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Introduction

The theory of Species of Structure was introduced by the Canadian mathematician André
Joyal in 1980. Species are a structural approach to combinatorial generating series and
allow us to lift these numerical identities to structural isomorphisms throwing light on
how the identities arise. This is possible since we can associate to each species of
structures a generating series which encodes information about the species and is
consistent with operations on species. Species provide a model from combinatorics for
the study of permutation representation of the permutation groups.

The algebraic operations on generating series (such as addition, multiplication,
substitution, differentiation) are interpreted at the structural level. These operations allow
us to combine species to form new species of structures by using set theoretical
constructions.

The aim of this essay is to introduce and describe the concept of Species of Structure and
then discuss Lagrange inversion as an example of how numerical identities can be looked
at from this structural approach. :

Chapter 1 first [ooks at the concept of structures. Species of Structure are then introduced
and different examples of species are studied. The generating series associated to a
species 1s introduced and the various concepts of equality of species are looked at.

Chapter 2 discusses some operations on species defining them by using set theoretical -
constructions and we look at how these operations allow us 1o form new spectes of
structures.

Chapter 3 discusses Lagrange Inversion as an example of the application of this calculus
of species, and shows how we can use species to transform recursive definitions of
tree-like structures to functional or differential equations.

I'would like to thank Professor Ross Street for his time, help and encouragement in
Supervising this essay.
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Species of structure

1.0. Structures

Structures are used in every area of mathematics and are fundamental in the development
of mathematical concepts. To understand species of structures we will begin by looking at
the notion of structures and the transport of structures.

A structure is a pair s = (v,U) where v is an element of some construction performed on
the set U. We call U the underlying set of the structure s.

For example, a rooted tree can be expressed as the structure s = {v.U) where

U= {ab,c,de}

v =(bl.{{ba}.{bcl.{e.d}{ce}))
In this example U is the set of vertices of the tree and v is the set of edges. The single
element {b} appearing as the first component of v denotes the root of the tree. The other
pairs of components tell us which two vertices are connected by an edge. We can picture
this structure as in the following diagram.

We should note that both v and U are equally important in the definition of structure since
the knowledge of y alone does not necessarily tell us what the set U consists of We can
See this illustrated in the following example,




Example 1: Consider the structure s = (y.U) where U = {1.2,3,4,5} and
Y=L LA} {3.4})
In this example the underlying set U consists of five elements but the construction -
v on U is defined on only three of these elements. This is an example of a structure
whose underlying set has some elements on which there is no construction. These
elements are still part of the whole structure and therefore when describing s we
need to look at both U and vy to give us the whole picture.

A fairly general approach to structure is to think of a structure y on a set U as an element
of some iterated power set §2 8 ... pUof U Here are some examples that illustrate this.

Example 2: Topology
A topology 3 on a set U deals with subsets of U which satisfy certain axioms.
Hence 3 < U and we can therefore say 3 € g g U is a structure.

Example 3: Magma
A magma is a set U together with a binary operation m : U x U —=» U. An element
(x,y) € Ux U can be identified with the element
{0y} i xy e U e pU.
Similarly (x,y,2} € U x U x U can be identified with
i) {xyhixy.z)} X,¥,z € U} which is an element of £ $U. Hence the
binary operationm : U x U — U is determined by
{ymxy):xyeUlcUxUxU < # U and we can think of m as an
element of @ g U. Therefore a magma is a structure in this sense.

Example 4: Rooted trees
A rooted tree structure is the underlying set U together with a subset vy of the set of
pairs of elements of U and hence vye ppU

The way we will approach the concept of structure is by looking at transport of structure
along bijections. This is a functorial approach to structures and will enable us to grasp the
notion of species more rigorously. The transport of structures allows us to transport one

- Structure to another along & bijection. In essence, we map a structure s = (y,U} to a
structure t = (1.V) via the given bijection ¢ : U — V. Fach element € U appearing in

Y is replaced by the corresponding element o(u) € V in the new expression T of y. We say
t1s obtained by transporting s along the bijection o and write t = a.s. The following
example will illustrate this concept.

Example 5. Consider the rooted tree structures s and t described by the following:
s={y,U) where U = {a.becde} andy = ({b}.{{ apbel{ed}fcel}),
L={(r.V) where V= {12345} and 1 = ({14 L2E{0,31.{3,4},{3.5! ),
transported by the bijection 6 : U —» V described in the diagram below.




U= (abec.de)

o =
4 VETIINY
V=1{1,2,34,5)

Fig. Z.

We can see that the rooted tree s is transported via the bijection ¢ to the rooted tree t by
replacing each vertex ueU by the vertex o(u) € V as defined by the bijection.

Simce o is a bijection, it is injective and surjective and we can also notice that it preserves
the structure s. Hence it can be clearly seen that o is an isomorphism of s to t. Note that if
U=V then ¢ is a permutation.

If we think of the construction y as an element of an iterated power set , then we.can think
of the transport of structures in the following way. Suppose o : U -5 Visa bijection
between finite set U and V and v is a structure on the set U wherey € "U. Then the
structure on V obtained by transperting v along o is the set V together with (g "o)(y),
where o "U denotes the set U iterated n times and # "o denotes the iterated direct image
under . The transport of structures is of fundamental Importance to species of structures.

L.1.  Species of Structures

Definition 1: A species of structures F consists of the following functions.

1) For each finite set U, F produces a finite set F[U],

i1) For each bijection s : U — V., F produces a function F{o} : F{U] —» F[V] which
satisfies

b Fltooj=F[r]oF[c]wheres:U— Vandt:V - W

2. F[Idu] = Idr[u; where IdU U —=U.




In other words, F is a functor from the category B whose objects are finite sets UV,w,.. .

and whose arrows are bijections, to the category whose objects are sets and whose arrows
are functions. We can depict properties | and 2 as:

ol T Flo] Flz]
[.ForU— V > W we have FIU} -> F[V] -» F[W]
L 1 L )

Too Flr o o]

Idy
2. ForU — U we have F[ldy] = Idpy

F[U] is the set of F-structures on U so s e F{U] is called an F-structure on U or a
structure of species F on U. The bijection Flo ] is the transport of F-structures along o.
Note that there is also the empty species 0 which has no structure on any set. The diagram
below can help us picture an F-structure on a set U where the dots represent the distinct
elements of U and the structure itself is represented by the circular arc labeled F.

=

Fig. 1.

F

Example 1: Species of simple graphs .
Consider a finite set U and let GlUI={g:g=( 1), Yo p(z) (U7 } where
$2? is the collection of unordered pairs of elements of U, G[U] is the set of
structures of simple graphs on U and g e G{U] is a simple graph on U called a G-
structure on U. Each bijection o : U — V produces a map G{c] : G[U] — G[V].
This transport of structures along o takes g to o.g which is Just a relabelling of

- vertices and edges by 6. Hence we can deduce that

Gltoo]=GitloGlo] where 6: U > Vand 1V W and
G[Idu] = IdG[U] where Idy;: U - U,

Example 2: Species S of permutations

The species S of permutations has S{U] equal to the set of permutations on the
finite set U. The transport of structures along o : U = V is the bijection

S[o]: S[U] -» S[V] which takes s « S[U] o osa™" . So S[o](s) = oso™.




Looking at this for » particular example, take UJ = [5]= {L23.45% then
G5} = [5)and let s = (124)(35) in cycie notation, :
Then we have Slol(s) = S[cr]((124){35)) =(o(1) o(2) S(4) a(3) o(s)
Note that S[0] = e ‘ :
S[l]=e
S[2] = {e,(12))
S[3]= {e,(12),(13),(23),(123),(132)}
where ¢ is the identity permutation.

Example 3 : Species . of linear orderings
For L, the species of linear orderings, we take L{U] to be the set of all orderings of
elements on the finite set U. For SXample L[3] = {123,132, 213,231, 321, 312},
For a bijection o : U -» Voifuu. oy, isa linear ordering of elements of U then
L[O‘](U1U2...Un) = olu) o(uy). .. o{u,). We can see that L{o] is a relabelling
bijection.

