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Abstract
The definition and calculus of extraordinary natural transformations [EK] is extended to a context internal

to any autonomous monoidal bicategory [DyS].   The original calculus is recaptured from the geometry [SV], [MT]
of the monoidal bicategory  V-Mod whose objects are categories enriched in a cocomplete symmetric monoidal
category  V and whose morphisms are modules.  
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Introduction
Category theory officially began with the definition of naturality [EM1], [EM2].  A

natural transformation mediates functors of the same variables of the same respective
variances.  A family of evaluation morphisms

X⁄A ⊗ A aAX
is natural, in this ordinary sense, in the variable  X.  However,  Kelly [K; p. 21] identified the
sense in which such a family is "natural" in the variable  A.  Then Eilenberg and Kelly
[EK1] studied composition of these "extraordinary" natural transformations, finding it to be
governed by loop freeness of an associated graph.

Unlike the more general dinatural transformations of Dubuc and the author [DcS],
extraordinary natural transformations can be defined in enriched category theory.  Indeed,
the paper [EK1] was written with the needs of enriched category theory's seminal paper
[EK2] in mind.

While the existence of "morphisms" such as evaluation in an autonomous1

monoidal bicategory context was made clear in [DyS], that paper did not go the extra step of
Kelly to abstract extraordinariness.  The present paper takes that step.  For a cocomplete
symmetric closed monoidal category  V,  the autonomous monoidal bicategory to obtain
Kelly's naturality notion is  V-Mod (as defined in [DyS], for example).  We see that the
graph calculus of [EK1] is a relic, adequate for the purpose, of the surface-diagram geometry
associated with an autonomous monoidal bicategory [SV], [MT].  The question of loops
only arises in a pivotal monoidal bicategory where each bidual object  A¡  is both a left and
right bidual for  A (such as in the symmetric case of  V-Mod implicitly considered by [EK1]).
The failure to compose results from the fact that the composite of the unit  n' : I
aAA ⁄⁄⊗ ⁄⁄A¡  for the left bidual with the counit  e : A ⁄⁄⊗ ⁄⁄A¡ aAI  for the right bidual is not

generally the identity of the tensor unit  I.               

1

1 We use "right autonomous" for the existence of all right duals (in a monoidal category, or biduals in a monoidal

bicategory) and "autonomous" for the existence of both left and right duals.  The words "compact" and "rigid" also appear in

the literature in this context.



1.  Extraordinary 2-cells
Recall from [GPS] that every monoidal bicategory is appropriately equivalent to a Gray

monoid (also see [DyS]).  For the reader's comfort, we briefly repeat the definition here.
While speaking as if we were working in a monoidal bicategory, we develop our general
theory in a Gray monoid  M⁄ (in the same way that we are allowed by coherence to assume
a monoidal category is strict). 

Consider the category  2-Cat whose objects are (strict) 2-categories and whose
morphisms are (strict) 2-functors.  There is a tensor product of 2-categories, named after
Gray [G1], [G2], which defines a symmetric monoidal structure on 2-Cat ;  it is actually a
closed monoidal structure and the internal hom  {A ⁄⁄,⁄⁄B}  is easily described:  it is the 2-
category which has 2-functors  A aAB as objects, pseudo-natural transformations as
morphisms, and modifications as 2-cells.  We write  Gray for  2-Cat equipped with this
monoidal closed structure. (Actually, Gray himself concentrated mainly on the larger
internal hom where the morphisms are lax natural.)   A Gray m o n o i d is defined to be a
monoid in the monoidal category  Gray.  

Alternatively, a Gray monoid is a 2-category equipped with a pseudofunctor (in the
terminology of [KS]; or "homomorphism of bicategories" in the terminology of [B])  

⊗ : M × M aAM
and an object  I  such that

• for all morphisms  f : A aAA',  g : B aAB'  in  M,  the composition-preservation
constraints  (f ⊗ B) ° (A ⊗ g⁄) ≅ f ⊗ g  are identity 2-cells  (that is,  ⊗ strictly preserves
composites of pairs  (A⁄⁄,⁄⁄g) : (A,⁄⁄B) aA(A,⁄⁄B'),  (f⁄⁄,⁄⁄B') : (A,⁄⁄B') aA(A',⁄⁄B')  in  M × M⁄⁄);

• ⊗ is normal (that is, strictly preserves identity morphisms);  and
• ⊗ is strictly associative with  I  as strict unit.

It is easy to see that this is the same as describing a 2-functor  M aA{M⁄⁄,⁄⁄M⁄⁄}  making  M a
monoid in  Gray.

