoi
but which do not have comma objects or pullbacks. For example,
- 1in a 2-category in which every arrow has a right adjoint the
identity arrows ére analogous to the representation arrows of
a cosmos. (The compact monoidal categories of Kelly [15] are

such 2-categories.)

We give a description below of the notion of profunctor
in a 2-category without comma objects or pullbacks. (For
simplicity, we neglect the problems of legitimacy whieh occur

in Gag.)

The Category Prof(A,B) Let C be a 2-category and let

A,B be objects of C, Denote opspans A — C ~&— B by (f,g),
£ g
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and denote dlagrams of the form

N

A B

A

by (f,g) = (h,k). If a is such a diagram denote by a the

¥ N

} .

YN\ \-“

of the form ‘h E induced by composition with a.
\\ﬁu!//

Consider finite sequences of diagrams

funection from 2-cells of the form to 2-cells

@ B oy B
() (f,p) & . = | &= ,,. %(h,k)

in which each ay (i =1,2, ..., n) is a bijection. Two such

e 4 ] 84 $
sequences (¥) and (f?é) &= . «o. =>(h,k) are called
equivalent if
”~ A_l ~ Awl N ~ ~ A—l
Bn . 8 . a2 Bl al - ﬁm .4 61 Yl -

Now the category Prof(A,B) is defined as follows. The
objects of Prof(A,B) are the opspans from A to B. The arrows
from (f,g) to (h,k) are the equivalence classes of sequences

from (f,g) to (h,k).
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It can be proved that if either (i) € is a cosmos, or
(i1) C has comma and opcomma objects, then Prof(A,B) is
eguivalent to the category of profunctors described in §2.2

above,

The Universal Property Prof(A,B) 1s made 2~-functorial in B

(reversing both arrows and 2-cells) by composition. Then C

is a precosmos 1f it satisfies the following

Azxiom For each A in C there is an object TA and there are

equivalences Prof(A,B) + C(B,rA) natural in B. Further if
yA: A » TA corresponds to (lﬁ,lA) then the universal
profunctor is(yA,er). Further if (f,g) corresponds to

k: B + I'A then the isomorphism between (f,g) and (yA,k) is

achieved by a diagram of the form

It can be shown that this axiom is an elementary condition
on (., A precosmos as defined in §2.3 satisfies this axiom.
Conversely, if C has comma and opcomma objects and satisfies

thls axiom then C is a precosmos in the sense of 2.3,

Many properties of the representation functor in Cat may

——r

be deduced from this axiom; for example, the lifting and
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extension properties described in Street [ 30] and Walters [ 35].
With the further assumption that each I'f has a left adjoint

Prof becomes a biclosed bicategory.

2.5 A factorization system for functors.(Street-Walters)

Given a factorization system (E,M) on a category A in the
sense of Freyd-Kelly [1ll], let M(A) denote the full subcategory
of A/"A" consisting of the arrows in M with target A. Then the
inclusion of M(A) in A/TA" has a left adjoint (namely, "take

the (E,M)-image")

M(R) & A/TAT.

An example of this occurs when A is the category of sets and M
is the class of injective functions; then E is the class of
surjective functicns and the above adjunction is an example

of a comprehension scheme (Lawvere [25]).

One naturally asks whéther the comprehension scheme for
the hyperdoctrine Cat with PX = [XOP,ggg] arises from a
factorization system on Lat, and if so, what are the elements
of E? These questions are answered in Street-Walters [31],
the idea being suggested by the method of constructing the
factorization of an arrow in a topos, and the analogue of
this in a suitable cosmos. This comprehension scheme does

indeed arise in such a way, and :




H
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the class of discrete O-fibrations (Gray [13]);

the class of initial functors (Maec Lane [27]).
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- ,3{Zrcétegéfieaﬁ0£“functors.

3.1 Note on monoidal localisations (Day) (text by editors).

SR

"{Editors' comment: Day provided the abstracts given in §3.2
and §3.3 below, but not one of the paper of the above title,
which is shortly to appear [ 6]1. To aid in the appreciation
of the succeedling sections, the editors have taken the liberty

of inserting the following remarks on the above paper.}

The author shows that the category of fractions A[Z +

]
1s monoidal when A 1s, and solves the universal problem for
monoidal functors that invert Z, provided that 7 contains,
along with a morphism s, every 1A®S and s@lB. (In future we
take for simplicity 8 to be symmetric.) In the author's
applications, the functor A - A{Z-l] has a right adjoint, so

that A{Z—l} is a reflective subcategory of A, and we are in

the situation considered in the author's earlier paper [5].

This is the case in particular when A is a complete
symmetric monoidal closed category with a set of strong
generators, if we have some left-adjoint functor S: A + B
and take Z to consist of those s such that every s@lA is
inverted by S. So if B is a full reflective subcategory of A
and S the reflection, the category B = A[Z™ %] 1s the smallest

reflective subcategory containing B that is monoildal (and

hence closed).
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Taking A to be [COp,ggggl for a small monoidal C, and B
to be a Lambek completlion of C, the author obtains a completion
theorem for monbidél categories, For B is a complete and
cocomplete monoidal closed category, and the inclusion C -+ B
is dense, is continuous, 1is ®@-preserving, and preserves those
colimits in C preserved by each «8C. Moreover if C 1is already
closed, C + B preserves all colimits and preserves

internal~homs.