Example 4: Species A of rooted trees
If A is the species of rooted trees on a finite set U thep an A-structure is a rooted
tree whose set of vertices is U, The transport of A-structures takes an A-structure
on a set U to another 1somorphic A-structyre on the set V.

Example $: Species E of sets
If E is the species of sets then for any finite set U, EfU] = ¢ U} is considered as a

structure for each set U. The vansport of E-structures is the bijection
Efc] 1 E[U] — E[V] where E[cl(U) =V for any bijection o : {J -3

Example 6: Species End of endofunctions _
For any finite set U, End[U] = {o I(p ' U — U} which s the set of all functions
from U to U. We can describe the transport of End-structures by the map
End[o] : End (U] = End[V] for any bijection o: [J - where
End[c)(p) = (5, ® oo™, This comes about because of the following:
Consider the bijection End[c] : End{U] - End[V] and let
0 = End[c](0) e End[V].
So 8 is a function from V to V where V = g(U)).
Take any v € V. This s of the form v = G(w) for some u e and therefore
u=0"(v). Also End[o] takes % € End[U] 10 6 = End[o)(q) e End[V], and
therefore is the function that maps o(u) to o(ip(u)).
So forany v e V, v =o{u) which is mapped (0 o(p(u)) which is the same as
G(go(cs"(v))). Thatis, 8:V 5 V takes v Ww(gops cr';)(v).

Example 7. Species X of singletons.
For any finite set U, the species X is defined by




—

{(*} if#U = |
X[U] =
D ifFHU# |

The transport of structure along ¢ : U — V induces the bijection

X{o]: X[U] - X[V]. This is only valid when both #U = | and #V = [. Therefore
the bijection X[o] maps the singleton to the singleton. i

Example 8: Species I of the empty set.

For any finite set U, the species 1 s the characteristic of the empty. set and we
define it by

{U} f U=
1fUy =
& otherwise

Example 9: Species C of cyclic permutations
This is the species whose elements are those permutations which are cycles. For
any finite set U, C[U] is the set of oriented cycles of elements of U. For any
bijection & : U —» V, we can describe the transport of C-structures
C{E]: C{U] — C[V] by the following:

RS
U - Vv
! l

ClU}— C[V]
ClE]

The action on the elements is-

r

5 S
(U.[, - ,ul'l) —> (é(ui), ey é(un))
\ >
o(ur, ...,0,) — o (Eu), L E(u))
ClE] '
[n the above diagrams, the set U contains elements u,, .. Uy exclusiveiy. The
Cyctic permutation o takes these elements to o (u,, ., Un) which s an orienied
cyele of elements of U, Simtlarfy, the map from V (o C[V] takes (£ (uy). ... . ()




v

to o (S(us) ., Z(ua)). We require the map from C['EJ] to apply & to an element of
C[U]. Therefore we need £ (Ur, .Uy =a& (u, ... Un). That is, the cyclic
permutation o is mapped to @Gi". Hence we can conclude that for any bijection
& : U >V, the transport of structures takes ¢ ClUlto EcE™l Tt s interesting to
note that the species C of cyclic permutations is a subspecies of the species $ of
permutations. This is iilustrated in the following “naturality” diagram.

i

C[U] — S[V]
cre) 4 Lo

C[V] — S[V]

1
where 1 is the inclusion map.

Example 10: Species Der of derangements
Derangements are permutations without fixed points. For example, the
derangements on a set of three elements is Der[3] = {(I 23),(321)}. Hence if a set
U has order n, then a Der-structure is the permutations of size n on U. In a similar
way to the previous example we can deduce that the transport of structures along
& : U — V induces the bijection Der[£] : Der[U] -» Der[V] where &y Der[U] is
mapped to £t & Der[V]. Notice that w(i} # i for ali i and this implies that
EwE (i) =i for all i.

Example 11: Each finite set W gives a species defined by

9% forU=@
WU] =
W forU=@

for any finite set U. The transport of structures along 0 : U — V induces the
bijection W[o] : WiU] —» WIV] which is simply the identity map from W to
itself.

Example 12: Species g of subsets :
The power set species is given by U] = U for any finite set U which is the set
of all subsets of U. For any bijection 5 : U —» V, the transport of structures
plol: pU— @©Visgiven by the direct lmage. :
That is, g [o](A)={o(a) :a € A} where A < U.

We have seen that a species of structure is a rule F such that on any finite set it produces a
Setol structures on it The number of structures is only dependent on the number of

g e




X
i
i

o T

elements in the set. That is, if there are two sets with the same number of elements thep
the species will have the same number of structures. So #F[U] only depends on #U. This
is due to the fact that the F[o] are always bijections. Since structure is only dependent on -
the number of elements in a set, we only need to consider sets of different sizes. Two sets
U and V are considered the same if #1 = #V Hence we will turn our attention to sets of
the formn = {1,2,...,n} which represents a set of n elements.

Now we can say that a species F gives a set F[n] for each n and Sy acts on F{n] where S,
1s the group of bijections 6:n—>n.Soo:n -5 n produces F[o] : F[n] — F[n} where
.5 = F[c](s) with the properties

Flol  Flxj Flo] Fit]
. F[n] — Ff{n] -» F[n] which takes 5 —» Flcl(s) — Fltl(F[s]s)
so that F{t}(F{s](s)) = F[t o a](s) = Fft] o F[o]

2. F[Ida] = Idgn; which takes the F-structure S to itself .

Therefore a species of structures amounts to 3 sequence of sets F[0), F[1], F{2], ... with
Sp acting on each Ffn]. '

1.2. Generating Series

Generating Series can be used to encode all information concerning the enumeration of a
species of structures. For each species of structures we are able to find generating series
associated with it. We will look only at the formal power series although there are other
types of series which can be used.

Definition 1: Let F be a species of structures. The generating series of F is the formal
power series

F(X) = Zn 20 fﬂ Xn/nj
where f, = #F[n] = the number of F-structures on a set of n elements.

Examplel: Species of sets
Consider the species E of sets. We want to find its formal power series.
Now f, ="the number of E-structures on a set of n elements. Since an E-structure
on any set U is the singleton consisting of the set itself, it is considered as a single
element and therefore f, = 1. :

Hence E(x) = X0 1. xVn!
=¥ s X!
= e.‘(
Example 2: Species of subsets
Consider the species 2 of subsets and look at te.
L= the number of (i -structures on a set of in clements




f, = the number of subsets of a set of n elements
— nC(} + ﬂ(:1 + ”Cz + + I\Cn
=(1+ 1)
- 2n

Hence @ (x) =X 2" x'/n!

= Eosp (2x)/n!
_ e?_x

Example 3: Species of permutations ,
Consider the species of permutations S. To find its formal power series look at
f, = the number of S-structures on a set of n elements
= the number of permutations on n elements
=n!
Hence S(x) = Z,»n! x"/n!
=Zps0 X"
=1/l ~x) (sum of a geometric series)

Example 4: Species of linear orderings
Consider the species of linear orderings L. To find its formal power series we
need to find the number of linear orderings on a set of n elements. The number of
ways we can order n elements or arrange n elements is precisely n!.
Hence L(x) = Z,:¢n! x"/n!
= 220X
= /(1 - x}

1.3. Combinatorial Equality

Looking at the previous two examples above, we should note that even though the formal
power series of the species of permutations is the same as the formal power series of the
species of linear orderings, these species are not the same. This can be further illustrated
by noting that if x,X2...x, and y;y,. ..y, are linear orderings on the set of n elements, then
there is an 1somorphism £: x; —> y; between the two orderings. So LIU] = S[U] but Llo]
and 5{c] on o do not correspond under this bijection; the bijection L{U] = S[U7 requires a
choice of finear ordering of U. In fact there are strong and weak notions of combinatorial
equality which we could apply to species of structures.

We will discuss various concepts equivalence for species of structures.

A strong definition of equality is to require that two species are equal it they have the
same structures and the same transports. That is, two species I and G are equal 1f for all
finite sets U, F[U] = G[U] and for ail bijections o : {1 — V, Flo} = G[o]. However this
form of equality is very strict and too restrictive.




A weaker definition of'equaiity Is one of equipotence where we define the equipotence of
structures by bijections. We say two species F and G are equipotent if there are the same
number of F-structures as G-structures. More formally we have the following definition.

