§1. The calculus of modules. 2055 Street.
The full subcategory of lcu.l consisting of the non-empty finite
ordinals is generated under composition by the cosimplicial complex
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This cosimplicial complex is in fact a cocategory in Cat; that is, at
each stage, the outside two 3's are the pushout of the previous outside
two 2's.

In a finitely cocomplete Z-category X, not only do we require thd

usual finite colimits (pushouts and an initial object O suffice) in
the underlying category |)¢| , but also that they be preserved by the
category-valued hom-functors, and that, for each object A, there should

be a 2-cell

composition with which yields an isomorphism of categories
~
K(Ekpx) - [?_;X(A;x)]

for all objects X. For any finitely presented category C, we can then
construct an object CA for which there is a Z-natural isomorphism of

categories

-

X(cA, X) = (C, X(A,X)] .

The assignments C —> CA and A —> CA are 2-functorial and finite
colimit preserving.
Acospan (u,M,v) from B %o A in X 4is a diagram
A5 u <~ 3,

when u, v are understood, (u, M, v) is abbreviated to M. An arrow

of cospans £ : (u, M, v) = (u', M', v') dis a commutative diagram
M
A ))'f l \K B
}\‘M./

A 2-cell ¢ : f =pg Dbetween such arrows of cospans is a 2-cell
g:fmg in K suwhthat cu=1,,0v=1l,. wrneuspm(n,A),
or Cospn (B,A), for the 2-category of cospans frcm B to A. There is

a composition 2-functor
Cospn (C,B) x Cospn (B,A) - Cospn (C,A)

(w,M) p—> M ; X

given on objects by pushout.
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Note that the composition of cospans is associative and has identities
‘lA' A, 1A) up to coherent natural isomorphisms. Thus we obtain a bicategory
Cospn (in the sense of Bénabou [ ]) which is enriched so that its homs
are 2-categories.

For arrows f : X~A, g :X =B, the cospan (ao,(f,g),al)
from B to A obtained as the composite of the three cospans
(s A 1), (3% 2X, 3)X), (8, B, 1)) 1is called the cocomma object of

P,&. The canonical arrow 2X = (f,g) corresponds to a 2-cell
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and (f,g) can also be characterized as appearing in the universal such
diagram with f, g fixed.

The formula M = 2 + M + 2B defines a 2-comonad ¥ on Cospn
A B
(8,A) using the 2-functionality of cospan composition and taking the

counit and comultiplication to have components

A+ M+ 2B ————D>A+N+BTM, A+N+B—>2
B~ jA¥l+zB A B A

AB AB

+
A

Write cosp%‘(B,A) for the Z2-category of BEilenberg-Moore ¥ -coalgebras;
the objects are called split cofibrations from B to A. A ¥ -coalgebra

structure d : M -#M on a cospan M 4s called a split cocleavage for M.

Proposition 1. If d : M -#M is a split cocleavage for a cospan M

from B to A . then, in the 2-category Cospn (B,A):
(g)do-(x;y;u;_zpi—;—'?gzu) is a left adjoint for

g,\;l with identity unit;
(g)dl-(u-_n+x¢gn——->u+g) is a right adjoint for
d

LA+l B
A
1 +:B with identity counit;
B
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Corollary 2. Split cocleavages on a cospan are unique up to isomorphism

of arrows of cospans if they exist. _ o

3
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For any arrow f : A < A', the 2-cell A£

arrow (f,A) - 2A'. Dually, an arrow g : B - B' induces a canonical

arrow (B, g) - 2B'. Thus we obtain a canonical arrow

A' + M+ B' = (f,A) + M+ (B,g) -2A" +A' + M +B' + 2B' = F(A' + M+ B'),
A B A B YA A B

Proposition 3. If 4 : M~#M is a split cocleavage for a cospan M from
B to A then, for any two arrows A - A', B = B', a split cocleavage for

A' +M +B' 1s obtained by composing A' +d + B' with the canonical
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A cospan from O to A ia Just an object under A; that is, an
arrow u : A - M with source A. A split cofibration from O to A
(or from B to 0) 4s called a split left (or right) cofibration under
A (or B). By Proposition 1(a), a split left cofibration M wunder A
is such that LAII:QA;K-N has a left adjoint d; so the identity