For a closed category V, the functor category'[A,V] is
not available unless the V-category A is small, and many a
theorem has to be proved by hard work because of this lack.
The author applies his results to "legitimize" the shorter
functor-category arguments, by passing to a new universe of

sets and sultably completing V,
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3.2 On adjoint-functor factorisation. (Day)

This artlecle gives an account of the factorisation of an
adjunction 8— T: C +» B through the assoclated idempotent
monad on B, where B 1s a complete category. The result was
first obtained by Applegate and Tierney {2] and Fakir [10] and,
for the relative V-based case, where V is a complete symmetric
monoidal closed category, the result implies the existence of
the second relative completion process discussed by Dubuc [7],

Theorem 1IT1.3.2.

We do not use the cotriple-~tower construction of Applegate-
Tierney. The approach used is simply to first factor the given
adjunction unit into an epimorphism followed by a monomorphism.
This process determines the full reflective subcategory B' C B
comprising all subobjects of objects in the image of T: C + B,
An object B € B 1s called orthogonal to a morphism s € B if
B(s,B) is an isomorphism. The category B' is then seen to have
the property that the class of objects in B' which are
orthogonal to any given class of morphisms inverted by the

restriction of S to B' C B forms a reflective subcategory of B'.

To summarise these remarks, the class of reflective

subcategories of B' which reflectively contain the full sub-
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category.of_B' determined by the objects orthogonal to all the
morphisms inverted by S: B' + C forms a complete lattice. Thus,
for example, if B! has a monoidal closed structure, each such
subcategory of B' can be embedded in a "monoidal closure". This
generalises a result of ®. Antoine [ 1] on the embedding of the
category Top of all topological spaces and continuous maps into

a "minimal" cartesian closed extension.

3.3 On closed categories of functors II. (Day)

This paper discusses conditions under which a monoidal or,
more generally, a promonoldal structure on a category A generates,
along a given dense functor M: AP o c, a monoidal biclosed

structure on the codomaln category C.

There are two cases of special interest. The first is the
Yoneda embedding M: A®P - [4,8] of the category A%? into the
category [A,S] of all set-valued functors on A; this embedding
generates the "gconvolution" structure on [A,S8] (as treated in
[ 41). The second case is that in which M: AP =+ ¢ is the left
adjoint part of a monoildal reflective embedding, A being the
monoidal-dual structure of a monoildal biclosed category A°P

(as treated in [ 51).

The main features of the proof can be summarised as follows.
A dense functor from a small category A°P o a cocomplete

category C can be written as the composite A°P > [A,8] = C of a
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Yoneda embedding and a reflection; the general theorem would
thus be establlshed by combining the two special cases except
that [A,S8] is not a small category. However, a more refined
version of the theorem with A a large category and C admitting
only certain necessary limits and colimlts may be obtalned by
embedding ¢ in a suitable completion E with respect to a larger
universe § which contains A,C, and S as elements; that is, as
category objects. The biclosed monoidal structure which occurs
on C 15‘simply the restriction of the structuie cbtained on E

as a reflective subcategory of the closed functor category [A,S].

The monoidal version of the theorem is as follows:.

Theorem: Let A be a monoidal category and let M: A°P 4 ¢ ve a

dense functor into a category C with sultable copowers. Then

there exists a monoidal biclosed structure on C and a tensor-product-|

-preserving monoidal enrichment of M if and only if the colimits

and limits

AB
X8Y = [ (C(MA,X) x C(MB,Y)) - M(A®B)

A
H(BX) = f C(M(ABB),X) = MA
A .

K(BX) = I C(M(B®A),X) - MA
v/x = [ [ C(MA,X), H(AY)]

A
X\Y = J [C(MA,X), K(AY)]

A
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exist in ¢ and the canonical maps

C(M(A®B),X) -~ C(MA, H(BX))

C(M(B®A),X) + C(MA, K(BX))

are isomorphilisms for all A,B € A and X,Y € C.

To obtain the refined version of this theorem in the
case where the category theory is relative to a suitably
complete symmetric monoldal closed category V, we need a

workable notion of "change of V-universe" (as treated in [6]).

The concepts of convelution and reflection (or, more
generally, "locallisation") are available in the setting of
bicategories and biclosed bicategories (Benabou { 3 1) and

analogous results are available here.

e —

3.4 Categories of continuous functors (Kelly) (with P.J:xFreyd)
Let € and A be categories with C small, and let

I' be a family (perhaps large) of (Projective) cones in C.
The functors C + A which turn each cone in T into a
limiting cone in A form a full subcategory [C,A]r of
the functor category [C,A]. This subcategory is closed
under limits, and one seeks conditions on A in order that

it should be, for all € and all T, a reflective subcategory.
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Gabriel-Ulmer [12] showed that it is so if A is

locally presentable. Peter Freyd and I showed independently

| £11] that it is so if A Dbelongs to the larger class of
boundable categories, which includes non-locally-presentable
ones like Top. The condition of boundability, however,
like that of local presentability, being a generalization of
AB5, 1s not except in trivial cases possessed by AP 4rp

it 1s possessed by A. Preyd and I promised a sequel in

which we would show that [C,A]r 1s reflective for certain

A's where AOp was boundable.

