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Abstract

The definition and calculus of extraordinary natural transformations [EK]is extended toa contextinternal
to any autonomous monoidal bicategory [DyS]. The original calculusis recaptured from the geometry [SV], [MT]
of the monoidal bicategory 7-Mod whose objectsare categories enriched in a cocomplete symmetric monoidal

category ‘ and whose morphisms are modules.
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Introduction

Category theory officially began with the definition of naturality [EM1], [EM2]. A
natural transformation mediates functors of the same variables of the same respective
variances. A family of evaluation morphisms

XAOA—X
is natural, in this ordinary sense, in the variable X. However, Kelly [K;p.21]identified the
sense in which such a family is "natural” in the variable A. Then Eilenberg and Kelly
[EK1] studied composition of these "extraordinary” natural transformations, finding it to be
governed by loop freeness of an associated graph.

Unlike the more general dinatural transformations of Dubuc and the author [DcS],
extraordinary natural transformations can be defined in enriched category theory. Indeed,
the paper [EK1] was written with the needs of enriched category theory's seminal paper
[EK2] in mind.

While the existence of "morphisms" such as evaluation in an autonomous'
monoidal bicategory context was made clear in [DyS], that paper did not go the extra step of
Kelly to abstract extraordinariness. The present paper takes that step. For a cocomplete
symmetric closed monoidal category 7, the autonomous monoidal bicategory to obtain
Kelly's naturality notion is 7-Mod (as defined in [DyS], for example). We see that the
graph calculus of [EK1]is a relic, adequate for the purpose, of the surface-diagram geometry
associated with an autonomous monoidal bicategory [SV], [MT]. The question of loops
only arises in a pivotal monoidal bicategory where each bidual object A° is both a left and
right bidual for A (such asin the symmetric case of 7-Mod implicitly considered by [EK1]).
The failure to compose results from the fact that the composite of the unit n' : I
— AOA° for the left bidual with the counit e : A O A° —1 for the right bidual is not

generally the identity of the tensor unit I.

' We use "right autonomous" for the existence of all right duals (in a monoidal category, or biduals in a monoidal
bicategory) and "autonomous" forthe existence ofboth leftand right duals. The words "compact" and "rigid" also appearin
the literature in this context.
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1. Extraordinary 2-cells

Recall from [GPS] that every monoidal bicategory is appropriately equivalent to a Gray
monoid (also see [DyS]). For the reader's comfort, we briefly repeat the definition here.
While speaking as if we were working in a monoidal bicategory, we develop our general
theory in a Gray monoid M (in the same way that we are allowed by coherence to assume
a monoidal category is strict).

Consider the category 2-Cat whose objects are (strict) 2-categories and whose
morphisms are (strict) 2-functors. There is a tensor product of 2-categories, named after
Gray [G1], [G2], which defines a symmetric monoidal structure on 2-Cat; it is actually a
closed monoidal structure and the internal hom {4, B} is easily described: it is the 2-
category which has 2-functors A —— B as objects, pseudo-natural transformations as
morphisms, and modifications as 2-cells. We write Gray for 2-Cat equipped with this
monoidal closed structure. (Actually, Gray himself concentrated mainly on the larger
internal hom where the morphisms are lax natural.) A Gray monoid is defined to be a
monoid in the monoidal category Gray.

Alternatively, a Gray monoid is a 2-category equipped with a pseudofunctor (in the
terminology of [KS]; or "homomorphism of bicategories" in the terminology of [B])

O :MxM— M
and an object I such that

e for all morphisms f: A — A', g:B——B' in M, the composition-preservation
constraints (f 0 B) ° (A 0 g) Of O g are identity 2-cells (that is, O strictly preserves
composites of pairs (A, g): (A, B) — (A,B'), (f,B):(A,B) — (A",B) in Mx M);

» O is normal (that is, strictly preserves identity morphisms); and

» O is strictly associative with I as strict unit.

It is easy to see that this is the same as describing a 2-functor M — {M, M} making M a
monoid in Gray.

Recall from [DyS] that a right bidual for an object A of M is an object A° together
with a morphism e : A A° — I such that, for all objects B, C of M, the functor

et : M(B,A°0C)— M(AOB,Q),
given by e#(f) = (eDC)°(AOf), is an equivalence of categories. Note that, up to
isomorphism, e determines, and is determined by, a morphism n :I—— A°0JA via the
condition that e#(n) is isomorphic to the identity AOI—— A. When every object has a
right bidual, we call M right autonomous. In this case, the assignment A —— A° extends
to a monoidal pseudofunctor ( )°: MOP* — M called bidualization. When all objects
have both left and right biduals, we call M autonomous. A right autonomous Gray

monoid M is autonomous iff bidualization is a biequivalence.
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We work in aright autonomous Gray monoid M. We define an extraordinary 2-cell