Definition 1: Two species F and G are equipotent if for cach finite set U there exists a
byection ay : F[U] — G[U] and we write F= G. A family of bijections . is called an
equipotence.

So instead of requiring that F[U] = G[U} we weaken this by requiring that there is a
bijection from F{UJ to G[U}. An example of two equipotent species are the species of
permutations S and the species of [inear orderings L since #S = #L. = n! on a set of n
elements. Note that even though S and L are equipotent, we saw previously that they are
different species. Hence equipotence is a weaker definition of equality and is only usefu]
when we are looking-at the enumeration of structures, Otherwise, it is too weak.

A “good” definition of equality is the concept of isomorphism of species. The concept of
isomorphism of species lies half way between the strong and weak definitions of equality.
For two species F and G to be isomorphic we require that in addition to the family of
bijections oy : F{U} ~» G[U] for each finite set U, we also need an equivalent definition
relating the transport of the structures F and G. This is called the naturality condition.

Definition 2: Two species F and G are isomorphic when for each finite set U, thereis a
bijection oy; : F[U] — G[U] which satisfies the naturality condition- for each bijection
E:U >V, the following diagram commutes

Ay
FlU] — G[U]
Fig) 4 ¥ agg
FIV] — G[V]
Oy
We write F = G when F and G are isOmorphic.
The diagram above represents the naturality condition and this is needed for two species
to be isomorphic. This means that for any s € F[U], we must have E.ay(s) = oy (£.5). We

can see that if two species are isomorphic then they are equipotent but the converse is not
true.




Contact of order n is a topological notion of equality between species of structures for
n = 0 which locks at constructing species by approximations. To understand this notion
we will first look at contact of order n on two formal power series,

Let a(’() = Zn =0 anxn s b(\) = Zn =0 bnxn and let aSn(X) =1 Osken anxr1 s bSn(x): Z0 <k<n
bnXa, We say two formal power series a(x) and b(x) have contact of order n , written
a(x} =, b(x), if forall k > n, a(x) =, b(x) iff an(X) = ben(x). The definition of contact of
order n for a species of structures is analogous to that of series,

Definition 3: Let F and G be two species of structures and fet n > § pe an integer.
If Fep = G, then we say F and G have contact of order n, written F =n G where F, is the
restriction of F to sets of cardinality < n. This means that for finite sets U and V, and
bijections o : J — V., we have '
Feo[Ul=@ ' i #U >
Feo[U] =F[U] and Feaolo]l=F[o] if#U<p




A



Chapter2

Operations on Species

Operations can be performed on a species of structures to produce new species of
structures. These operations can be defined by using set theoretical constructions and
most of the operations we will look at are analogous to the usual arithmetic operations of
addition, multiplication and so on. We will investigate these different operations on
species of structures to see what types of species they produce and how we are able to
construct them. :

2.0. Addition of Species
We will look at adding two species F and G to get an (F+G)-structure.

Definition 1: Let F and G be two species. The sum of F and G is the species F+G where
an (F+G)-structure on a finite set U is either an F-structure on U or a G-structure on U.

More precisely, suppose s is an (F+G)—structure on U, then
1. For any finite set U, (F+G)[U] = FlU +G[U]  (disjoint union)
2. For any bijection 5 : U — V between finite sets U and V we have

Flo] ifseF[U]
(F+G)[o](s) =
Glo] ifseG[U]

In this definition F[U] + G{U] represents the disjoint union of F-structures and
G-structures. However when F[U] G[U] = & we have to approach this slightly
differently. We first have to rewrite F and G in such a way that they are disjoint. This is
done by replacing F[U] by F[U] x {1} and G[U] by G[U] x {2} and then setting
(F+G)[U] = (F[U] x {1}) U (G[U] x {2}). Now we have two disjoint sets whose sum is
their disjoint union. We should note that addition is associative and commutative up to
1somorphism and that the emply species 0 is a neutral element for addition. That 18,
F+0=0+F=F. We can illustrate addition of species by the following diagram.




By

5 N

G

,/"/' // /’
P, . .
? T T

Fig 1.

Example I: Let G be the species of simple graphs, and denote G, as the species of
connected graphs and Gq as the species of disconnected graphs. On any finite set”
U, we can say the G[U] = G.[U] + G4{U] since any simple graph is either
connected or disconnected. Therefore a G-structure is either a G-structure or a
Gg-structure and we write G = G, + Gg.

Example 2: Consider the species E of sets. Let Ee,e, be the species of sets which contain
an even number of elements and let E,qq4 be the species of sets which contain an
odd number of elements. So Ecv., is a one element set when E has an even number -
of elements and it is empty when it has an odd number of elements. Similarly,
Eoqd is a one element set when E has an odd number of elements and is empty
when it has an even number of elements. Now any set has cardinality which is
either even or odd. Therefore an E-structure on a finite set U is either an
Eevea-structure or an Eyqg-structure. That is, E = Eeyen + Eogq. -

Addition can be defined for a family of species (Fyicr.

Definition 2: A family of species (Fj)ici is summable if for any finite set U, FUj=o
except for a finite number of il. For any finite set U and bijection o :U — V between
finite sets U and V, the sum Zi.; F; is defined as

(Ziet FO[U] = Ziet Bi[U] = Ui Fi[U] x{i}
(Ziet Fplo}(s,) = (Fi[U}(S)J)

where (s,1) € (Zig Fi)[U]

We saw previously that a species of structures F gives rise to é sequence of sets
F[0],F[1],F[2},....Hence each species gives rise to a countable family of species (Fonzo
defined by

F[U} if#U=n
F.U] =
& otherwise




This famuly is clearly summable and we can write F=Fy + Fy + Fs + ..+ F. + . called
the canonical decomposition of the species F. The fiaite sum F + F + F + . + F s the sum
of n copies of the same species F and we write this as nF.

Example 3: Consider the species E of sets and let E, be the species of sets of cardinality
n. Then we can write E as the decomposition' E=FEy+ E, + E; + .. + E, + ... Note
the Eo = 1, E| = X where X is the species of singletons, and so on.

Example 4: Consider the species S of permutations and let S* be the species of
permutations having exactly k cycles. Then it is easy to see that we can write S as
the decomposition S = §@ + S + gy . gl

We can also express the associated generating series of a species using the operation of
addition.

Proposition I: Given two species of structures F and G, the generating series of the
species ' + G satisfies (F + G)(x) = F(x) + G(x).

Proof: Suppose the species F has generating series F(x) = £, f, x"/n! and the species (&
has series G(x) = Zn2p 2, X/l
Let the species F + G have series (F + G)(x) = Zns0 h, x"/n!.
Now h, = number of (F + G)-structures on n elements
= #F-structures + #G-structures (since (F + G){U] = disjoint union of
F[U] and G[U] for any finite set 1J) '
= fu+ g,
Therefore (F + G)(x) = Zys0 (fy + g0) x"'/n!
= Zpso (fy x"/n! + g, xnl)
= Zoeo To x"n! + Z120 g0 xVn!
= F(x) + G(x).

2.1. Mutltiplication of Species

Definition 1: The product I.G of two species of structures F and (v is defined as follows:
an (F.G)-structure on a finite set U is an ordered pair s = (f,g) where

1) fis an F-structure on Uy c U

1) g is a G-structure on U, ¢ U

and (U.Usz) 1s a decomposition of U meaning U=U, v Uy and Uy ~n U, = @

More precisely. for any finite set U and bijection o : U — V between finite sets U and V
we have the following:




(F.OIU] = Z 102 FIU T % G[U,] .
which is a finite sum taken over ail decompositions (U Uy of U.

(F-O)ol(s) = (Flo1](D), Gloal(g))
where s = (f,g} is an (F.G)-structure on U and Ti is & restricted to U, for each
1=12

When multiplying species we should note that | is the neutral element, je: F.] = | F = F,
and 0 is the absorbing element, ie: F.0=0.F =0 Although multiplication is associative
and commutative up to isomorphism, in general F.G and G.F are not identical
Multiplication of species can be illustrated in the following diagram.

p -
‘ F G

We saw earlier that F+ F + _+ F = nF, but this is precisely the product of the species n
with the species F. (Note that the species n is as in example 10 with W = n). Hence .
addition of n copies of the species F is the same as multiplying the species n with the
species F. This also justifies our use of identifying the integer n with the speciesn.