This has never been wrltten up, because we have so far
failed to prove it in the kind of generality we should like,
e.g. for A°P boundable, or for AP locally presentable.
Since there have been some enquiries, however, 1t may be

worth recording what we can do in thils direction.

We have a proof when A% 15 the category B of algebras

for a monad-with~-rank on Sets. Here we could surely replace

Sets by a power of Sets. If we could do it for a reflective-

subcategory~-with-a-rank of such a B, we should then have
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it by [12], for A°P locally presentable: but this general-

ization eludes us.

We aiso have a proof for AP = Top, and we can combine these

to get a proof for cases like AP = T-algebras in Top, at
least for a flnitary theory T. Similarly with Top replaced
by k-spaces and so on. Indeed these Top -like extensions are
coveréd by the recent results of Wischnewéky [36], who shows
roughly that if it works for A then it works for Av, irf
there is a faithful functor A!' » A with adjoints on both

sidés.

The proof is totally different from that in [11], and uses

the special  adjoint functor theorem.
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Ly Categories with structure, and coherence

4,1 Doctrinal adjunction (Kelly)

We use the prefix "2-" to mean "enriched over Cat", not in
the more general sense of Gray [13]. Following Lawvere f2H] we.
call a 2-monad D on Qgt a doctrine. A D-category is an algebra
for D; a D-functor ié a lax morphism of such algebras; a

D-natural transformation is sulitably defined; and these elements

constitute a 2-category D-(at.

More precisely, if A and B are D-categories with actions
@: DA - A and 6': DB » B, a D~functor &: A » B consists of a
functor ¢: A + B together with s natural transformation
$:0".D¢ = $G; satisfying the evident axioms. A D-natural
transformation n: & = ¥: A = B is a natural transformation

n: ¢ = ¢ satisfying the evident axiom relating it to ¢ and

<

Reversing the sense of ¢ gives the notion of op-D-functor.
A D-funetor ¢ 1s called strong if ¢ is 'an isomorphism, and

strict if ¢ = 1.

An example of D-Caf is the 2-category Mop of monoidal

categories, monoldal functors, and monoidal natural trans-

formations, Another is SMon, of symmetric monoidal
categories ete. Yet another has categories-with-a-monad as
its objects, and the monad-functors of Street [29] as its

l-cells. DMore generally, we can take D to be Ko~ where K is
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any covariant club (see §4.2 below); and there are still other
examples where D 18 not derived from a club. Moreovér we could 1
Just as well replace D by a 2-monad not on {at but on any

2-category at all,

Proposition 4.1 Let e,n: ¢~—{¢: A » B be an adjunction in

Cgt, where A and B are D-categories. 'There is a bijection

between enrichments ¢ of ¢ to a D-functor & = (4,9) and

enrichments ¥' of ¢ to an op-D-functor ¥' = (y,¥"').

£Lovosely, "the left adjoint of a D-functor is an op-D-functor".)

Proposition 4.2 A D-functor ¢ = (¢,¢): A + B has a left

adjoint in D-Cat if and only if ¢ has a left adjoint ¢ in

Cat as in Proposition 4,1 and the corresponding ¥' is an

isomorphism. Then the leff adjoint ¥ of ¢ in D-Lat is (v,¥)

where § = i'—l. In particular ¥ is necessarily strong.

Similarly a D-functor ¥: B8 » A with a right adjoint in Cat

has one in D-Cat 1if and only if it is strong.

In the speclal case where D-Cat = Mon, a strong monolidal
functor is Jjust a ®-preserving one, and an op-monoidal-functor
A+ B is just a monoidal functor A°? = B®®. The condition
that ¥' be an isomorphism can be written in terms of §; in
the present case it 1s that ¢ bé normal plus a condition on

p: A BB + ¢(A®B). If A and B are closed as well as monoidal,

this latter condition can be written in terms of
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¢: ¢[A,B] »[64,¢B]. In this form the condition still makes
sense for non-monoidal closed categories A and B, and a
closed functor &: A - B; and these conditions are stiil

necessary and sufficient for a left adjoint ¢ of ¢ in Cat

e o o e

This should simplify greatly the forthcoming paper of
Wolff [37]. Presumably the generalization of this is to

pro-D-structures for a general D, in the spirit of Day [4 ].