Recall from [DyS] that a right bidual for an object  A  of  M is an object  A¡  together
with a morphism  e : A⁄⁄⊗ ⁄⁄A¡ aAI  such that, for all objects  B, C  of  M⁄⁄,  the functor

e# :  M⁄⁄(B⁄⁄,⁄⁄A¡⊗ ⁄C) aAM⁄⁄(A⁄⊗ ⁄B ⁄⁄,⁄⁄C),
given by  e#(f) = (e⁄⊗ ⁄C)⁄°⁄(A⁄⊗ ⁄f⁄),  is an equivalence of categories.  Note that, up to
isomorphism,  e  determines, and is determined by, a morphism  n : I aAA¡⊗ ⁄A  via the
condition that  e#(n)  is isomorphic to the identity  A ⁄⊗ ⁄⁄I aAA.  When every object has a
right bidual, we call  M right autonomous. In this case, the assignment  A jAA¡  extends
to a monoidal pseudofunctor  ( )¡ : M⁄oprev aAM called bidualization. When all objects
have both left and right biduals, we call ⁄M ⁄autonomous⁄⁄. A right autonomous Gray
monoid  M is autonomous iff bidualization is a biequivalence.   
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We work in a right autonomous Gray monoid  M⁄.  We define an extraordinary 2-cell
θ from  x : I aAX  to  f : A⁄⁄⊗ ⁄⁄A¡ aAX  to be a 2-cell

A⁄⁄⊗ ⁄⁄A¡ X

 I 

 e 
 x

 f 

 ⇓ θ
 . 

An extraordinary 2-cell φ from  g : B¡⊗ ⁄B aAY  to  y : I aAY  is a 2-cell

B¡⊗ ⁄B

 I 

 n 

Y

 ⇓ φ

 g 

y
 . 

Generalizing both these cases, an extraordinary 2-cell ψ from  g : H⁄⊗ X⁄⊗ ⁄B¡⊗ ⁄B ⁄⊗ ⁄K aAY
to  f : H⁄⊗ A ⁄⁄⊗ ⁄⁄A¡⊗ ⁄X⁄⊗ ⁄K aAY  is a 2-cell     

H⁄⊗ X⁄⊗ ⁄B¡⊗ ⁄B⁄⊗ ⁄K  g 

Y

H⁄⊗ A ⁄⁄⊗ ⁄⁄A¡⊗ ⁄X⁄⊗ ⁄K

H⁄⁄⊗ ⁄⁄e⁄⁄⊗ ⁄⁄X⁄⁄⊗ ⁄⁄n⁄⁄⊗ ⁄⁄K

 f  . 
 ⇓ ψ

Such a 2-cell is represented in three-dimensional Euclidean space as a vertex, labelled by  ψ ⁄,
on a surface made up of sheets labelled by the objects  H, K, X, Y, A, B,  where the
morphisms  f  and  g  label curves on the surface (see [SV] and [MT]).

g  f 

 Y 

KX

A

H

A¡

B¡ B

H
A

A¡
X

K

ψ

Each slice by a vertical plane perpendicular to the page gives a string diagram in the right
autonomous monoidal category  cM with the same objects as  M and with isomorphism
classes of morphisms as morphisms.  The domain of  ψ is obtained by taking the slice to
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the left of the slice containing  ψ ⁄;  the codomain, to the right.

g

Y

 ⇒ 
ψ f

Y

H A A¡ X

B¡ B

K H
A A¡ X

K

The information contained in the surface diagram can be completely reconstructed from
the part of the last diagram to the left of  ψ and below the dotted line.  What we have then
is a morphism in the free right autonomous monoidal category  RAut on a single
generating object.

2.  Composition of extraordinary 2-cells
The calculus of extraordinary 2-cells describes their composition.  There are two basic

types of composition: one involves composing two extraordinary 2-cells to get an ordinary
2-cell, while the other involves composing an extraordinary 2-cell with an ordinary 2-cell
to get an extraordinary 2-cell.

Suppose  θ is an extraordinary 2-cell from  t : A aAX  to  s : A ⁄⁄⊗ ⁄⁄A¡⊗ ⁄⁄A aAX⁄⁄,  and
suppose  φ is an extraordinary 2-cell from  s : A ⁄⁄⊗ ⁄⁄A¡⊗ ⁄⁄A aAX  to  r : A aAX⁄.  This means
we have 2-cells

A⁄⁄⊗ ⁄⁄A¡⊗ ⁄⁄A X

 A 

 e⁄⁄⊗ ⁄⁄A 
 t

 s 

 ⇓ θ and

 A 

 A⁄⁄⊗ ⁄⁄n  ⇓ φ
 r 

 . 