Fig 1.

Example !: Consider the following illustration of a permutation.

We can divide this structure into two disjoint structures one of which is the set of

fixed points and the other is a structure of nontrivial cycles or derangements. This
way of expressing a permutation can be done for al possibie permutations. The
second diagram above clearly illustrates this and we can write § = F Der, where S




P e

is the species of permutations. E is the species of sets and Der is the species of
derangements. :

Example 2: Consider the species E of sets. An E-structure on a finjte set U is the set U
iself. We want to multiply two of these species E together. Let U be a finite set
and let U = U, w Uy where Uy " U, = @. Then an E structure on U, is the set U
itself, and an E-structure on Uy is the set Us itself Therefore an (E.E)-structure on
U divides U into two subsets U; and Us. That is, we get a £ -structure of
cardinality two. Hence we can say that an (E.E)-structure is a g -structure where
§o is the species of subsets (of sets). That is, f =LEE.

The generating series of a species can be expressed using the multiplication operation.

Proposition 1: Given two species of structure F and G, the associated series for the
species F.G is given by (F.G)(x) = F(x)G(x).

Proof: Suppose the species F has generating series F(x) = X9 £, x/n! and the species G
has series G(x) = .29 g, x"/n!. Let the species F.G have series
(F.G)(x) = Zpsp ha x"/n!
Now h, = number of (F.G)-structures on g elements
= F-structure on k elements x G-structure on n-k elements for0 <k <np
="Cy fogn + "C) figas + "Cy Brgnn + .. + "Cp fago
= ZOS{(Sn nck fkgn-k
Then F(x)G(x) = (Znz0 £o x"/0!)( Znso g0 x7nl)
= Znzo (Zosken "Cr fign) xV/n! (by usual series multiplication)
= (F.O)(x)

Example 3: Consider the species g of power sets. We saw earljer that g = E.E where E
is the species of sets. Therefore using proposition 2, we can say that '
$ (x) = E(x)E(x). We saw earlier that E(x) = ¢* and hence P (x)=e'e =™
as we also saw earlier.

2.2. Substitution of Species

Definition 1: Suppose F and G are two species where G[T] = @& (1e: there 1s no G-
structure on the empty set). The (partitional) composite of G in F, written F o G (or F(G))
1s defined as follows: an (F o G)-structure on a finite set U is a structure s = (3,p,y) where
1) T 1s a partition of U :

11) @ is an F-structure on the set of classes of

HI) ¥ = (Yp)oer 15 @ G-structure on p for each class pofrm




More precisely, for any finite set U and bijection ¢ : U — V between finite sets Uand V
we have the foltowing, : :

(F o G){U] = £, F[n] x IMyeaGlp]

(F o G)OKS) = (14,0%,(y*popeene)

where 1) 7x is a partition of V obtained by the transport of mt along &
i) for each p* = o(p)e m, the structure Y*p« 15 obtained by the G-transport of v,
along o, -
111} the structure @* is obtained by the F-transport of ¢ along o* which is the map
induced on w by .

Essentially, the partitional compesite of a species G in I is a substitution of a G-structure
1nto an I-structure. The following diagram represents this concept,

| [~

’ =\"\G:_§

\i.
G

Example 1: Consider the species of endofunctions End and take End[U7 on a finite set U
described by the following diagram below. We can separate the points in U by
considering the recurrent points, ie: xe U such that there exists k >0 with
©"(x) = x, and the nonrecurrent points, te. xeU such that ¢*(x) = x for all k >0.
From the second diagram below we can see that the recurrent points form
permutations and the nonrecurrent points form rooted trees where each pointon a
permutation forms the root of a rooted tree. Hence the function ¢ can be identified
with a permutation of disjoint rooted trees. We can do this process no matter
which endofunction is given. Hence every End-structure can be considered as a

-set of rooted tree structures placed on a structure of permutations. That is, an
End-structure is an A-structure substituted into a S-structure and we see that
End =S o A where S is the species of permutations and A is the spectes of rooted

frees.
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We now give a more formal proof to show that End = S o A.

Proposition |: End =S, A

We can think of a rooted tree on a set U as a pair (a,y) where a € U is the root
and v : U\{a} — U is a function with no recurrent elements.
Then put Up = {a}, U, =w' Uy, U, = w' Uy, ... so that for some n, Uy, =@ . So we

Hence we get a rooted tree on U with root a where the edges are given by the
function . The following diagram illustrates this.

Proof:
have surjective functions
w vooow
U—=Ui > .. 2U > U= {a}.
uo @
\\
Ul ) I\
v / \
o/
Fig. 3

So we can write the species of rooted trees on a set U as

AfUT = {{a,w} : (a,y) is a rooted tree on U},

We can also write the species of permutations on a set U as

S[U}={c:U - U:oisinvertible}

So S(A)U] = {(moy)nisapartitionof U, o m — 71 is invertible,
' Y= (plpen Vo = (& wp) € Afp] ).




Here 7t 1s a partition. & is a permutation on = and v is a rooted tree structure onp
for each class p of 7.

To prove End = S ¢ A, define the bijection ay - S o A[U] — End[U] by
al(m,oy) =0 : U Uby, foruepen, '

Wp(u)  foru=a,

o(u) =
aq  foru=a,and o(p)=q

So if u is not the root, then p(u) is the element that Y maps u to, and if u is the
root then @(u} is the next element which the root gets mapped to under the
permutation.

For the inverse of o, take a function @:U-»U.

For each u e U, there is a smallest k>0 such that ©*(u) is recurent and

let r(u) = @*(u).

Therefore we get a partition 7 of U made up of the sets px = {x} U r'(x) for x
recuirent. So py contains the recurrent point together with all the other points
which map to that recurrent point. '

Define ¢ : m — n by o(py) = Po(x) SO G is a permutation of the partitions, it takes a
rooted tree to the tree which the original & would take the root to.

Define v € Iy cecument A[p] bY ¥x = (X, yr) where Wy i I (X) = px and yi(u) = @(u).
So vx is a rooted tree structure on py and it is defined by the pair (x, wy) where wy
defines the structure of the tree. :

Therefore oy (@) = (m,G,7) s0 oy 1$ an isomorphism.

Example 2: Consider the species G of graphs and let G, be the spectes of connected
graphs. Since every graph is an assembly of connected graphs we can say that
G =E o G where E is the species of sets. That is, for each element of an
E-structure a Ge-structure is substituted into it giving a collection of connected
graphs which is a G-structure.

We can also look at the effect of substitution of species on the generating series.

Proposition 2: Given two species of structure F and G, the generating series for the
species F o G is given by (F o G)(x) = F(G(x)).

Proof: Suppose the species F has generating series F(x) = £,.4 £, x"/n! and the species G
has series G(x) = L0 o X0l
Let the species F o G have series (F o G)(x) = Z,.0 h, xVn!
Now h, = number of (F o G)-structures on n elements. We can take a partition of n
elementsasny +ny + .+ = n for 0 <k < nand let £ be the number of

E]




F-structures on k elements and g, be the number of G-structures on each class n;
of k where 0 €1<k.

Then we have h, = £ n!/{K!m! ... n¢!) figa ... gk where this sum is taken over

0 <k <nsuch thatn; + ... +ng = n.

Now for any series a(x) = Zyzg 2, x'/n! and b(x) = Z.0 b, x¥/n! the coefficients Cn
where ¢(x) = (a o b)(x) 1s given by ¢, = Z n!/(k!n;! ... 0!y agba; ... by where this
sum 1s taken over 0 <k <n, n; + ... ng = n.

Therefore we can conclude that (F o G)(x) = F(G(x)).

2.3. Derivative of a Species

Definition 1: Let I be a species if structures. The species F~ called the derivative of F is
defined as follows: an F ~-structure on a finite set U is an F-structure on the set
U™ = Uw {*} where * = %, is an element chosen outside the set U.

