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Categories are known to be useful for organizing structural aspects of mathematics.

However, they are also useful in finding out what structure can be dismissed (coherence

theorems) and hence in aiding calculations.  We want to illustrate this for finite set theory,

linear algebra, and group representation theory.   

We begin with some combinatorial set theory.  Let  N denote the set of natural numbers.

We identify each  n⁄⁄Œ⁄⁄N with the finite set  

n = { j⁄⁄Œ⁄⁄N :  0 £ j < n }.  

However, we must be careful to distinguish the cartesian product

m ⁄⁄¥ ⁄⁄n  =  { (i⁄⁄,⁄⁄j) : 0 £ i < m,  0 £ j < n }

from the isomorphic set  mn.   Let  S denote the skeletal category of finite sets; explicitly, the

objects are the  n⁄⁄Œ⁄⁄N and the morphisms are the functions between these sets.  

We need to discuss the explicit construction of finite products in  S⁄⁄.   Let

  p 0
m n, :   mn aAm    and      p1

m n, :   mn aAn

be the functions given by    p 0
m n, (k) = i   and     p1

m n, (k) = j  where   k = i ⁄⁄n + j .   That    p 0
m n, and

  p1
m n, are functions, and that (mn⁄⁄,⁄  p 0

m n, ,⁄⁄  p1
m n, )  is the categorical binary product of  m  and  n

in  S⁄⁄,  follow from the fact that each natural number  0 £ k < mn  has a unique expression i n

the form  k = i ⁄⁄n + j  with  0 £ i < m  and  0 £ j < n.  Moreover, each natural number  0 £ h <

mnp  has a unique expression  h = i ⁄⁄n ⁄⁄p + j ⁄⁄p + k  with  0 £ i < m ⁄,  0 £ j < n  and  0 £ k < p.  So,

referring to the diagram

mnp

mn

m n p

mnp

np

m n p

  p1
mn p,  p 0

mn p,

  p 0
m n,

  p 0
m np,

  p 1
m np,

  p 1
m n,

  p 1
n p,

  p 0
n p,

,      
we see that    p 0

m n,
∞⁄  p 0

mn p, =   p 0
m np, ,    p 1

m n,
∞⁄  p 0

mn p, = =   p 0
n p,

∞⁄  p 1
m np, ,    p 1

mn p, =   p 1
n p,

∞⁄  p 1
m np, .  We denote

these last three functions by    p 0
m n p, , : mnp aAm ⁄⁄,    p 1

m n p, , : mnp aAn ⁄⁄,    p 2
m n p, , : mnp aAp⁄⁄,  to

obtain a categorical ternary product  (mnp⁄⁄,   p 0
m n p, , ,   p 1

m n p, , ,   p 2
m n p, , )  of  m, n, p  in  S.  The

universal property of product defines a functor  ƒ : S⁄⁄¥ ⁄⁄S aAS given on objects by  m ⁄⁄ƒ ⁄⁄n =

mn  and, on functions  f : m aAm',  g : n aAn',  by

(f⁄⁄ƒ ⁄⁄g⁄)(i⁄⁄n + j) = ⁄f⁄(i)⁄n' + g(j)

for  i⁄⁄Œ⁄⁄m,  j⁄⁄Œ⁄⁄n.  From the preceding remarks, it follows that the equalities

(m⁄⁄ƒ ⁄⁄n)⁄⁄ƒ ⁄⁄p  =  m⁄⁄ƒ ⁄⁄(n⁄⁄ƒ ⁄⁄p) ,     1⁄⁄ƒ ⁄⁄m  =  m  =  m⁄⁄ƒ ⁄⁄1

are natural in each argument.  So  S becomes a strict monoidal category.  There is a symmetry
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cm⁄⁄,⁄⁄n :  m⁄⁄ƒ ⁄⁄n aA n ⁄⁄ƒ ⁄⁄m

given by  cm⁄⁄,⁄⁄n⁄⁄(i⁄⁄n + j) = j ⁄⁄m + i ⁄;  it is certainly not the identity function (nor is it an involution)

in general. 