0 from x:I— X to f: A0 A° — X tobe a2-cell
I

GT eD

AJA——————=X

An extraordinary 2-cell @ from g:B°0B——Y to y:I—Y isa 2-cell
)

BB —— =Y
n
I

y

Generalizing both these cases, an extraordinary 2-cell P from g: HOXOB°OBOK —Y
to f: HOAOA°OXOK—Y isa2-cell

HDXDBODBDK\
N

HDeDXDnDKT

HOAOA°OXDOK

Such a 2-cell is represented in three-dimensional Euclidean space as a vertex, labelled by y,
on a surface made up of sheets labelled by the objects H, K, X, Y, A, B, where the
morphisms f and g label curves on the surface (see [SV] and [MT]).

Each slice by a vertical plane perpendicular to the page gives a string diagram in the right

autonomous monoidal category cM with the same objects as M and with isomorphism

classes of morphisms as morphisms. The domain of { is obtained by taking the slice to



the left of the slice containing ; the codomain, to the right.

The information contained in the surface diagram can be completely reconstructed from
the part of the last diagram to the left of ¢ and below the dotted line. What we have then
is a morphism in the free right autonomous monoidal category RAut on a single

generating object.

2. Composition of extraordinary 2-cells

The calculus of extraordinary 2-cells describes their composition. There are two basic
types of composition: one involves composing two extraordinary 2-cells to get an ordinary
2-cell, while the other involves composing an extraordinary 2-cell with an ordinary 2-cell
to get an extraordinary 2-cell.

Suppose 8 is an extraordinary 2-cell from t: A — X to s: ADA°OA — X, and
suppose @ is an extraordinary 2-cell from s: A0 A°0OA — X to r: A —— X. This means

we have 2-cells

s
A AOADA———=X
t
edA 68[] and AO nT ol .
AOADA—— =X A

s
Pasting these two 2-cells together with the canonical isomorphism (e A)°(AOn) O 1,
as in the diagram below, we define the composite of 6 and @ as the resultant ordinary 2-

cell from t to r.



t
0 edA 0[]
N [] ADADA——=X
A
Aln (PD -
A

The morphisms of RAut representing 6 and ¢ are

S0,

the morphism of RAut representing the composite of 8 and @ is precisely the composite

in RAut of the representing morphisms.

Suppose, as another example of the calculus, that 6 is an extraordinary 2-cell from t:I

— X to s: A0 A° — X, and suppose @ is an extraordinary 2-cell from s: A0 A° — X

to r: A A° — X . This means we have 2-cells

I
t S
.
eTm ADA oy X
ADAOS—>X \r_//

which paste along s to yield the composite extraordinary 2-cell from t to r. The

morphisms in RAut representing these 2-cells are

U and

which compose to give the former (since the latter is an identity morphism of RAut).

As afinal example of extraordinary composition, suppose 8 is an extraordinary 2-cell
from t:I1—X to s: ADA°JAOA° — X, and suppose @ is an extraordinary 2-cell

from s to r: A A° — X . This means we have 2-cells

I t AOAOADA— = X
el e? 0[] and ADn OA° P
ADA°DADA——= X A A°



which paste along s and paste with the canonical isomorphism (eCe)°(AOnOA°) Oe
to yield a composite extraordinary 2-cell from t to r. In RAut this is represented by the

fact that the composite of

WAL N NN

JU - U

Of course, it is also possible to consider the phenomenon of extraordinariness in a left

is

autonomous monoidal bicategory M; for this, just reverse the tensor product in the right

autonomous case. It becomes somewhat more interesting when M is autonomous; that
is, is both left and right autonomous. The calculus here is governed by the free
autonomous monoidal category Aut on a single generating object; the morphisms are

represented by plane string diagrams which can make both left and right turns. However,

the situation becomes much more interesting when M is a pivotal monoidal bicategory;
that is, autonomous with the right and left duals coherently equivalent. Pivotal structure
consists of an equivalence i, : A—— A°°, pseudonatural in A, and an isomorphism

1

AO Ao > AO [ele)

A°
In this case, we obtain not only a counit e: AOA° — 1 and unit n: I —A°0OA
expressing A° as a right bidual for each A, buta counit e' : A°0A — I and unit n' : 1
— A0 A° expressing A° as aleft bidual for A. The extraordinary composition calculus
here is governed by the free pivotal monoidal category Pvt on a single generating object.
The morphisms here are again string diagrams in the plane, but now may contain
(directed) loops: for example, we may now compose n:I— A°0A with e :A°0A —1

to obtain an endomorphism of I represented by a loop:
A° A

We can either define these endomorphisms of I, represented by loops, as part of the



composite of extraordinary 2-cells, or, restrict composition to those cases where no loops

arise.

