Bicategories and 2-categories

A 2-category A [Ehr, EK, Gr2, KS, ML] consists of objects a, b, ¢, ..., arrows f:a -->b,
and 2-arrows 0 : f =g :a-->b which can also be displayed thus
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These compositions are required to be associative and unital; moreover, horizontal
composition must preserve vertical units and the following interchange law is imposed.

() o(90) = (x 0o¢) (p 00)
f r

S T T
a = b

Y

The basic example of a 2-category is Cat objects are (small) categories, arrows are
functors, and 2-arrows are natural transformations. Indeed, the basic "five rules" for
composition of natural transformations appeared in the Appendix of [Gt].

There is a weaker notion of 2-category which occurs in practice. A weak 2-category or
bicategory [Bnl] consists of the data and conditions of a 2-category except that the
associativity and unital equalities for horizontal composition are replaced by the extra data
of invertible natural families of 2-arrows

Ofpmi(Mmor)of =mo(rof), Ap:lyof =f, pgifol, =f,

called associativity and unital constraints, such that the associativity pentagon (or 3-cocycle
condition)

0Lp,m,rof 0Lpom,r,f = (1p OOLm,r,f) OLp,mor,f (ap,m,r °1f)
and unit triangle (or normalisation condition)
(1r Oxf) Ofrm = Pr °1f
are imposed. In some of the recent literature, bicategories are called 2-categories and 2-
categories are called strict 2-categories.
A monoidal category 7 can be identified with the one-object bicategory =7 whose

arrows are objects of 17 whose 2-arrows are the arrows of 1. whose horizontal
composition is the tensor productof ¥, and whose vertical composition is the composition
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There is a bicategory Mod whose objects are (small) categories and whose arrows are
modules [St5, S5t8] (= profunctors = distributors [Bn2] = bimodules [L2]) between categories.
Anarrow f:a-->b inabicategory is called an equivalence when there is an arrow g:b

-->a such that there are invertible 2-arrows 1, =g of and fog =>1,. A weak 2-groupoid is a

bicategory in which each 2-arrow is invertible and each arrow is an equivalence. A 2-
groupoid is a 2-category with all arrows and 2-arrows invertible. For each space X, there is

a homotopy 2-groupoid I1,X whose objects are the points of X; it contains the information

of the fundamental groupoid II;X and the homotopy groups m,(X,x) for each x€X. An

early application of 2-categories to homotopy theory occurs in [GZ]. In fact, C. Ehresmann
[Ehr] defined double categories and double groupoids , which generalise 2-categories in that
they have two types of arrows (see [KS]), and these also have proved important in
homotopy theory [Br].

While many examples occur naturally as bicategories rather than 2-categories, there is a
coherence theorem asserting that every bicategory is equivalent (in the appropriate sense)
to a 2-category [MLP, GPS].

There are several purely categorical motivations for the development of bicategory
theory. The first is to study bicategories following the theory of categories but taking
account of the 2-dimensionality; this is the spirit of [Gd, Gr2, K2, St3]. A given concept of
category theory typically has several generalisations stemming from the fact that equalities
between arrows can be replaced by 2-arrow constraints (lax generalization), by invertible 2-
arrow constraints (pseudo generalization), or by keeping the equalities; further equalities
are required on the constraints. A bicategory can thus be regarded as a pseudo-category, an
equivalence as a pseudo-isomorphism, and a stack (= "champ" in French) as a pseudo-sheaf.
In lax cases there are also choices of direction for the equality-breaking constraints. All this
applies to functors: there are lax functors (also called morphisms) and pseudo-functors (also
called homomorphisms) between bicategories; there are 2-functors between 2-categories
having equality constraints. It also applies to limits, adjunctions, Kan extensions, and the
like [Gd, Gr2]. One can use the fact that 2-categories are categories with homs enriched in

Cat thatis, ‘V-categories where V= Cat [EK]. Some laxnessis even accounted for in this
way: lax limits are enriched limits for a suitable weight (or index) [St2].

A second motivation comes from the fact that bicategories are "monoidal categories
with several objects". Included in this is the study of categories enriched in a bicategory
which leads to a unification of category theory, sheaf theory, boolean-valued logic, and
metric space theory [W, St5, St8, BCSW, P]. The generalization of Cauchy completion from
the metric space case is fundamental [L2].

A third impetus is the formalisation of properties of the bicategory Cat (as in the part

of category theory which abstracts properties of the category Set of sets) allowing the use
of bicategories as organisational tools for studying categories with extra structure (in the
way that categories themselves organise sets with structure). This leads to the study of
arrow categories [Grl], adjunctions [K1], monads (= triples) [St0], Kan extensions [SW, St1],
factorization systems [St5, St6, St7, CJSV], and the like, as concepts belonging within a fixed
bicategory. Familiar constructions (such as comma categories and Eilenberg-Moore
categories for monads) made with these concepts turn out to be limits of the kind arising in

other motivations. In this spirit, one can mimic the construction of Mod from Cat starting
with a bicategory (satisfying certain exactness conditions) much as one constructs a category
of relations in a regular category or topos [St3, CJSV, RW]. The size needs of category
theory add extra challenges to the subject [St1, SW].