More precisely, for any finite set U and bijection o : U — V between finite sets U and V
we have the following:
F-{Ul=F[UT
F'[o](s)=F[c](s) where c™ : UL {*} — VU {*} such that
o' () = o(u) ifuel and o' (*) = *

This definition arises from the fact that we need #F[n] = #F[n+1]. We should note that *
is not an efement of U but is chosen outside of this set and the set U {*} is not
otherwise structured. It is always possible to choose * = U itself since Ug U and therefore
we will have U™ = U W {U}. The derivative of a species of structures can be illustrated by

the following diagram.

* L ]
- /// H/
P\ » &
&
Fig |

Example |: Consider the species of cyclic permutations C and let U = {a,b,c.d.e}. A
C " -structure on U is a C-structure on U™ = U W {*}. Now a C-structure on U~ s a
cyclic permutation, so a C”-structure on U will be this cyclic permutation
excluding the poimt *. Since removing a point on a cycle gives a linear ordering of




the remaining elements, we can say the a C”-structure on U is a linear ordering on
Uand we write C"= L where L is the species of linear orderings. This can be seen
in the diagram below. So we have found an * antiderivative for C.

Example 2: Consider the species of rooted trees A. An A" -structure on a set U is an
A-structure on the set U+ =1 {*}, which is a rooted tre¢ with root *,

Removing * we get a number of rooted trees. So an A" -structure is an A-structure
on the species of sets, E. In other words A~ = E , A showing that A satisfies a
* differential equation . This is illustrated in the diagram below.

\/ /\ s \<; /\f’\/

l N
Fig. 3.

~

We can differentiate a species more than once. For example to find the second derivative
of a species of structures we add two distinct elements *| and *, which do not belong to
U. In general we have the foilowing definition.

Definition 2: Let F be a species of structures. The species F® called the kth derivative of
F is defined as follows: an F -structure on a finite set U is an F-structure on the set

Ut { =, %, .} where *,, | = 1,2,... k is an ordered sequence of k additional distinct
clements.

We can also express the derivative of a species of structure as a generating series.




Proposition 1: Given a species of structure F, the generating series for the species F~ is
given by F " (x) = d/dx {F(x})-

Proof: Suppose the species I~ has generating series F 7 (x) = Z5¢ f, X'/n!. We know that
an F* -structure on n elements is an F-structure on n+1 elements. Then the
generating series for the species F is F(x) = Zosp fu x™ /{n+1).

Now d/dx (F(x)) = d/dx (Zn=0 i "+
= T o0 b didx (x* (n+ 1))
= Yuso Iy (n+Dx"/(n+1)!
=Y. fn x'/n!
=F (x)

2.4. Pointing Operation
The pointing operation () interprets combinatorially the operator x d/dx.

Definition 1: Let F be a species of structure. The species F* called F dot is defined as

follows:
an F -structure on a finite set U is a pair s = (f,u) where

i) f is an F-structure on U,
ii) uis an element of U called a distinguished element.
We call the pair s = (f,u) a pointed F-structure (pointed at the distinguished element u).

So F* is the rule which,
1. produces F'[U} = F[U] x U (set theory cartesian product)
2. produces F'[o] : F'[U] — F'[V] for each bijection o : U — V where

F'[o)(s) = (F[o (D), o(w)) for s = (fu).
The number of F-structures on a set of n elements satisfies #F[n] = n#F[n].

Example 1: Let us look at the species o of trees. When we point an ¢-structure we
simply add a distinguished element to this tree. Since a rooted tree is a tree with a
distinguished element the root, then pointing the species c-of trees gives us the
species A of rooted trees, hence "= A. The diagram below describes this

situation.




Fig 1.

We should realise that there is a difference between u and the element * which comes up
when we look at the derivative of a species. The distinguished element u belongs to the
underlying set U whereas * does not belong to U. In fact the operations of pointing and
derivation are related. The species F” can also be expressed as the product of the species
X of singletons together with the species F~. We can write the combinatorial equation
F* =X . F~. This can be better understood by looking at the diagram below. The
distinguished element in the F'-structure is can be moved astde and replaced by the
etement * which is not in the underlying set, and hence we are left with an

X . F " -structure.

I

j

Fig 2

The effect of this pointing operation on the formal power series is expressed in the .
fotlowing proposition.

Proposition 1: Given 2 species of structure F, the generating series for the species F* is
given by F'(x) = x d/dx F(x). '

Proof: Suppose the species F has generating series F(x) = £, f, xX"/n! and let the species
F* have series F'(x) = Zps0 hy x/n1!
where h, = number of [-structures on a set of n elements
= n x #F-structures on n elements
= nf,
So FI(x)= Zpzp nfy xnt.
Now x d/dx{F(x) = x ddx (T, £, xnh)




= ano an Xm/n!
=F'(x)

Pointing is useful for counting techniques. Let us look at the following example to
demonstrate this.

Example 2: Consider tree structures on a set of n elements. We want to determine the

number of tree structures there are.

Let o, = number of trees on a set of n elements.

Let @ be the species of trees and A be the species of rooted trees.

Define v = a" = A" = species of vertebrates which is a pointed rooted tree.
Recall, in the previous example we saw that a pointed tree is a rooted tree.
Therefore a vertebrate is a pointed tree which has the pointing operation applied to
1t again.

An element of v is a “vertebral column” as in the diagram below.

S

The first distinguished element is called the tail vertex and the second
distinguished element is called the head vertex. Note that the tail and head can
coincide.

Let v, = number of vertebrates on a set of n elements.

Therefore v, = 112an. The n* occurs since there are n possible choices for the head
and n choices or the tail. Another way of calculating v, is the following:
Notice that v = L'(A) where L" is the species of linear orders.

Therefore we can write v = S*(A) since L" and S" are equipotent (as seen in a
previous example). Note that since we are only concerned with the number of
structures in this example, we can use equipotency since two species are
equipotent if they have the same number of structures.

But then we can write v = End" since we saw previously that End = S{A}.
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Therefore v, = number of endofunctions on n elements
=n" (since #End[n] = n"
2 iy
Hence v, = n"a, = 0", and we can conclude that o, = n"™*.

2.5. Cartesian Product

Definition 1: Suppose F and G are two species of structures. The cartesian product

F x G of these two species is defined as follows: an (F x G)-structure on any finite set U
is a pair s = (f,g) where

i) f is an F-structure on U, ie: f € F[U]

i) g is a G-structure on U, ie: g € G[U]

[n other words, the species F x G is a rule such that it

L produces (F x G)[U] = F{U] x G[U] for any finite set U,

2. produces (F x G){o] : (F x G)[U] — (F x G){V] where o : U — V is a bijection such
that (F x G)[c](s} = (F[c](f), Glo](g)) forany s = (f,g) e (F x G)[U).

The cartesian product F x G is different to the normal multiplication of species F.G since
an (F x G)-structure consists of a pair s = (f,g) where each f and g are structures on the
entire set U, whereas in a (F.G)-structure we first have to decompose U into a disjoint
union Uy and U and the pair s = (f,g) has structures which are on Uy and U, respectively.
In other words an (F x G)-structure is obtained by the superposition of both an F-structure
on U and a G-structure on U. The diagram below illustrates this.

="

F.G-structure ' Fx G —stﬁlcture

Fig 1.

Example 1: Consider the species C of oriented cycles and the spectes aof trees. The
diagrams below show the difference between an (v x C)-structure and an
(a.C)-structure. Notice that (@ x C)-structure is obtained by the superposition of
both an asstructure on U and a C-structure on U. From the diagrams we can see
that the set U remains the same but we get two very different structures from
ax Cand - .C. '




'l}f\“\‘”ﬁ N / \

&:-__._'___JT ‘
& x C-structure «.C-structure
Fig. 2.

We can obtain the generating series for the cartesian product of two species.

Proposition 1: Given two species of structure F and G, the cartesian product {F x G)(x)
of species F and G has series equal to the coefficient-wise product of their series

Proof: Suppose the species I has generating series F(x) = Z,54 f, x"/n! and species G has
series G(x) = 2,50 2o x/nl.
Let the species F x G have generating series (F x G)(x) = £, » » h, x"/n! where ha
is the number of (F x G)-structures on a set of n elements. This can be expressed
as #( F x G)[n] = #F[r]#G[n] and therefore h, = f,g,.
So (F x G)(x) = Zp»0 faga X"/l ' _
The cartesian product of species F and G corresponds to the coefficient-wise
product of their series. That is,
(Zazofaxn) x (Zhzogn xny =,50 faga x"/n!