Of course  S also has finite coproducts.  Suppose we have a finite family  (mi ⁄⁄)iŒr of objects

m i of  S.  For  0 £ i < r,  we define a function  i⁄⁄i : mi
aAm 0 + m 1 + . . . + m r–1 by

i⁄⁄i (j)  =  m0 + . . . + m i–1 + j⁄⁄.
Then  (i⁄⁄i ⁄⁄)iŒr is a family of coprojections for a categorical coproduct of the family  (mi ⁄⁄)iŒr .  For

any family  (fi ⁄⁄)iŒr of functions  fi : mi ⁄
aAni ,  we obtain a function

f0 + f1 + . . . + fr–1 : m0 + m 1 + . . . + m r–1
aAn0 + n1 + . . . + nr–1

given by  (f0 + f1 + . . . + fr–1)(m0 + . . . + m i–1 + j) = n0 + . . . + ni–1 + fi ⁄⁄(j)  for  j ⁄⁄Œ⁄⁄m i .  This

describes a functor Sr :  S⁄⁄r aAS which is the r-fold tensor product of another strict monoidal

structure on  S⁄.

The product and coproduct monoidal structures on  S are related by distributivity.  In fact,

for each  p⁄⁄Œ⁄⁄S⁄,  the equality

(m0 + . . . + m r–1)⁄⁄ƒ ⁄⁄p  =  m0 ⁄⁄ƒ ⁄⁄p + . . . + m r–1⁄⁄ƒ ⁄⁄p

is natural in all the variables  
⁄⁄
m 0 ⁄⁄, . . . , m r–1 and  p,  giving right distributivity.  In particular,

this implies (by taking  m0 = . . . = m r–1 = 1) that  

r⁄⁄ƒ ⁄⁄g  =  g⁄+⁄r :  r⁄p aAr⁄q ,

where  g⁄+⁄r = g + . . . + g  (r terms) and  g : p aAq  is any function.  For left distributivity we

have the composite

p⁄⁄ƒ ⁄⁄(m0 + . . . + m r–1)   
c p m mr, . . .0 1+ + -æ Ææ æ æ æ ææ (m0 + . . . + m r–1)⁄⁄ƒ ⁄⁄p = m0ƒ ⁄⁄p + . . . + m r–1ƒ ⁄⁄p 

  
c cm p m pr0 1, ,. . .+ +

æ Ææ æ æ æ æ æ æ ææ- p⁄⁄ƒ ⁄⁄m 0 + . . . + p⁄⁄ƒ ⁄⁄m r–1 ,

denoted by    dp m mr, , . . . ,0 1-
,  which is not the identity function in general.  We call a category

with two monoidal structures, and distributivity constraints satisfying the axioms in [L] and

[K], a rigoid.  A rigoid is right strict when both of the monoidal structures are strict and the

right distributivity constraint is an identity.  The rigoids considered here will be even more

special in that the tensor product usually written as a sum will always be a categorical

coproduct. 

The equalizer of two functions  f⁄, g : m aAn  is the function  h : p aAm  where  h(0) <

h(1) < . . . < h(p–1)  are the elements  h(i)  of  m  with  f⁄(h(i)) = g⁄(h(i)).  We shall not discuss

here coequalizers or function sets in  S since they are not needed below.      

Now we turn to combinatorial linear algebra over the field  C of complex numbers.

Write  Mat for the skeletal category of matrices.  That is, the objects are natural numbers,

while the morphisms  a :  m aAm',  called  m '⁄⁄¥ ⁄⁄m -matrices, are functions  a : m '⁄⁄¥ ⁄⁄m aAC⁄⁄;

the composite  a '∞⁄⁄a  :  m aAm''  of  a :  m aAm'  and  a' :  m' aAm''  is given by usual

matrix multiplication:
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(a'∞⁄⁄a)⁄⁄i'',⁄⁄i =  
  

a ai i i i
i m

©©©, © ©,
© ©Œ
Â .