2-cell JH-»(;A+1)(30A+1) corresponds to a 2-cell
A A

b=
d
AT T
M 2h + M
S S
A A1
A

which, in turn, ylelds an arrow & : 24 - 2A + M = (A,u) . (In fact this
A

is a left adjoint with identity counit for the arrow (A,u) - 2M corresponding

to the 2-cell A % n:]ggc-am Chevalley criterion.)
Proposition U, A osite of split left t) cofibrations is a split

lefs t) cofibration. More precisely, if d : M - ;,’Ax M,

d4' : N« 2M + N are split left cocleavages for objects u : A =M,
M

r:M-N under A, M, respectively, then the composite
N—> BM+N—>2A+M+N=24+N 4is a split left cocleavage for the
a' nA A M A
d+1
M
object ru : A <N under A. (]

It should be pointed out that, if M 1s a split cofibration from
B to A, then M is a split left (right) cofibration under A(B) with
the split left (right) cocleavage given by Proposition 1.



Proof, If d, d' are split cocleavages for a codiscrete cospan M
In any 2-category M an object M is called codiscrete when every ]
o . from B to A then, by Corcllary 2, there is an isomorphism 2-cell
2-cell N\]}IN' is an identity. When 2M exists this amounts to saying that i 4
L Ml,—"" in Cospn (B,A). Since M 4s codiscrete, this isomorphism
tM 24 o M is an isomorphism. Clearly, the full sub-2-category of M d
is an identity.
consisting of the codiscrete objects has only identity 2-cells and so

is essentially only a category.
An object M of Cospn (B,A) is codiscrete when the dotted arrows

Suppose f : M < M' is an arrow of cospans between split cofibrations.
By Proposition 1, to see whether f{ preserves the split cocleavages d,
we must see that i¢ preserves both the do'l and the dl'l. The identity

in the following disgram are the colimit of the diagram represented by
2-cell A+l .Ll+f <=1, 1A+ 1 corresponds under the adjunction of
A

the solid arrows. A A
A il ' » B 4,
e : S M ——— ZA+M
TP Pl it r‘ - Tez
et . i L
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3wk M ——> ZA LN

This is because the colimit of the solid arrows is 2M for M as an in Cospn (B,A), which must be an identity when M is codiscrete. A

object of Cospr (A,B); that is, 2 (u, M, v). similar argument applies to the dl"‘ a

A module from B to A is a codiscrete cospan M from B to A
which admits a split cocleavage. - Since colimits in Cospl (B,A) are Mﬁ‘ foremy arrov £ :A-3 gpd module (v, 4, v) from 3
preserved by the underlying 2-functor into Cospn (B,A) we also have that to A, there is a bijection between arrows of cospand(u, M, v) = (3;, (A1), 2,
modules are the underlying cospans of codiscrete split cofibrations. and arvows of cospans (u, ¥, v) - (%, B, 13) SUSHIned by sosposing With

the arrow (A,f) - B induced by the identity 2-cell of f.

Proposition 5. A plit cocleavage on a codiscrete cospan is unique ‘not

ust up to isomo: if it exists. arrows of cospans from a Proof. For the 2-comonad 3‘;' on Cospn (B,A), the free coalgebra cn

module from B to A %o a split cofibration from B to A 1is an arrow

in Cospl (B,A).




(z, B, ].B) is (A,f) . By Proposition 5, any arrow of cospans
M = (A,f) 1is an arrow of split cofidbrations and so a fortiori

is an arrow of (2A + =) =~ coalgebras. v a
A

Let Mod, (8,A) denote the full sub-Z-category of Cospn (B,A)
consisting of the modules from B to A; it is really just a category.

By Proposition 5, Mod(B,A) is also the full sub-2-category of Cospl (B,A)
consiating of the codiscrete objects.

3 3,A
Proposition 7. The cospan A;.A—-> y(l—- A is a module from A to A.

If M is a codiscrete cospan from B to A and A-A', B-3B' are

arrows then A' + M + B' i3 a codiscrete cospan from B' to A'.
A B

2A -« 4A. That 2A is a codiscrete cospan from A to A follows from

the following colimit diagram of categories.

Proof. 'he split cocleavage for 24 is just (alal)A a (azal)k :

2x1

2x1
1 x3, 1x \

3 lp"z 3
2

The second sentence of the proposition follows from the fact that 2(-)

preserves colimits, a

«l0=

Corollary 8. For any arrows f : X - A, g : X - B, the cocomma cospan
(f,8) 1s a module from B to A.