~ (F x G)(x)

The neutral element for the cartesian product is the species E of sets. That is, if F is any
species of structure then E x F = F x E = F. This occurs because F x E is a pair s = (f,g)
where fIs an F-structure on U and g is an E-structure on U, but an E-structure is just the
set U itself. Therefore a (F x E)-structure is the pair s = (f,U) which is an F-structure on
the set U together with the set U itself. This is just an F-structure on U. Hence we can
conclude that Ex F=F x E=F.

Example 2: Let C be the species of oriented cycles and g be the species of subsets (of
sets). For any finite set U, a (C x g )-structure is the superposing of a C-structure
on Uand a @-structure on U, Since a @ -structure on U is a subset of U, then a
(C x g)-structure is an oriented cycle on which is superimposed a subset of U.
This is precisely an oriented cycle on U with certain elements which are
distinguished. (The distinguished elements are those which belong to the
§7-structure, 122 a subset of U), The following diagram describes this.




There is a relationship between the pointing operation and the cartesian product.
Applying the cartesian product and then the pointing operation to two species F and G
gives the following result:

FxG)'=FxG=Fx@Gg"
* In particular, F* = (F x E)"=F x E*
We can write F this way since E is the neutral element when applying the cartesian
product. Since for any species F, F* = X F ", then we can write E°= X E*. Now an
E” -structure on a set U is an E structure on a set U w {*}. Since E is the species of sets
and an E-structure on a set is the set itself, then an E-structure on Uw {*}is U {*},
and therefore an E ~-structure on U is the set U. Therefore E” =E and we can write
E"=X.E. Now we can say F* = F x (X.E). In this way we have expressed the pointing
operation in terms of the cartesian product and the normal product.

Note that the law of cancellation does not hold for the cartesian product. That is, if F and _
G were two species then F x G = F x F does not imply that G = F. This can be seen by the
following example.

Example 3: Consider the species L of linear orderings and the species S of permutations.
The species L x L is isomorphic to the species L x S and therefore we can write
L x L =L x S. However, it is not the case that [, = S. Note that we can see that
L x L is isomorphic to L x S by looking at the following diagram which shows
that the naturality condition is satisfied.
Take the species I and S. Then for any finjte set U, (Lx L){ul=L[] x LU} and
(L x $)(U] = L[U] x S[U]J. There is a bijection oy : L[U] x L[U] — L{U] x S[U]
such that for any bijection £ : U -» V we have the following :
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L[UJ % L[U] — > LIU] x S{U]
Lg » LiE] 4 v OL[E] < S[E}

L{V] x L[V] — L[V] x §{V}

Gy

This s the naturality condition and to see this diagram commutes, we must look at
what happens to the elements. This can be seen in the next diagram below,

((U}, ,Lln) > (G(U]), e O-(un)) — ((uh ,Lln) s G)

L[E] % L[E] < b oL «ospg

(Bluns s &), Elo(u)), .. B0 (ua)))  — (E), ..., E(uy) | éﬁé'])

Cly

In the diagram we have assumed that the set U has cardinality n. The elements of
L are linear orderings which we will write as (U, ... ,un). Any other linear
ordering on U is a permutation of this order which we will write as

((u), ..., o(un)) where & denotes a permutation, and therefore belongs to the
species S. The bijection € takes (u, ... ,u,) € Lto ((uy), .., E(uy)), and also takes
G & Sto ot We get the element (CEw), .., E(un)) , (E(s(u)), ..., E(o(ua)))) in
L{V]x L[ V] and the second component is the same as applying £o& ™" to

(E(w), ..., E(uq)) which is how we obtain the bijection between LIVixL[V]and
L[V]x S[V].

New species of structure can be created using these combinatorial operations we have
looked at. We can apply these operations to known specles to get new ones.

Example 4. Consider the species L of linear orderings and the species A of rooted trees.
We will look at an L o A-structure. For any finite set U, an L-structure is a linear
order on U and an A-structure is a rooted tree on U. Therefore an A-structure
substituted into an L-structure gives a rooted tree on each element of the linear
ordering. The diagram below describes an L s A-structure,




Fig 4.

So substituting the species A into the species L produces a list of rooted tree
structures. This species L o A = H which is the species of hedges. We will see that
H is indeed a species of structures by looking at H-structures and the transport of
H-structures. For any finite set U, H[U] is the set of lists of rooted trees on U. For
any bijection ¢ : U — V, H{a] : H{U] — H[V] where each H-structure on U is
mapped to an H-structure on V where forall v € V, v = o(u) for some u € U.

Example 5: Consider the species E of sets and the species A of rooted trees. An
E o A-structure is an A-structure substituted into an E-structure which gives a

collection of rooted trees all having the A-structure. We will write Eo A = F
where F is the species of rooted forests; an F-structure is a rooted forest. Note that
there is a difference between rooted forests and a collection of rooted trees. A
rooted forest is a collection of rooted trees where each rooted tree has the same
structure, whereas a collection of rooted trees is an assembly of rooted trees where
each tree can have a different structure. This is iflustrated in the diagram below

where the first diagram shows a rooted forest (ie: an F-structure) and the second
diagram shows a collection of rooted trees.

/ \E/ __ JQ _\}/..
BRI

Fig.5. ronted forest Fig 8. coliection of rooted trees




Example 6: Consider the two exampies above where the species F and H are described.
We want to look at the species F.H. For any finite set U an F H-structure is an
f -structure on U together with an H-structure on U, where (U,U,) is a
decomposition of U. This gives a rooted forest on U, together with a list of rooted
trees on Us,. Therefore we have a collection of rooted trees on the set
U = U, w Us, and so can conclude that an F.H-structure is a collection of rooted
trees. Now consider the species of rooted trees A. An A~ -structure on a set U is
an A-structure on the set U+ = U w {*}, which is a rooted tree with root *.
Removing * we get a number of rooted trees. So an A ™ -structure is a collection of
rooted trees. Hence we can conclude that A "= F.H

= F.L(A)




T



Chapter 3

Lagrange Inversion

3.0. Introduction

There are combinatorial functional equations which arise in the study of the algebra of
species and we want to find a general way of solving an equation of this type. In
particular, the combinatorial functional equation we will study is Y = X.R(Y) where R is
a given species of structures and X is the species of singletons. The method of Lagrange
inversion is solving the equation Y = X.R(Y).

Refore looking at these equations we will first study some properties of formal power
series to understand from where this type of equation is obtained.

Suppose K is a field of characteristic zero. Consider KLx 1 whose elements are formal
power series where the coefficients come from the field K. The set of formal power series
T(x) € KEx1 where T(0) = 0 forms a group under the operation of substitution. The
identity element of this group is x and each T(x) € KLx3 has an inverse. We want to find
this inverse.

Proposition 1: Suppose G(x) is a formal power series over K with G(0) = 0. Then there
exists a formal power series T(x) with T(0) = 0 and G{T(x)) = x.

Proof: Given G(x} = gix + g+ 3% + .., we wish to find T(x) = t;x + x>+ X + .
such that G(T(x)) = x..
The coefficient of xy in the power series G{T{x)) 15 sx = £ gq X tmy X ... X tmn where
the sum is over all n, my, ... ,m, > 0 withm; + ... + m, = k.
We require s; = 1 and s, = 0 fork > L.
Now s =gty sot) = gi'l_
Alsos; =gtz + gatit so b = -y ' gati”,
Generally, fork > 1, 0 = s = @it + Zo1 atmt.-Ima inductively determines ¢ since
each m; is <k.

So, as asserted, {G(x) ¢ KIxT: G(0) =0 } is a group under substitution.

Proposition 2: For each power series R(x) with constant term ry # 0, there exists a unique
power series T(x) with

TOOR(x) = x. (=)
Moreover, 1y = 0 where ty is the constant term of the series T{x).