There is a functor  G : S aAMat defined to be the identity  G (n) = n   on objects while, for each

function  f : m aAm',  the matrix  G ⁄⁄(f) : m aAm'  is such that G ⁄⁄(f)⁄⁄i',⁄⁄⁄i =  1  if and only if  i' =

f⁄⁄(i).  

The binary Kronecker product a⁄⁄ƒ ⁄⁄b :  mn aAm'n'  of matrices  a :  m aAm'  and  b :  n
aAn'  is defined by

(a⁄⁄ƒ ⁄⁄b)⁄⁄i'⁄⁄n'+⁄⁄⁄j',⁄⁄⁄⁄i ⁄n+⁄⁄⁄j =  a⁄⁄i',⁄⁄⁄i b⁄⁄j',⁄⁄⁄j .

For example, the Kronecker product of the matrices
  

a
b

Ê
ËÁ

ˆ
¯̃

:  1 aA2    and    
  

w x
y z

Ê
ËÁ

ˆ
¯̃

:  2 aA2  

is the matrix

  

aw ax
ay az
bw bx
by bz

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

:  2 aA4 .  This defines a functor  ƒ : Mat ¥ Mat aAMat which is

given on objects by  m ⁄⁄ƒ ⁄⁄n = mn.  Strict associativity  (a⁄⁄ƒ ⁄⁄b)⁄⁄ƒ ⁄⁄c  =  a⁄⁄ƒ ⁄⁄(b⁄⁄ƒ ⁄⁄c)  is clear; indeed,

we have the formula

(a⁄⁄ƒ ⁄⁄b⁄⁄ƒ ⁄⁄c) i'⁄⁄n'⁄⁄p' + ⁄⁄j'⁄⁄p' + k', i⁄⁄n⁄⁄p + ⁄⁄j⁄⁄p + k =  a⁄⁄i',⁄⁄⁄i b⁄⁄j',⁄⁄⁄j  c⁄⁄k',⁄⁄⁄k

for the ternary Kronecker product.  With this structure  Mat is a strict monoidal category.  The

Kronecker product is not the categorical product.  In fact,  Mat is an additive category, so direct

sums provide both categorical product and categorical coproduct.   

The direct s u m a⁄⁄≈ ⁄⁄b :  m ⁄⁄+ ⁄⁄n aAm '⁄⁄+ ⁄⁄n'  of matrices  a :  m aAm'  and  b :  n aAn'  is

defined by

(a⁄⁄≈ ⁄⁄b)⁄⁄i'⁄⁄,⁄⁄⁄⁄i ⁄ =  

  

a for i m i m
b for i m i m

otherwise

i i

i m i m

©,

© ©,

, © ©
, © ©

.

< <
≥ ≥

Ï
Ì
Ô

Ó
Ô

- -

0

This gives another strict monoidal structure  ≈ : Mat ¥ Mat aAMat on  Mat⁄⁄.   

Proposition 1 There is a symmetric right-strict rigoid structure on the category  Mat made u p

of the Kronecker product and direct sum monoidal structures, and such that the functor  G : S
aAMat is symmetric strict monoidal with respect t o ƒ, strictly preserves the chosen finite

coproducts, and preserves the distributivity isomorphisms. 

Proof After checking that  G(f⁄⁄ƒ ⁄⁄g⁄) = G(f⁄)⁄⁄ƒ ⁄⁄G(g⁄)  and  G(f⁄⁄¥ ⁄⁄g⁄) = G(f⁄)⁄⁄≈ ⁄⁄G(g⁄),  all that remains is

to show is that the symmetry and distributivity isomorphisms on  Mat,  obtained as the values

of  G on the symmetry and distributivity isomorphisms on  S,  are actually natural with

respect to all morphisms of  Mat,  and not only with respect to those in the image of  G.  W e

leave this calculation as an exercise for the reader, although we can see that it must hold for
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more conceptual reasons (indeed, we have arrived at our structure by transporting the rigoid

structure on  Mat from the classical one on the category  Vect of finite-dimensional vector

spaces.)