If ¢ = 1, so that A is a full reflective subcategory
of B with inclusion ¢ and reflexion ¢, and if we sup?ose
that only B, not A, is given with a D-category structure,
we can ask whether A can be enriched to a D-category and
the reflexion to one in D-Cat; a generalization from Mop to

D-Cat of the problem studied by Day in [5 1. A necessary

condition 1s that w.e'.Dn'be an isomorphism, and this is
sufficient if the doctrine D is flexible enough: roughly,

if a category equivalent to a D-category is also a D-category.
The doctrine for Mon is flexible, and the above condition

becomes Day's condition that y(n®n) be an isomorphism; the

doctrine for strict monoidal categories is an example of an
inflexible one.
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4.2 Extension of the ﬁétion of ecovariant club (Kelly)

Tra———

The idea of a (covariant) club was introduced in [15] and
[16] as a setting for assertions about "general diagrams
commuting” and about "coherence"; the idea being that the
genefic category K bearingHan extra structure of a given kind
comes, in favourable cases, with an augmentation functor
I': K + G sending each "natural transformation" to its "graph";
so that a necessary condition for commutativity of a diagram in
K is commutativity of its image under I', and to say that "all
diagrams commute” 1s to say that T is faithful. The graph was
to be the information as to which variables in the domain and
in the codomain of the natural transformation were to be set
equal. The above papers dealt primarily with the case where
the graphs lay in the category G = P of finite sets and
permutations; but it was suggested in [ 15} that everything

doubtless carries over to the cases G = Set

[12]

and G = Cat, as

well as to 6 = getg® and 6 = Cat°P.

The extension to the case G = (af has now been checked
out; I am indebted to Street for helpful suggestions. The

situation is the following.

We said earlier that for us the prefix "2-" means
"enriched over Cat". For the more general sense in which Gray

in [13] uses "2-natural transformation", "2-comma-object",
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"2.colimit", we use instead the prefix "lax". We ignore size

considerations in thils skete¢h,

For categories B and C we define a "multi-functor category"
{B,C}. An obJect is a small category n together with a functor
r: BD & C, where 8" is the usual functor category. A morphism
from (n,T) te (m,S) is a functor ¢: n » m together with an

ordinary natural transformation f:

Bn
g% T
ﬂf
g™ - C.
S

Composition is evident. We have an augmentation functor

r: {B,C} » Cat sending (n,T) to n and (¢, £) to ¢. We can
call (n,T),or T for short, a functor from B to C of type n;
and call (¢, f), or f for short, a natural transformation
from T to S of graph ¢. As a category over Cat, {B,C} may be
regarded as an object of the first one. Then {-,-} is a

2-functor Cat”® * Cak ~ Cab/ Cat -

It has a left 2-adjoint °: Cat/Cat *x Cat =+ Cat, so that

(AeB,C) = Cat/Cat(A,{B,C}). It turns out that A+B is the

¢

=

lax comma category formed from the functors
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where T ls the augmentation of A, T is the unit category, and
8" is the name of B. An object of AeB is a pair A[X}gwherg,:

A €A and X: TA +'B; a morphism is f{gl where f: A > A' and

Tf
TA T4
=
X g x'
B

giving to B in Cat the trivial augmentation B - Cat which
is the constant functor at the empty category. We extend o

to a 2-functor Cat/Cat x Cat/Cat + Cat/Cat. We define AeB

as above, but have now to augment it given an augmentation
of B. We define T(A['X]) to be

r(al X1) lax colim (TA » B

Y
X r

il

cat).

Then o is a coherently associative ftensor product on

T o e

category 1 with augmentation I' = '1': 1 » Cakt. Moreover the

I e

adjoint {B,-}, where for augmented B and C the category

{B,C} only contains those (n,T) rendering commutative

T

Y g
-

[
Het
-

_lax colim
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with a similar restriction on the (¢,f): it reduces to the

earlier {B,C} when B and C have trivial augmentations.

A covariant club (of the first kind) is now a e<-monoid

K in Cat/Cat. It determines a doctrine D = Ko- on Cat. A
D-category is a category A together with an action KeA » A,
or equally together with a club-map K + {A,A}. Each objeect T
of K of type n gives therefore a functor [T|: Ar'1 + A, aﬁd
each morphism f of graph ¢ gives a natural transformation

I£]: |T| A® = |s].

We can similarly speak of a club of the second kind: a
o— monold for a suitable tensor product o in gg;/gggoP. But
such a club L is of the form K°P for a club K of the first
kind; and L A is (KoAOP)Op, 50 that Le~ is what Lawvere in

[24] calls the opposite doctrine to Ke-.

O0f course not ev&ry doct¥ine comes In this way from a club
of one kind or the other. Clubs of the second kind involve
natural transformations of the form |[f|: |T| = [SIAw; a general
doctrine will have natural 'transformations irreducibly of the

more general form |f]: |T|A¢ = !SIAw.

Just as a fheory may have a rank, so a club may not need

all of Cat to receive its augmentation. If G is a subcategory

TR S

and for some suitable G's this is closed under -, e.g. for
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G = §ggg or G = P, A club in £at/G may be called a G-club., The

—_—— IS

In practice, a club K is defined by generators and

relations; the coherence problem for the structure in question

is that of finding K, with its augmentation and monoid
structure, from these generators and relations; a diagram
commutes in K if and only if its image commutes in'{A,A} for

each K-category A.