Proof: Let T(x) =tp + Hix + tx® + .. and R(x) = rg + rix + PaXt
When (tp + tix + X7 7 J Xt nx xS+ L) = x then we get
12
tg=0,t = lUrg, t2 = —ru’roz, =1/t - I'?_/l'()z, .. and so on.

Now the power series T(x) mentioned in the above proposition has constant coefficient
equal to zero and therefore belongs to those polynomials in KLxJ which form a group
under substitution. So T(x) has an inverse A(x) under substitution, that is, T(A(X)) = x.
Substituting A(x) for x in (*) we get an expression for A(x) :

T(A())R(ARR) = AX)

ie: xR{A(x)) = A(x) _ \
This is how to find A(x) as a uniquely determined power series satisfying
A(x) = xR(A(X)).

Looking at this more closely we have the following,
A(x) is the inverse of T(x) so
A(X) = Eppt [(@/dD)™ (UT (1) ]e0 x"/m!

= St [(@/d0)™ R0 x"/! (1)

For any formal power series F(x) we have
FA(X)) = Zazo [(d/dD)™! F7(OR (D)0 x"/n! @)

And FAGD) / (1 - xR (A(X))) = Znzo [(d/dD)” FIOR (D)= X'/} (3)
Writing (1), (2) and (3) in terms of coefficient extraction we have. |

(1) [x") AGx) = Un (" R(0)

@) [x") F(AG)) = Vn [{*1JF 7 (OR"(D)

(3) [x"] FAG)) / (1 - xR™(AGO) = [ FORY(D

These are the statements of the Lagrange inversion for power series. We will interpret
these formulas structurally, in terms of species of structure, by first looking at R-enriched
rooted trees. :

Let R be a given species of structures and X be the species of singletons. Interpreting the
numerical equation A(x) = xR(A(x)) structurally, gives rise to the combinatorial equation
¥ = X_R(Y). A solution to this equation is the species Y and in fact we will find that the
species Y = Ag satisfies this where A is the species of rooted trees. Ag is the species of
R-enriched rooted trees and we will construct this species of structures.




3.1. R-enriched rooted trees

Before looking at R-enriched rooted trees, we will first develop a new way of thinking
about rooted trees. This new definition expresses a rooted tree in terms of functions.

Definition 1: Suppose U is a finite set such that U = %44, T, Ty < U and
Tin Tj= @ = i=j. Arooted tree T of height n is defined as a sequence of functions
i+t ¢ Ty —> Ty where T s the set of vertices at height i, fori <n, and u e Ty 1s

connected to v e T, by an edge if and only if ais (u) = v.

The following diagram illustrates this definition on a set U = {a,b,c,d.e,f,g.h kI, m,o0,p}.

NSV
/

Fig 1.

At height 0, we have the root {a}

At height 1, T| = {b,c}

Atheight 2, T, = {de,f,g,h}

At height 3, Tz = {k,|,m,0,p}

Therefore we have the function oy : T, — {2} which maps the elements b and ¢ to a.
oz Tz = T| maps elements in T to those elements of T, which are connected by an

edge. So c(d) = b, ca(e) = b, c2(f) = ¢ and so on.

Now we will look at R-enriched rooted trees. This is a rooted tree with a certain structure
as defined in the definition below. «

Definition 2: Let R be a species of structures. An R-enriched rooted tree on a finite set U
is :

1) an arbitrary rooted tree o on U

11) an R-structure on the fiber of & over vertex u € U in o

Note that a fiber of a vertex u = the set o' (u)
= immediate predecessors of u when all edges of the rooted
tree are orienled towards the root.

fLis possible for o' (ud 1o be an empty set.




~ So suppose we had a rooted tree with vertices {a,b,c,d.e.f} as shown in the diagram
below. .

o

Fig 2.

The fibre at bis o’'(b) = {c.d} since these two vertices are the immediate predecessors of
b.

In fact we have the following. o'!(a) = {b}

a’'(b) = {c,d}
oc"(c) =
a’l(d) = e, f}
a'(e)=0
(D=0

We call those vertices with empty fibres, leaves. So in the example above, the vertices c,e
and f are the leaves of c.. Notice this definition of fibre can be better understood when
taking into account Definition 1, which describes a rooted tree in terms of functions.
From Definition 1 we can see that the inverse functions give us precisely the fibres of the
tree.

Now consider the species Ag where A s the species of rooted trees and R is a given
species. The species Ag satisfies the equation Y = X.R(Y), that is, Ag = X.R(Ag). This
suggests a recursive definition for Ag and in fact this species Ag is the species of
R-enriched rooted trees and we will prove this in the following theorem:.

Theorem 1: Let R be a species of structures. Then the specles Ag of R-enriched rooted
trees 1s uniquely determined, up to isomorphism, by the combinatorial equation
AR = X.R(AR).

Proof: Let Ag be an R-enriched rooted tree structure on U. Then from the definition of
R-enriched rooted trees, Ag is an arbitrary rooted tree on U with root e € U
together with an R-structure on the fibre of each vertex u ¢ U, which is precisely
an R(Ag)-structure attached to root e. Clearly this satisfies the equation
AR - X.R(AR),




Now we need te prove uniqueness. Suppose Y = A and Y = B are R-enriched
rooted tree structures which satisy the equation Y = X.R(Y). Then there are
isomorphisms n: A — X.R(A) and vy : B -—» X.R(B). We can construct an
isomorphism y : A — B such that the diagram below commutes.

n
A — X.R(A)

Wy 1 4 X.R(w)

B — X.R(B)
¥

Note that X.R(y) i1s obtained {from using transport of structures. To see this, we
now want to show that we can construct y so that it is an isomorphism and this
will be done by induction on the contact order between A and B.

Firstly recall that two species A and B have contact of order n if A<, = Be,,, where
Ay denotes A restricted to sets of cardinality < n.

When n =0, Ay =0 and By = 0 so Ay = Bg = empty species, so A and B have
contact of order 0. Therefore we can let yy = Id,.

Suppose A and B have contact of order n via the isomorphism v, : A<, = Bx, for
which the diagram above commutes when restricted to sets of order n.

Let Wae = (y'l o X.R(wp) 0 N)en+1 be a map between Ag,ry and Beney.

[We want to show this 15 an isomorphism between A+ and Beyei].

Now the canonical decomposition of an A, -structure 1s an X.R(A,)-structure.
Since y, is an isomorphism between A, and Bx,, then there is an isomorphism
between X.R(A«,) and X.R(Bg,). That is, an isomorphism between A<,+ and
Beni1, SO Wos Is an 1somorphism. This is true for any n so there is an isomorphism
v between A and B such that v = vio X.R(y)omn. Therefore A and B are
isomorphic.

Therefore the R-enriched rooted tree species Ag satisfies the equation
Apr = X.R(Ag) and can be described by the following diagram.




Looking at this for a particular example, take the set U= {a,b,c,d,e.fg,h,j.k,m,o,p}. An
Ag-structure on this set is described by the diagram below.

Fig. 4.

We will look at some examples of R-enriched rooted tree structures for certain species of
structures R.

Example 1: Let R be the species E of sets. Then an Ag-structure on a finite set U is an

arbitrary rooted tree on U together with an E-structure on the fibre of each vertex

of the rooted tree. This is precisely an A-structure on U which satisfies the
equation A = X.E(A).

Example 2: Let R be the species L of linear orderings. Then an A -structure on a finite set
U is an arbutrary rooted tree on U together with a linear ordering on each fibre of

each vertex of the rooted tree. A way of placing a linear order on each fibie is to
order the elements from top to bottom.




Consider the set U = {ab.c.de.fig.hj.kl.m} where an A -structure on U can be
described by the diagram below. The elements of each fibre are ordered from top
to bottom. and this ordering is represented in the diagram by the arrows at each
fibre. This species of L-enriched rooted trees satisfies the equation A, = X.L(AL).

A

d
L

Example 3: Let R be the species C of eyclic permutations. Then an Ac-structure on a
finite set U is an arbitrary rooted tree on U together with a C-structure on each of
its fibres. A C-structure on a fibre is an oriented cycle of elements of the fibre,
which can be done since the neighbours of a root can rotate freely around the root
as long as they keep their respective positions.