To find the kerne l of a matrix  a :  n aAm,  we reduce it to row echelon form by Gaussian

elimination, and find the columns  h(0) < h(1) < . . . < h(p–1)  which do not contain a leading 1

(these are the columns corresponding to non-echelon, or free, variables).  Let  k : p aAn  be

the matrix whose i-th column is the unique solution  x  to the homogeneous linear system  a x

= 0  with  xh(i) = 1  and  xh(j) = 0  for  j π i⁄⁄.

The joint kerne l of a pair of matrices  a : n aAm,  b : n aAp  is defined to be the kernel

of the matrix  
  

a
b

Ê
ËÁ

ˆ
¯̃

: n aAm + p.  Since Gaussian elimination allows the interchange of rows,

the joint kernel of the pair  a, b  is the same as the joint kernel of the pair  b, a;  in other words,

joint kernel depends only on the set  {a⁄⁄,⁄⁄b},  not on the order.  It follows that we can define the

joint kernel of any finite set of matrices with fixed source  m. 

Let  (–)⁄t : Mat⁄op aAMat be the functor which takes each matrix  a : n aAm  to its

transpose a⁄t :  m aAn.  Notice that   (a ƒ b)⁄t =  a⁄t ƒ b⁄t.   We can use  (–)⁄t to calculate explicit

coequalizers in  Mat by taking the transpose of the equalizer of the transpose.  We can also

define the hom functor  mat : Mat⁄op ¥ Mat aAMat by

mat (a :  n aAm ⁄⁄,  b :  p aAq⁄⁄)  =  (b⁄⁄ƒ a⁄t :  p⁄m aAq⁄n ⁄⁄). 

Then we have a natural bijection

Mat⁄⁄(m⁄⁄ƒ ⁄⁄n ⁄⁄,⁄⁄p)  @ Mat⁄⁄(n⁄⁄,⁄⁄mat⁄⁄(m⁄⁄,⁄⁄p))

taking the matrix  a : m⁄n aAp  to the matrix    √a : n aAp⁄⁄m  with    
√ , ,a ak m i j k i n j+ += . 

For any categories  C,  X ,  we write  X ⁄C for the functor category (that is, the objects are

functors  F : C aAX and the morphisms are natural transformations between these.  W e

shall identify a group  G  with the category whose only object is  * and whose morphisms  g : *
aA* are elements of  G;  composition is group multiplication.  A matrix representation of a

group  G  is a functor  r :  G aAMat ;  an intertwining operator between representations is

exactly a natural transformation between the functors.  So      MatG is the category of matrix

representations of  G.  It is enriched in  Mat by obtaining      matG(r ⁄⁄,⁄⁄s)  as the joint kernel of the

set of matrices

mat⁄(r(g) , 1s(e)) – mat⁄(1r(e) , s(g))  :  mat⁄(r(*) , s(*)) aAmat⁄(r(*) , s(*))    for    g Œ G .

Proposition 2 For each finite group G  there is a finite set   G
⁄ and an equivalence o f

categories

    MatG
  ~     MatG

⁄
.
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Proof Take    G
⁄ to be a set of irreducible representations of  G,  one for each isomorphism

class.  Let  i :   G
⁄
aA    MatG be the inclusion.  Then we have the functor      i

~
:      MatG aA    MatG

⁄

given by      i
~

(r)(l) =      matG(l ⁄⁄,⁄⁄r).  Every representation  r of  G  is a direct sum, in      MatG,  of

selected irreducibles.  By Schur's Lemma,     matG(l ⁄⁄,⁄⁄r)  is the multiplicity of the irreducible  l

in this direct sum. It follows that the functor      i
~

is fully faithful and essentially surjective. 