4,3 Operads (Kelly)

————

A paper "on the operads of P.J, May",originally submitted
in January 1972, and returned in July 1972 with a request from
the referee to clarify a few connexions (especially that‘with
clubs), is still I fear awaiting revision. The attempt to see
more clearly the connexion with clubs led me first to §h.1
above, and then I got side-tracked generally. Perhaps a short

report 1s in order.

Let V be complete and cocomplete symmetric monolidal closed

e B

category, and the_skeletal category of finite sets and
permutations. The functor category [E,Vl has itself a
symmetric monoidal closed structure, the convolution in the
sense of Day [4 ] of the monoidal structure on P and the

closed structure on V; the tensor product is given by
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_ m,n
T8S = I P(min, -) 8 Tm ® Sn.

However [2,03 has another monoidai closed structure, this
time not symmetric (and not biclosed), whose tensor produet is
given by

ToS = Im T™m & S™,

where S™ is the m-fold 8-power . of S, regarded as a
contravarifant funetor of m. The corresponding internal hom

{S,R} is given by

{S,RIm = [ [ (s™)n, Ra].
n

We call a eo-monoid X in [E,V] an operad; it determines
a monad Ke- on [E,Vl, which restricts to a monad Ke- on V,
suitably embedded in [P,V]. If we demand of K that K(0O). be
the identity object I of V, the algebras for the monad Ke-
on V are also the algebras for a suitable monad on the
category I/V of pointed V-obJjects. If V = hausdorff k?spaces,
an operad satisfying this latter condiftion coincides with
the notion of operad introduced by May in [ 28] . The present
treatment therefore extends May's ceéncept to any symmetric
monoidal closed V; it behaves well under change of V, so
that an operad on ggg gives one on chain complexes and so on;
it would be pleasant if this enriched the value of operads in
algebraic topology, but I haven't puréued this, It further

turns out that V-operads can be identified with V-props of a

special kind.
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One can always replace the domain category P by N, the
discrete skeletal category of finite sets. This gives the
"non-% operads" of May [28]. If V is cartesian closed, one
can replace the domain category P by S, the skeletal category
of finite sets. When this is done, V-prop is replaced by
V-theory, and UQoperads may be identified with gll the

finitary V-theoriles.

When we.'take V = £at, there is a strong formal
resemblance between operads and clubs, for the domain
.category E; a club is a e-monoid in Lat/P, and an operad is
a o-monoid in [P,Cagl. I am beginning to understand this
better: it seems that the éanonical left-adjoint functor
Cat/P *-[g,ggg] preserves o, and sends a club to an operad,
with the same algebras. I hoped at one time that a general
doctrine could be defined by a club in Cat/G, where G was
something containing both Laf and QQQOP - presumably the

category of categories and op-spans; but now I doubt that

this makes sermse. A general doctrine is an operad in
b cat, Catl, for there o reduces to composition; T am still
sorting this but.

10

4y Mizxed-variance clubs (Kelly)

Structures such as a monoidal closed cone, involving
functors such as [ , }: A°P x A + A that are not covariant

in every variable, may as was shown in [16]l in some cases be
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regarded as algebras for an extended kind of club, called a

mixed-variance club. We restrict ourselves here to the

simplest case where the natural transformations are of the
generalized kind introduced by Eilenberg-Kelly in [ 8 ], whose
graphs are fixed-po%ntmfree invelutions on the totality of
variables in the domain and the codomain. Let E' be the
category of such graphs, but with added zero-morphisms = to
act as the composite of incompatible graphs. Then we can
define AoB for A,B € Cat/P' provided that the augmentations
of A and of B do not contain * 1n their images: i.e., if no
incompatibles occur. With this restriction, o is coherently

assoclative with identity (but has no right adjoint {-,-}).

A o-monoid L in this sense is a mixed-variance club, and

determines a monad Le- on Cat, whose algebras we call L-categories,

This gives a convenient setting for diseussing the coherence
“of ~L-categories in terms of T': L » P!,and gives an explicit
construction of the free L-category on the category A in the

form LeA., It further shows that L-categories are monadic over
‘ggg. Thus {(see below) monolidal closed categories are monadic,
being algebras for such a c¢lub L, It must be noted hewever

that in the mixed~variance case the functor - iIs not a

2-functor, so that the monad Le=on (af is not a doctrine. So
monoidal closed categories, while monadic over Cat, are not

doctrinal. It also follows that in general there is no concept
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of "L-functor" or "lax morphism of L-algebras" in the sense

of §4.1 above.

Unfortunately it is not possible to tell at once from
generators and relations for L that no incompatibles will
arise, i.e. that we do get a club. It 1s shown however in
[17], by a cut-elimination apgument, that if we start from
a covariant P-club K, and consider those K-categories in which
some or all of the structure-functors have right adjoints,
then these form the algebras for a mixed-variance club L.