Foramodule M from B to A and amodule N from C to B,
the tensor product of M and N is defined %o be the equalizer.

i 1§
D
MO®N ————> M+ N- M+2 +X
B B iﬂo—> B 3
B

in Cospn (C,A) when this equalizer exists, Note that the two arrows

being equalized do have a common left inverse M + (B +N.
B B

Proposition 9.  For any module (u, M, v) from B to A, the following
diagrams are absolute izers:

4 + M
do A
M—=> 24 +M ___; 2A + 20+ M
K o AT A
2%+,
A
4 932
M—=—> M+ 2B ———> M+ 2B + 2B
B — B B
M+d°
B



i

"1 ; (v,B)

L (4,0 + (v,5) > (AW +2M
M

+ (V:B)
AT g MM
B

Proof. The pairs (M,do) ’ (M'd‘.l.) are coalgebras for the 2-comonads

e

*=,=-~+28 on Cospn (3,A), so, by the general theory of comonads,
A ) '

the first two diagrul are split equalizers. The third diagram however
is not as easily dismissed since, althowgh ¥M ¥ (A,u) + (v,B), we do
M

not have ## M 1isomorphic to (A,u) + 2M + (v,B) (for example, in Cat
M M

) 3
with M taken to be ]_.—0—->g_<-—1—1.., the former is € and the
latter is the ordered set below).

. -

-

“ 3
e . -

-
N

By Pa;e [ ], to prove that the third disgram is an absolute equalizer

it suffices to show that, for each X, the 2-functor X(=-,X) takes it

to a coequalizer of categories. The module A —— M <—— B 1is taken

by such a 2-functor to a discrete fibration X(A,X) <—x((M,X) —> %(B,X).
Re-naming, we suppose we have a discrete fibration A i B a5 3 of
categories. Replacing this span by an isomorph, we may suppose that the
span is obtained from a set-valued functor e on AP x B as follows.
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The objects of E are triples (a, X, b) where a,b are objects of

A,B and x € e(a,d). The arrows (z,8) : (a, X, b) = (¢, y, 4) consist
of arrows q ta=c, B:b-d in A,B satisfying e(l, 8)x = e(x,1)x'.
The functors p,q are the obvious projections. The problem is now to prove

that the diagram Q—u-> p—YEX>g is a coequalizer, where P 1is the

v
pullback and Q 4is the comma category of the cospan (A,p)W zd—pq(q
and where v(n'!-a,n,bﬂb')-'(a',o(e,w)x,b') and u, v respectively

txe (a'%a%3,x,5,08585) o (a3, 5206,
(l'—a) n,x,bSLbS'). Define s: E-P by s(a,x,b) = (a }-a,x,bit

and %, t,, t :P-Q at (n'gu,x,bgb') respectively to be

3
(' 2ada,x,e(l0) x, 020 20'), (a' 2a' La,e(0,0) x,e(1,0) x,
p' 20 30r), (a'La'dar,e0,9)x,e(6,9)x,0 20" 20'), The

equations ws = 1, vt.l-l, utl-ut.z, vtz-vtj,m,-lv are satisfied

and imply that w 4is an (absolute) coequalizer of wu,v. o

Corollary 10. For any module (u, M, v) from B to A and arrows
f:A-A', g :B-B', there are canonical isomorphisms

(0N T M (=A'+N),
A A

M®(B,g) = M, (=M+B'),
B B

n

(f,u) ® (v,g) Mg, (= A' + M +B').
M A B
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Proof. Pushing out along f,g preserves the absolute equalizers of

Propositicn 9. a

A Z2-category X is said to admit the calculus of modules when it

satisfies the following three axioms:
=X 1is a finitely cocomplete Z-category;
- for obdeeu. MN of Mod (B,A), Mod (C,B), the equalizer defining
M®N exists and is an object of Mod(G,A);
A - for objects P, M, N, Q of Cospl(A,0), Mod(B,A), Mod(C,B),
Cospl(0,C), the functors P; -y = ; Q preserve the defining equalizer

for M®N.
B

Proposition 11. For a 2-category K which admits the calculus of modules,
there is a bicategory Mod, (in _the sense of Bénabou [ ]) whose objects
are the objects of ¥, whose hom-categories are the categories Mod(8,4A),
and whose composition is tensor product of modules.

Proof, Proposition 9 shows that the modules 20 act as identities
under tensor product (up to iscmorphism). For assoclativity, consider
the diagram which follows.