It follows that      MatG
⁄

obtains a symmetric autonomous (= compact closed) monoidal

structure transported across the equivalence from      MatG.  This leads us to the study of

symmetric closed monoidal structures on categories of the form  Mat⁄⁄L where  L is a finite set

(regarded as a discrete category).  We wish to characterize such structures in terms of structure

on the set  L.  This is a particular case of the problem solved by Day [D].  

A set  L is rigged when it is equipped with a distinguished element  1 Œ L and, for all

triples  l ⁄, m ⁄, n Œ L,  a natural number    l m n, ; ⁄⁄,  satisfying the following conditions:

  1, ;l n =    l n, ;1 =  
  

1
0

for
for

l n
l n

=
π

Ï
Ì
Ó

,

  
l m x x n p

x
, ; , ;

Œ
Â

L
=  

  
m n x l x p

x
, ; , ;

Œ
Â

L
,

for   l ⁄, m ⁄ Œ L,    l m n, ; =  0  for all but a finite number of  n.

The left-hand side of the first condition is denoted by    l n; and that of the second condition

is denoted by    l m n p, , ; .   Let  N[L]  denote the free commutative monoid on  L;  elements are

functions  f : L aAN which are zero for all but a finite number of values; we identify each

l ⁄⁄Œ⁄⁄L with the function which has value  1  at  l and  0  elsewhere.  Rigged structures on  L
are in bijection with rig multiplications on the additive monoid  N[L],  for which the

multiplicative unit is  1 Œ L.  The multiplication for the rig  N[L]  relates to the rigged

structure via the convolution formula

(f * g)(n)  = 
  

l m n l m
l m

, ; ( ) ( )
,

f gÂ .

The rigged set is called commutat ive when it satisfies   l m n m l n, ; , ;= ;  this is precisely the

condition that the rig  N[L]  should be commutative.  A commutative rigged set is called *-

autonomous when there is a function  (–)* : L aAL such that  

l** = l and       l m n, ; =   l n m, *; * .  

It is called autonomous when it is *-autonomous  and    l m n l m n, ; *, *; *= .

A droup is an autonomous commutative rigged set together with the following data: 

non-zero complex numbers l(l ⁄), r(l ⁄)   for all  l Œ L ,
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complex invertible matrices a(l ⁄,⁄m ⁄,⁄n ⁄;⁄p)  of size    l m n p, , ; for all  l, m , n, p Œ L ,

complex invertible matrices c(l ⁄,⁄m ⁄;⁄n ⁄)  of size    l m n, ; for all  l, m , n Œ L ;

satisfying the following conditions (in which  c  denotes the symmetry for  Mat⁄⁄): 

(unity) l(l ⁄) a(l ⁄,⁄1⁄,⁄n ⁄;⁄p)  =  r(n ⁄) 
  
1 l n p, ;

(3-cocyclicity)

  
≈ ƒÊ

ËÁ
ˆ
¯̃z

n p z l m z s1 , ; ( , , ; )a

  
≈ ƒ

Ê
ËÁ

ˆ
¯̃x z

l m x n p z x z s
,

, ; , , ; , ;c 1
  
≈ ƒ

Ê
ËÁ

ˆ
¯̃x

l m x x n p s1 , ; ( , , ; )a

=   
  
≈ ƒÊ

ËÁ
ˆ
¯̃z

l z sm n p za( , , ; ) , ;1
  
≈ ƒÊ

ËÁ
ˆ
¯̃x

m n x l x p s1 , ; ( , , ; )a

  
≈ ƒÊ

ËÁ
ˆ
¯̃z

z p sl m n za( , , ; ) , ;1

(symmetry) c(m ⁄,⁄l ⁄;⁄n ⁄) c(l ⁄,⁄m ⁄;⁄n ⁄)  = 
  
1 l m n, ;

(braiding) a(m ⁄,⁄n ⁄,⁄l ⁄;⁄p) 
  