Thus monoidal closed categories, monoidal biclosed categories,
symmetric monoidal closed categofies, etc., are categoriles

of algebras for mixed-variance clubs.

It was conjectured in [17] that the canonical club-map
K + L in this situation was faithful. This has now been

verified; it turns out that the Yoneda embedding K — [KOP,

[:07)

gLg)
behaves ideally with respect to o and {-,-}, so that {K°P,§gg§1
admits a K-structiwe in which every functor has a right adjoint
(use left Kan extension to extend the K-structure on K). Thus
[KOp,ggggl is an L-category, so that the Yoneda embedding

factorizes as K= L ~ [KOp,Segg],whence K > L is faithful.

More generally, I should take to make the following

Fidelity Conjecture, Let M be a mixed-variance club, and

consider those M-categories in which some specified structure-
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funcﬁﬁrihas, in some specified variable, a right adjoint.

Then these are the algebras for a mixed-variance elub L, and

M+ L is faithful.

It is a matter of showing that, if say -8B were to have
a right adjoint [B,-], with unit and counit d and e, then any
diagram not involving [ , 1,4, or e, which commutes when these
are allowed, 1.e. which can be "filled in" by little diagrams
using these, can be filled in withoﬁt using these, One can
imagine a purely combinatorial proof, and 1 have a few
preliminary 1ldeas for one. However the Yoneda-argument above
gives a "transcendental™ proof when M is in fact covariant.

Perhaps analysis of this will suggest a combinatorial proof.

The fidelity conjecture, if true, would also apply to
adding a left adjoint to some functor: just replace M by MeP,
It would then solve at one stroke a host of coherence problems.
For suppose we start with a covarliant P-club K, add some right
adjoints to get a mixed-variance club L, and then drop some of
the original left adjoints to get a new club M. (It is then
clear that M is in fact a club), We have faithful functors
K> L « M, It is ®ften easy to prove a coherence result for
K; we know in a general way how to use cut-elimination
teehnlques to get at leést a partial coherence-result for L,
although .- each case at the moment needs separate treatment;

if M - L 1s indeed faithful we then get a coherence result for
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M. Of course to say that M » L is faithful when L and M are
got in this rather special way is less than the full fidelity-
conjecture, and for suiltable K the fidelity of M = L can ber
established by a functor-cafegory argument imitatingl 4.5

below. (The "specialness" here is that an M-category is a
"oro-K-category"). '

The simplest example is the following. Let K1 be the
club for monoldal categories, and let L1 be the club for
monoidal closed categories, i.e. those monoldal categories

in which -8B has a right adjoint [B,-].

Then the data for Ll are the functors ®,I, and [ , ],
together with the natural transformatlions a: (A®B)®C - A®(BeC),
1: I®A + A, r: ASL > A, e: [A,B]8A + B, d: A + {[B,A8B], of
which a,l,r are to be isomorphisms satisfying the coherence
conditions and d,e are to satisfy the triangular equations
making [B,-] right adjoint to -8B. To say that a is an
isomorphism is really to give an extra datum a: A®(B8C) + (A®B)8C

and two extra axioms aa = 1, aa = 1, and similarly for 1 and r.

Now it is known (cf. [9] 8II.3) that in the presence of
d and e the giving of a,l,r 1s equivalent to the giving of
natural transformations
L: [A,B] = [[C,Al,lC,B}],
J: I~ [A,A],

1: A - [I,4].
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Moreover the coherence conditions MC1 - MC5 of [9] p. U472 are
then equivalent to the coherence conditlons CCL - CC4 of [9]

p. 429 together with ip =g I f1,I}. To say that r is an
isomorphism is Just fo say that 1 1is an isomorphism; to say
that 1 is én isomorphism is to say that (in terms of.a model V)
€x) v [£,113 « v(A,BY™ V(I,[A,B]) is an isomorphism.

There is no simple way of asserting in terms of L,j,1 that a

~is an isomorphilsm.

Let then K be the covariant club got from Kl by discarding

the ‘1Inverses to a and 1, but keeping that to r; let L be the.
mixed-variance club got by adding a right adjoint [B,-] to
-8B with d and e. Then L can be given alternatively in terms
6f'@,I, [‘, ] and the natural transformations L,Jj,1,d,e, with
i an isomorphism, satisfying CCl - CCHh, iI = Jy» and the
triangular equations for d and e. Now let M be the club got
from L by dropping €,d,e; it is given by I, [ , ] and L,Jj,3i

with the above axioms (and 1 an isomorphism).

An M-category V satisfying the extra axiom (*) above

is essentially what was called in [9] §I.2 a closed category;

we have merely dropped the requirement of a chosen isomorph

to V(I,=-) turning the isomorphism (%) into an equality.