51

E— L
:n) L;(M:N) >

+
A B B A

The third axiom in the definition of "to admit the calculus of modules"
implies the fact that the second and third rows and columns are equalizers.
The first row is an equalizer by definition. BSo the induced dotted arrow
equalizes the pair in the first column (3 x 3 lemma). Thus

Le(Me@N)= (L®M) @ N and the coherence conditions are eamsily checked,
A B A B

For any arrov f : A = B, the arrow (f,f) - 2B, corresponding to
the identity 2-cell of f, composes with the isomorphism (t,A)X (A, L) = (L,1)
(Corollary 10) to yield a canonical arrow

m, : (f,A) ® (A,f) - 2B,
A

Proposition 12. For any arrow f : A~ B in a 2-category X admitting
the calculus of modules; the arrow m, in Mod(B,B) 1s a counit for
an adjunction (f,A)~—{ (A,f) in the bicategory lbdx .



Proof. Applying ¥ to the cospan A <> B <X A, we obtain (A,f) + (£,A)
B
as the "cofree” ¥ -coalgebra on the cospan. So the arrow of cospans
£(xA) : 24 —> (f, B, f) induces a & -coalgebra arrow 28 —> (A,f) + (f,A)
B

which can be seen to equalize the arrows (A,f) + (£,A) : (A, 2) + 2B + (£,A)
B

and hence factor through (A,f) @ (f,A) via an arrow N, : Z2A —> (A, D) ® (1,A).
B B

It is left to the reader to show that n, 4is the unit for an adjunction

-
as stated. - o

Amodule M from B to A is sald to be cauchy when it has a
right adjoint M¢. It is said to be convergent when there exists an
arrow g : B = A such that M= (g,B). Proposition 12 implies every
convergent module is cauchy. An object A 4is said to be cauchy complete
(Lawvere [ ]) when, for all objects B, all cauchy modules from B
to A are convergent. By the general theory of adjunctions, for a
cauchy module M from B to A, there are natural bijections as
indicated by the horizontal lines below.

M@P —>Q RO M —> 3
3

Po——> M ®Q R=—>5&M
A
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Proposition 13. For any two objects A,

B in a 2-category X admitting

the calculus of modules, the inclusion functor

Mod(B,A) —> Cospn

(B,4)

has a right adjoint whose value at a cospan (f, X, g) is (A,f) @ (g,B).
X

Proof'.

For a module M from B fto A, we have bijections:

(Proposition 12)

M @ (B,g) —> (A,T)
3

(Corollary 10)

Mg, —> (A1)

(Corollary 6)

'k. -—>(fl X, lx)

(pushout property)

N emmmmed (2, Xy €)
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For given arrows g, h : B~ A, 2-cells o : g =>h are in bijection
with arrows of spans (g,B) - (4,B) simply by the universal property of
cocomma objects. These arrows of spans are moreover arrows of modules.

This leads us to define a pseudo-functor

FiX = m&
which is the identity on objects, which is given on arrows by ™™ = {(g,B),
and which is given on 2-cells by the bijection above. The coherent isomor-
phisms up %o which T preserves identities and composition are provided
by Corollary 10. As each rg has a right adjoint g = (3,8), we have
an associated pseudo-functor

N:x°°°’~mdx

which 1s also the identity on objects and bijective on 2-cells.

T

P —

A 2-cell

is said to be a relative counit for t as a right adjoint for s relative

to J in the 2-category X when T' € exhibits I t as a right lifting

of I™J through I s in the bicategory "“5( « Since I' s has a right
adjoint T™s, this precisely amounts to saying that the arrow of modules

(t,A) = (B,8) @ (J,A) dinduced by ¢ 13 an isomorphism. Since I 1is
c

bijective on 2-cells and since 1liftings obtained by composition with an

e

adjoint are respected by arbitrary arrows, we deduce the following result,

Proposition 14. Relative adjunctions are absolute liftings. That ias,

if the 2-cell ¢ ‘u u.bovt! is a relative counit for t as a right

adjoint for s relative to J then, for all arrows a : H = A, the

2-cell ¢ a _exhibits ta as a right 1ifting of J a through s in

the 2-category ¥ .

A 2-cell

A J ;B
\../
(4]

is said to exhibit k as a pointwise-right extension of f along §

vhen the 2-cell rx exhibits Tk as a right extension of rf along
Ty in the bicategory 'bd)( + Since ' is bijective on 2-cells, it is

clear that

in

twise

t extension is indeed a r:

t extension.

Q