≈ ƒÊ

ËÁ
ˆ
¯̃x

m n x l x p1 , ; ( , ; )c a(l ⁄,⁄m ⁄,⁄n ⁄;⁄p)  

=  
  
≈ ƒÊ

ËÁ
ˆ
¯̃x

m x pl n xc( , ; ) , ;1 a(m ⁄,⁄l ⁄,⁄n ⁄;⁄p)
  
≈ ƒÊ

ËÁ
ˆ
¯̃x

x n pl m xc( , ; ) , ;1

(integrity) ????? is a natural number  d(l).

For each droup  L ⁄⁄,  we obtain a symmetric monoidal category  Mat⁄[L]  whose objects are

elements of  N[L]⁄⁄,  whose morphisms  a : f aAf⁄⁄'  are families of matrices  al :  f⁄(l) aAf⁄⁄' ⁄(l)⁄⁄,

whose composition is given pointwise in  Mat⁄⁄,  and whose tensor product is given on objects

by the convolution multiplication of  N[L]  and on morphisms  a : f aAf⁄⁄',  b : g aAg⁄⁄'  by

(a * b)(n)  =  
  
≈ ƒ
l m

l ml m n
,

, ; a b .

The unit, associativity and commutativity constraints are induced in the obvious way by  l(l ⁄)⁄,

r(l ⁄)⁄, a(l ⁄,⁄m ⁄,⁄n ⁄;⁄p)⁄, c(l ⁄,⁄m ⁄;⁄n ⁄).  

Proposition 3 For any droup L ⁄⁄,  the monoidal category  Mat⁄[L]  is autonomous.  There is a

strict monoidal functor w : Mat⁄[L] aAMat determined by the condition  w(l) = d(l)⁄⁄. ⁄

References

[D] B.J. Day, On closed categories of functors, Midwest Category Seminar Reports IV, Lecture Notes in Math. 
137 (Springer-Verlag, Berlin 1970) 1-38.

[EK] S. Eilenberg and G.M. Kelly, Closed categories, Proceedings of the Conference on Categorical Algebra at 
La Jolla (Springer, 1966) 421-562.

[K] G.M. Kelly, Coherence theorems for lax algebras and distributive laws, Lecture Notes in Math. 420

6



(Springer-Verlag, 1974) 281-375.

[L] M.L. Laplaza, Coherence for distributivity, Lecture Notes in Math. 281 (Springer-Verlag, 1972) 29-65.

[McL] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. 5 (Springer-Verlag, 
1971) 

Macquarie University
N. S. W.   2109    
AUSTRALIA

email: street@math.mq.edu.au

We now give a general result about monoidal structures.  Suppose  V is a monoidal

category in the sense of [EK], [McL]  and suppose  J : A aAV is a fully faithful functor such

that there is an object  I'  of  A and an isomorphism  f 0 : I @ JI',  and, for all objects  A, B ⁄⁄Œ⁄⁄A ,

there exist an object  CŒA and an isomorphism  JC @ JA⁄⁄ƒ ⁄⁄JB.  By making a choice  A ⁄⁄ƒ ⁄⁄B  of

object  C  and a choice of isomorphism  f 2 ; A , B : JA⁄⁄ƒ ⁄⁄JB @ J(A⁄⁄ƒ ⁄⁄B)  for each  A, B,  we obtain a

unique monoidal structure on  A such that  I'  is the unit object,  A ⁄⁄ƒ ⁄⁄B  is the tensor product,

and  J,  together with the isomorphisms  f 0 and the  f 2 ; A , B⁄⁄,  becomes a strong monoidal

functor  J : A aAV.  If the category  A is skeletal (meaning that  A @ B  implies  A = B), then

the objects  I'  and  A ⁄⁄ƒ ⁄⁄B  are uniquely determined, and the monoidal structure on  A
depends only on the choice of the isomorphisms  f 0 and  f 2 ; A , B .
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