We have seen that monoidal closed categories, while not

doctrinal over Cat, are at any rate monadic. It would seem
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' that closed-categories-without-® are not even monadiec. For I
am pretty sure that (%) 1s not a consequénce Qf the other
axioms in M, and at the same time I am pretty sure that (%) is
in fact satisfied by M itself, and hence by any free M-category

MeA, If so, Closed_Cat contains the Kleisli category of Mo

e T o
— e s I RN EE e =

and is strietly contained in the Eilenberg-Moore category of
Mew, so it is not monadic. OFf course (%) is quite different
from club~type axioms, asserting an isomorphism in §ggg and

not an equality‘in v.

Moreover, if I am right in bellieving that M satisfies (%),
it follows that the only coherence problem for closed-categories-
-without-® is the coherence problem for M. The fidelity of
M+ L in the présent'case is proved by the embedding result of
Day-Laplaza in §4.5 below, so a coherence result for M will
follow from one for L. We know coherence results for Kl and
L, (at least I take it that the result of Kelly-MacLane 1n {18}
will go over without symmetry to give one for Ll); Laplaza"EQO]
has a coherence result for K {at least for the a part; 1 and
r will surely give no trouble); it is an intriguing but not
trivial problem to get a ccherence result for L, by
cut-elimination techniques, from one for K. I have only had
a preliminary look at it; one cannot imitate [18] because a
is not an isomorphism; but there seem to be possibilities

starting from the cut-elimination theorem of [17}. Even
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~without J and 1, the coherence-pfoblem for L is an.old one
that it would be pleasant to settle. For symmetric
c1bsed-categories-withoutnﬁ, a turns out to be an isomorphism,
and the Day-Laplaza result below gives a coherence result by |

the use of {181,

h,5 An embedding theorem for closed categories (Day)(WiﬁhiLaﬁlaza)

The initial aim of this paper is to establish a coherence
result for diagrams constructed from the data of a closed
category. A closed category 1ls a category A equlpped with
an internal-hom functor [-,-]: AP x A 5 A and an identity
object I € A and related natural transformatlons
i: A = [IAl, j: I - [AA), and L:[BE] - [[AB}fACI], all
satisfying the basic "coherence" axioms C€l to CCL of
Filenberg-Kelly [ 9 1, together with (%) of §4.4 aboves the

axliom iI = JI is then a consequence,

On defining functors P: AP x A°P x A > S and J: A + 8
by P(ABC) = A(A[BC}) and JA = A(IA) one obtains a
"on-associative" promonoidal structure on the category A.
In general such a structure is taken to consist of fﬁnctors

P and J together with natural transformations

n

A: JoP(-AB) = A(AB)

p: JeP(A-B) A(AB)

in

a: P(A-D) o P(BC-) » P(AB-) o P(-CD),
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where the symbol "o" dehotes profunctor composition., The data

are to satisfy axioms analogous to MC1l to MC5 of Filenberg-Kelly
{cf.Day [8]). :

[9]A( When the functor J is representable one obtailns a

non-associative monoidal category precisely when P is

representable in the last variable (1.e., when P(AB-) = A(A8B,-)),

and a closed category precisely when P is representable in the

first variable-(i.e., when P(-AB) = A(-, [AB]).)

Each non-associative promonoidal structure on a small
category A generates a non-assoclative monoidal structure on
the opposite of the category [A,S8] of all set-valued functors
on A, The tensor product on [A,S8] is given by the convolution

formula:
AB
FQG = f FA x GB x P(AB-).

With respect to this structure the image of the Yoneda
embedding A > [A,S]Op generates a small non-associative
monoidal'éategory A containing A. When the convolution
construction is repeated using TP ye obtain a composite
embedding

A->X = [%P g

of A into a non-associative monoidal category whose tensor

product has a right adjoint on each side.
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In particular, if A is a closed category then the above
‘composite is an internal-hom-preserving closed embedding of A
into a non-assoclative monoldal closed structure on [KGP,S].
Thus the study of coherence of the structure on A can be
feduced to the study of coherence in [KOp,S] where a tensor-product

functor is available for the internal hom,

A study of coherence for "nonuassociative" monoidal
categories has been made by Laﬁlaza [ 20] . Furthermore, it
seems likely that a cut-elimination process suggested by Kelly
(of the type described in [1T7]) provides a method for
establishing a coherence result involving both the tensor
product and the internal hom and hence a coherence result for

the internal hom alone.

It turns out that if the closed category A is symmetric
as a promonoidal category (see [ 41 §3.4) then the monoidal
structure generated on {IOP,S] is assoclative as well as belng
symmetric. Thus the study of coherence for such a closed
stfucture on A can be reduced to the study of coherence in a
symmetric monoidal c¢losed category {as discussed by Kelly and

Mac Lane f{ 1B8}).
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4.6 Coherence for V-natural transformations1(Blackwell)

Kelly-Mac Lane in {19] proved a coherence result for the
three-category structure consisting of a symmetric moneidal
- closed category V, two V—categofies A and B, two V-functors

T,5: A » B,and a“anatural‘transformatiqn k: T -~ S: A » B,

Further coherence problems arise if either or both of
A and B is tensored, or cotensored, or both. There should

be a single coherence result covering all these cases.