Low-dimensional topology enters bicategories from two dual directions. The
commutative diagrams familiar in a category laxify in a bicategory to 2-dimensional
diagrams with 2-arrows in the regions; and these diagrams, if well formed, can be
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evaluated, using the compositions, to yield a unique 2-arrow called the pasted composite of
the diagram [Bn1, Gr2, KS] . Two-dimensional graph-like structures called computads were
designed to formalise pasting [St2]. The planar Poincaré-dual view replaces pasting
diagrams with string diagrams; the 2-arrows label nodes, the arrows label strings (intervals
embedded in the Euclidean plane), and the objects label regions [JS, St10]. The planar
geometry of string diagrams under deformation is faithful to the algebra of bicategories.
Also see monoidal bicategories.
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Higher-dimensional categories; n-categories

For any natural number n, an n-category A [Ehr] consists of sets Ay, Ay, Ay, ..., A,
where the elements of A, are called m-arrows; together with, for all 0= k<m=n, a
category structure for which A, is the set of objects and A, is the set of arrows where the
composition is denoted by a q b (for composable a, bEA_,); such that, for all 0 <=h <k <
m =< n, there is a 2-category with A, A, A, as set of objects, arrows and 2-arrows,
respectively, with vertical composition a g b, and with horizontal composition a g, b. The
sets A, with the source and target functions A, --> A, ; form the underlying globular
set (or n-graph) of A. For 0 <k < n and for a, b€A, with the same (k-1)-source and
(k-1)-target, there is an (n—k-1)-category A(a,b) whose m-arrows (k <m =< n) are the m-
arrows c:a-->b of A. In particular, for 0-arrows a, b (also called objects), there is an

(n—1)-category A(a,b) which provides the basis of an alternative definition [EK] of n-
category using recursion and enriched categories [Kel]. It follows that there is an (n+1)-

category n-Cat whose objects are n-categories and whose 1-arrows are n-functors. For
infinite n, the notion of w-category [Rob] is obtained. An n-groupoid is an n-category such
that, for all 0 <m =<n, each m-arrow is invertible with respect to the (m-1)-composition (for
n infinite, co—groupoid is used in [BH] rather than w-groupoid by which they mean something

else).

One reason for studying n-categories was to use them as coefficient objects for non-
abelian cohomology. This required constructing the nerve of an n-category which, in turn,
required extending the notion of computad to n-computad, defining free n-categories on n-
computads, and formalising n-pasting [St1; Jo1; St2; Jo2; Pw1].

Ever since the appearance of bicategories (= weak 2-categories) in 1967, the prospect of
weak n-categories (n > 2) has been contemplated with some trepidation [ML; p. 126]. The
need for monoidal bicategories arose in various contexts especially in the theory of
categories enriched in a bicategory [W] where it was realised that monoidal structure on the
base was needed to extend results of usual enriched category theory [Kel]. The general
definition of monoidal bicategory (as the one object case of tricategory) was not published
until [GPS], however, in 1985, the structure of braiding [JS2] was defined on a monoidal (=

tensor) category ‘9 and was shown to be exactly what arose when a tensor product
(independent of specific axioms) was present on the one-object bicategory =7. The

connection between braidings and the Yang-Baxter equation was soon understood [T; JS1].
This was followed by a connection between the Zamolodchikov equation and braided
monoidal bicategories [KV3; KV4] using more explicit descriptions of this last structure. The
categorical formulation of tangles in terms of braiding plus adjunction (or duality) was then
developed [FY; Sh; RT]. See [Kas] for the role this subject plays in the theory of quantum
groups.

Not every tricategory is equivalent (in the appropriate sense) to a 3-category: the
interchange law between 0- and 1-compositions needs to be weakened from an equality to
an invertible coherent 3-cell; the groupoid case of this had arisen in unpublished work of A.
Joyal and M. Tierney on algebraic homotopy 3-types in the early 1980s; details, together
with the connection with loop spaces, can be found in [B; BFSV]. (A different non-globular
higher-groupoidal homotopy n-type for alln was established in [Lo].) Whereas 3-categories
are categories enriched in the category 2-Cat of 2-categories with cartesian product as
tensor product, Gray categories (or "semi-strict 3-categories") are categories enriched in the

monoidal category 2-Cat where the tensor product is a pseudo-version of that defined in
[Gy]. The coherence theorem of [GPS] states that every tricategory is (tri)equivalent to a
Gray category. A basic example of a tricategory is ‘Bicat whose objects are bicategories,
arrows are pseudo-functors, 2-arrows are pseudo-natural transformations, and 3-arrows are
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modifications.

While a simplicial approach to defining weak n-categories for all n was suggested in
[St1], the first precise definition was that of [BD2] announced in November 1995. Other
apparently quite different definitions [Bal; Ta] were announced in 1996 and [Joy] in 1997.
Both the Baez-Dolan and Batanin definitions involve differently generalised operads of P.
May [May] as somewhat foreshadowed by T. Trimble whose operad approach to weak n-
categories had led to a definition of weak 4-category (tetracategory) [Tr].

With precise definitions available, the question of their equivalence is paramount. A
modified version [HMP] of the Baez-Dolan definition together with generalised computad
techniques from [Ba2] are expected to show the equivalence of the Baez-Dolan and Batanin
definitions.

The next problem is to find the correct coherence theorem for weak n-categories: what
are the appropriately stricter structures generalising Gray categories for n = 3? Strong
candidates seem to be the teisi (Welsh for "stacks") of [C1; C2; C3]. Another problem is to
find a precise definition of the weak (n+1)-category of weak n-categories.

The geometry of weak n-categories (n > 2) is only at its early stages [MT; F; KT; BL],
however, there are strong suggestions that this will lead to constructions of invariants for
higher-dimensional manifolds and have application to conformal field theory [Car; BD1; CY;
Mck].

The theory of weak n-categories, even for n = 3, is also in its infancy [DS; Mar].
Reasons for developing this theory, from the computer science viewpoint, are described in
[Pw2]. There are applications to concurrent programming and term rewriting systems; see
[St3; St4] for references.
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