If we take U to be the set U = {a,b,c,d,e,f,g,h,j,k,l.m} then we can picture an
Ac-structure as in the diagram below, and this structure will satisfv the equation
Ac= XC(Ac)




Fig. 6.

3.2. R-enriched Partial Endofunctions

We introduce R-enriched partial endofunctions to enable us to prove Lagrange Inversion
combinatorially. Firstly, we will look at the powers R* of the species R for positive
integer values of A. Consider the species R which has generating series

R(x) = Zaso I X'/n!. Then the generating series of R is of the form

RMx) = (RN = Znzo 1a(A) x"/n! where (1) = # R*[n] which is a function of .

Definition 1: The sequence of functions (rn(A))nxo defined by r,(A) = # Rk[n] is called the
binomial type sequence associated to R.

The following example illustrates this.

Example 1: Let R be the species E of sets. Then R(x)} =¢“and

RAx) = R(x).R(x)...R(x) (by multiplication of species)
Ax
=e

- and therefore r,(A) = A"
Example 2: Let R be the species L of linear orderings. Then R(x) = (1-x}" and

R (x) = (1-x)™
Therefore using the binomial theorem ry(A) = A(A-1)(A-2) ... (A-n+1)

4




= Definition 2: An R-enriched partial endofunction on a finite set U consists of
i) asubser Vo U
11) a function f + V — U of which each fiber '(u) foru e U is given an R-sturcture.
When V="U, f: U ~» U is called an R-enriched endofunction and we write Endg and
Endg " for the set of R-enriched endofunctions and partial endofunctions respectively,

In other words the species of R-enriched partial endofunction consists of functions which
map the subset V to U and give an R-structure on each fiber. Consider the set U = [1 4]
and V = [11]. The diagram below represents an R-enriched partial endofunction
f:v->U.

In this diagram we say for elements v € Vandu e U, fiv)=uif and only if v and u are
connected by an edge.

7

Example 3: Let R be the species E of sets. Then an E-enriched endofunction on Uls the
function {: U — U where each fiber of f has an E-structure. So fisan
endofunction on U. Therefore when R = E, the species of R-enriched
endofunction is the species End of (usual) endofunctions.

Example 4: Let R be the species | + X, Then End+x{U] is a function f: U = U together
with a (1+X)-structure on each fiber £ ‘(u), ue U. A fiber with a (1+X)-structure
is either empty or a single point. That is, #'(u) = I so fis injective. Therefore we
can say Endy.x[U] = {f: U — U : {is injective}
={f:U—U:fisbijective} (by pigeon hole principle)
={{:U—U:fisinvertible}
= {permutations on U }

Therefore End,.y = S.




Lemma I: Let R be a species of structures with binomial type sequence (Tn(’l))n.zo_ Let U
-be a finité set with a fixed subset V < U and #U = n, #V = k. Then the number of
R-enriched partial endofunctions with domain V is re(n) = #R"Tk].

Proof. Without [oss of generality let V = {12, . kb {12, n)=U.TLetf: Vo Ube -
an R-enriched partial endofunction. Such a function 1s determined by a family
{&u}uey where &, is an R-structure on the fiber f'(u) of eachu e U. We can
identify this family {£,},cy with a list of n R-structures {since fhasn=#U fibres).
But this is precisely an R"-structure on V (by definition of multiplying the species’
R n times). Therefore from Definition | we can conclude that the number of
R-enriched partial endofunctions r(n) = #R"[k].

Lemma 2: (Lemma of R-enriched endofunctions)

Let R be a species of structures. Then we have the species isomorphisms
EndR © = E(AR).EIICIR
Endr = S(X.R"(AR))

and the equipotence Endg = L{X.R " (Ag))

Proof: An R-enriched endofunction naturally decomposes into two parts, the first is an
assembly of R-enriched rooted trees whose roots are elements of U\V and the
second is an R-enriched endofunction. (This is illustrated in F 1g. 1.). Hence we
can say Endr ¥ = E(Ap).Endg.

To prove Endr = S(X.R"(Ar)) recall that a rooted tree can be written as a pair
(a,y) where a is the root and v is a function giving the structure of the tree.
Therefore we have Ag[U] = {(a,y,1) : (a,w) € A[U), 1 e M,y R[w'l(u)]}. So
(a,y) defines a rooted tree on U and r is an R-structure on each fiber of the
vertices of the tree.
Therefore R " (AR)[UT = {(m,s,b) : wisa partition of U, s € R{n+1], b = (bplpen
bp = (ap.Wp.1p) € Ag[p]}. :
S0 an R(Ag)-structure is a triplet (z,5,b) where 7 is a partition of U, 5 is an
R-structure on the set whose elements are 7 together with an extra element not
belonging to = (by definition of the derivative of a species), and b is an R-enriched
rooted tree structure on p for each class p of 7.
QIUY = X R™(Ap)[U] = {(u,m,3,b) 1 u e U, 7 is a partition of U,s € R{r+1],
b= (bp)per, b = (. Wp.15) € Ag[p]}.
S0 an example of a Q-structure is the following diagram.




2.

We can see that a Q-structure on U is a rooted tree on IJ with an R-structure on
the fibre of each vertex except at the root where there is an R-structure on the
fiber plus a point.
Now S(Q){U] = {(m,0,b) : mis a partition of U, 5 : & —> = is invertible,

be Hpen Q[p]}
S0 a S(Q)-structure is a triplet (n,5,b) where = is a partition of U, o is a
permutation of w and b is a Q-structure on each class p of 7.
By the proof of Proposition | in section 2.2, each (m,6,b) € S(Q)[U] gives an
endomorphism ¢ : U — U by ignoring the R-structure. The roots u of the rooted
trees underlying each by are recurrent elements for ¢. In the above diagram, the
dotted arrow into such a u gives the extra element needed to base the R-structure
on the fibre of Q at u since that fiber includes the cycle that u is on. All the other
structures are as they should be to make ¢ R-enriched. Therefore ¢ is an
R-enriched endofunction and we have Endg = S(X.R " (Ag)).

Since the species L of linear orderings and the species S of permutations are
equipotent it foilows that Endr and L{X.R " (Ag)) are equipotent so we have

Endg = L(X.R " (Ag)).

3.3. Lagrange Inversion Theorem

Now we can interpret Lagrange Inversion for power series in terms of species. These
numerical formulas (1), (2) and (3) can be described structurally by species and this is
expressed in the Lagrange Inversion Theorem below. We will use the results discussed in
section 3.2 to help prove the Lagrange Inversion Theorem.




Theorem I: (Lagrange Inversion) :

Let R and F be 1wo species of structures. Then for any n > 0, there are bijéctions.
L. AR [n} — (X.R™M[n]

2. F(Ar)'[n] — (F"R)[n]

3. (F(Ag).Endr)[n] — (F.R™[n]

Proof. To prove this theorem we will start at 3, and end on the main result |
(3) Consider an (F(Ar).Endg)-structure on U = [n].
Let W be the set of roots of the R-enriched rooted trees of the [ assembly. The
diagram below gives an example of this.

S0 we have an F-structure on W together with an R-enriched function on \W
which has codomain U. Thatis f: U\W — U such that each fiber fl(w,

(u € U\W) is an R-structure. ' :

Since #U = n, we can identify this structure with an R-structure on U\W (by
Lemmal). This is precisely an (F.R™-structure on U.

{2) Consider an F(AR)*-structure on U = [n]. This is a pointed F(Ag)-structure so
there is a distinguished element. The following diagram is an examplie of this.




Y

/é\. /
/ ) A o
R
\ﬁ%
) B

Now we can do the following bijective transformations: _

1) separate from the F assembly the whole rooted tree o which contains the
distinguished element.

2) separate o from the subtree o~ whose root is the distinguished element.

3} reattach o ” to the F-assembly replacing c.

Now o\ a” is an L{X.R “(Ag))-structure and therefore using Lemma 2, we can
transform this bijection into an R-enriched endofunction Endg.

The following diagrams apply the steps outlined above to Fig. 26.

(W
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So now we have an (F(AR)".Endg)-structure. Therefore by the proof of (3) this is
an (F".R)-structure on 1J. '

(1) This is a special case of (2) where F = X

since an (X(AR).Endg)-structure is an
Ag’-structure.
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