Let K be the club for the three-category purely
covariant structure given as follows:'we have categories
V,A,B; functors I: O - V, 8: UV x UV >V, 8: V x A > A,

'%; VxB-=+8B, T: A+-B, S: A+ B, Ve have natural isomorphisms
a,l,r,c making V symmetric monoidal; natural isomﬁrphisms

T: I8 » A and a: (UBV) ® A » UB(VBA) satisfying the obvious
coherence réquirements; and similarly 1 and 3; We have

natural transformations t: V®TA + T(VBA), o: V&sa + S(Vea),
satisfying evident axioms involving E, I, 3, f; and we have

a natural transformation k: T =+ 8 satisfying the evident

axiom involving 7 and o. For K we pfove the coherence result:

all diagrams commute.

Now let L be the mixed-variance club got by adding right

adjoints of -8V (and hence of V8- because of the symmetry),
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of ~§A, of -8B, of V&-, énd of V§-...Ah L-algebra is then a
symmetriclmonoidal closed category ¥, two tensored and cotensored
V-categories A and B, two V-functors T,S: A + B,and a V-natufal

k: T + S. (The right adjoint of -8A 1s the V-valued hom

AP x A + V; the right adjoint of V&~ is the,cotensor‘vop x A + A,
and so on; T gives the "V-enrichment” TAB: A(A,B) - B(TA,TB)

of T, ete.)

By imitating Kelly—Mac'Lane [18] we prove for L the
coherence result that f,g: P -+ Q are equal if ' = Tg and

if P,Q are proper (cf. {18]).

Now let M be the club in which V is still symmetric
monoidal closed, but A drops its tensor or cotensor or both,
and similarly for B. The case in which all four are dropped
is that considered by Kelly-Mac Lane in [19]. We intend to

adapt §4.5 above to show that M + L is faithful, and so get
| a coherence result for M, including and extending that of

19 .

y,7 Coherence for monoidal functors between closed

categories (Lewis)

The thesis being written up is an expansion and
simplification of Lewis [26). That dealt with the club K for
two symmetric monoidal categories Vl and 02 and a monoidal

functor ¢: Vl > U2; and the mixed-variance club L arising
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from this when Vl and V2 are not only monoidal but closed;
Here 1t is no longer true even for K that "all diagrams
commute™; rather we augment T': K + B by an extra functor
A K -+ g and show that I' and A are jointly faithful, thus
giving a complete description of K. We extend T and A
suitably to L, and prove the same result for those f,g: P » Q

where P and @ are both I'= proper.and A~ proper.

The expansion of R6] lies in our now considering, besides
Vl’ Vz, and 9, a Vl-natural transformation between twe
V1~functors between two Vl-categories, as considered in Kelly~-

Mac Lane [19].

There are various simplifications of [26], of which the
most significant is the simplified proof that K can be
described in terms of the simpler H, in which the monoidal
categories Vl and U2 are strict. This is now derived from

the following expected, but surprisingly untrivial, result:

Theorem (Kelly-Lewis) Let ¢: K - L be a map of covariant

clubs, which as a map of categories is an equivalence. Lef

K' be the club for two K-~ categories together with a K-functor

(in the sense of §2.1 above)., Let L' be given similarly and

let ¢': K' » L' be the obvious induced map of clubs. Then

$' is an eguivalence of categories.
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4,8 Coherence for cartesian closed categories (Blackwell)

———

Kelly in [16 1 conjectured that the coherence result of
Szabo ([321,[331) might reduce to the assertion that f = g whenever
rf = I'g, for a sultable definition of the graph I'f; and we set

ourselves to look at this conjecture.

It turns out to be harder than anticipated to define
I'f. Kelly had observed that the graphs in P', as defined in
§4.4 above, were bljJections between the +'s and the -'s in -P +Q,
where f: P » Q and TP = a string of +'s and ~'s. He
conjectured that in the analoguous §op, the graphs were functions
from the +'s to the -'s. It turns out to be harder than this:
those functions, for cartesian closed categories, have to be
replaced by relations; this involves at least all the
difficulties mentioned in §4.2 and §4.3 above in extéﬁding the
"elub" idea to a very generaer;' Heaven knows at the moment
what becomes of the club concept in this generality; but it
certainly continues to make sense to talk of graphs. However
we must certainly allow varlables in g to be set equal before
it can be compared with f, as in

f: [A,B] x A x C ——= B x L —»C
exl pr,

g: [A,B] x D x C——>(
pr3

g'": [A,Bl x A4 X 0 —p= C;

pr3
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but if we go too far in this, and set A = B 1n'1: AXB -+ AxB
and c: AxXB -+ Bx4, we get two maps AxA + AxA that are
certainly different. We are still investigating to see
whether anything can be salvaged from Kelly's conjecture, and

whether Szabo's result admits any description of this kind.

We are also looking at Laplaza's result in [21] on
coherence for distributive Iaws; here everything is covariant,
the graphs are in §op’ and there is no problem in describing
things in terms of clubs; we hope to deseceribe his results in

terms of the graph~functor T.
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