3. The example of extraordinary natural transformations

Let 7 denote a cocomplete symmetric closed monoidal category. We remind the
reader of the autonomous monoidal bicategory 7*Mod of ?modules. The objects are
(small) P~categories (in the sense of [EK]). The morphisms M : A — B are P functors M :
BPJA — 7. The ¥ natural transformations 6 :M O N :B% 0 A — U are the 2-cells
8:MO N:A—B of 7-Mod; they are called module morphisms. Vertical composition

of 2-cells is vertical composition of natural transformations. The horizontal composite
NM:A—C of M:A—B and N:B——C is given by the coend formula

(N M)(c,a) = J’bM(b,a)D N(c,b) |

which is P functorial in M and N. Each ?*functor f: A — B can be identified with the
module f : A—— B having f(b,a) =B(b,fa), and this gives an inclusion
V-Cat — 1-Mod.
(We are writing 7~Cat for the usual 2-category of small 7 categories and writing 7-CAT
when we drop the smallness requirement.) Recall too that f : A — B has a right adjoint
f9:B — A having fYa,b) =B(fa,b). If ¥ is furthermore complete, for each small 7+
category B there is a T category PB and an equivalence of categories
I.CAT(A,PB) =~ 7 Mod(A,B).

With this we see that 7-Mod is biequivalent to the sub-2-category of 17-CAT consisting of
the objects of the form PA and the morphisms PA — PB with right adjoints. The

object assignments (A,B) = AOB and A > A% extend to pseudofunctors

O : ¥Mod x ““Mod — ¥ Mod and ( )°P: ¥“Mod°% — 1 Mod.
The object I of 7-Mod is the unit for the tensor of ¥ regarded as a T-category with one
object 0. The modules e: AJA®° ——1 and n:I1— A°0A are given by

e(0,a,b)=A(b,a) and n(a,b,0) = A(a,b).

This gives what is required to make 7 Mod an autonomous monoidal bicategory. To
actually get a Gray monoid, we need to choose a skeletal category of sets, a strict monoidal
category equivalent to 7%, and use the method above to replace 7 Mod by a 2-category
(obtaining the 7-Mog of [DS; Section 7]). With care, this can all be done with 4/ braided

rather than merely symmetric.
Let us examine what extraordinary 2-cells are in 7“Mod when the morphisms they go

between are in ‘7-Cat. So, suppose x:I—X and f: AOA° — X are P functors; we

identify x with the object x(0) of X. An extraordinary 2-cell 8 from x; to f;isamodule

7



morphism 8 :xge O f. These are in natural bijection with module morphisms e O x"f,

and these amount to families of morphisms A(a',a) — X(x,f(a,a')) 7 natural in objects
a and a' of A. Using the Yoneda lemma, we see that such families are in bijection with
families x — f(a,a) extraordinarily %natural in the variable a.

Next suppose g:B°0OB——Y and y:I —Y are P functors. An extraordinary 2-cell

¢ from g; to ypis amodule morphism @:gyn O yg. These are in natural bijection with

module morphisms n O g Yy, and these amount to families of morphisms B(b,b’)
—Y(g(b',b),y) ¥ natural in objects b and b' of B. Using the Yoneda lemma, we see

that such families are in bijection with families g(b,b) — y extraordinarily %*natural in
the variable b.

Similarly, in the more general case of V-functors g: HOXOB°OBUOK — Y and f:
HOAOA°OXOK — Y, an extraordinary 2-cell ¢ from g to f amounts to a family of
morphisms Wy, ,pk: g x,b,b, k) — f(h, a, a,x,k) in Y which is natural in h, x and
k, and extraordinary natural in a and b. The Eilenberg-Kelly graph for this situation is

g(h/ X, b/ b/ k)
\J

O

f(h,a a x k)

which we see precisely is the string diagram which represents the same morphism as
described above in the free right autonomous monoidal category RAut generated by a
single object.

The bicategory 7*Mod is symmetric monoidal in the sense of [DyS]and hence pivotal.
So loops can occur. The course of action taken in [EK1] was to forbid composition when
loops occur. The full functorial calculus of Eilenberg-Kelly can now be seen to be identical
with calculating in the free autonomous symmetric monoidal category Autsym on a
single generating object (see [Dy2] for a construction, where autonomous symmetric
monoidal categories are called "compact closed"); a model of Autsym was produced in
[KL] where the morphisms are closely related to Feynman diagrams [BD]. The amazing

coincidence is that this study of Autsym in [KL]was presumably in ignorance of its precise

relationship to the Eilenberg-Kelly calculus.
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