A⁄⁄⊗ ⁄⁄A¡⊗ ⁄⁄A X
 s 

Pasting these two 2-cells together with the canonical isomorphism  (e⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄n)  ≅ 1A
as in the diagram below, we define the composite of  θ and  φ as the resultant ordinary 2-
cell from  t  to  r.
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A⁄⁄⊗ ⁄⁄A¡⊗ ⁄⁄A X

 A 

 e⁄⁄⊗ ⁄⁄A 
 t

 s 

 ⇓ θ

 A 

 A⁄⁄⊗ ⁄⁄n  ⇓ φ
 r 

1 A ⇒
 ≅ 

The morphisms of  RAut representing  θ and  φ are

and
;

the morphism of  RAut representing the composite of  θ and  φ is precisely the composite
in  RAut of the representing morphisms.

=

Suppose, as another example of the calculus, that  θ is an extraordinary 2-cell from  t : I
aAX  to  s : A ⁄⁄⊗ ⁄⁄A¡ aAX⁄⁄,  and suppose  φ is an extraordinary 2-cell from  s : A ⁄⁄⊗ ⁄⁄A¡ aAX
to  r : A⁄⁄⊗ ⁄⁄A¡ aAX .  This means we have 2-cells

A⁄⁄⊗ ⁄⁄A¡ X

 I

e
 t 

s
 ⇓ θ A⁄⁄⊗ ⁄⁄A¡ X ⇓ φ

s

r
which paste along  s  to yield the composite extraordinary 2-cell from  t  to  r⁄⁄.  The
morphisms in  RAut representing these 2-cells are

and

which compose to give the former (since the latter is an identity morphism of  RAut).
As a final example of extraordinary composition, suppose  θ is an extraordinary 2-cell

from  t : I aAX  to  s : A ⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄A¡ aAX⁄⁄,  and suppose  φ is an extraordinary 2-cell
from  s  to  r : A⁄⁄⊗ ⁄⁄A¡ aAX .   This means we have 2-cells

A⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A¡ X

 I

e ⊗  e⁄⁄
 t 

s
 ⇓ θ

A⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A¡ X
s

A⁄⁄⊗ ⁄⁄A¡
 A⁄⁄⊗ ⁄⁄n ⁄⁄⊗ ⁄⁄A¡  ⇓ φ

r
and
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which paste along  s  and paste with the canonical isomorphism  (e⁄⁄⊗ ⁄⁄e)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄n ⊗ ⁄⁄A¡)  ≅ e
to yield a composite extraordinary 2-cell from  t  to  r.  In  RAut this is represented by the
fact that the composite of

and

is

=
.

Of course, it is also possible to consider the phenomenon of extraordinariness in a left
autonomous monoidal bicategory  M⁄;  for this, just reverse the tensor product in the right
autonomous case.   It becomes somewhat more interesting when  M is autonomous; that
is, is both left and right autonomous. The calculus here is governed by the free
autonomous monoidal category  Aut on a single generating object;  the morphisms are
represented by plane string diagrams which can make both left and right turns.  However,
the situation becomes much more interesting when  M is a pivotal monoidal bicategory;
that is, autonomous with the right and left duals coherently equivalent.  Pivotal structure
consists of an equivalence  iA : A aAA¡⁄¡,  pseudonatural in  A,  and an isomorphism

A¡⁄ A¡⁄¡⁄¡

A¡⁄

i  ⁄¡
A

 i A¡ ⁄

≅
1A¡ ⁄

 . 

In this case, we obtain not only a counit  e : A ⁄⁄⊗ ⁄⁄A¡ aAI  and unit  n : I aAA¡⁄⁄⊗ ⁄⁄A
expressing  A¡  as a right bidual for each  A,  but a counit  e' : A¡⁄⁄⊗ ⁄⁄A aAI  and unit  n' : I
aAA ⁄⁄⊗ ⁄⁄A¡  expressing  A¡  as a left bidual for  A.  The extraordinary composition calculus
here is governed by the free pivotal monoidal category  Pvt on a single generating object.
The morphisms here are again string diagrams in the plane, but now may contain
(directed) loops: for example, we may now compose  n : I aAA¡⁄⁄⊗ ⁄⁄A  with  e' : A¡⁄⁄⊗ ⁄⁄A aAI
to obtain an endomorphism of  I  represented by a loop:

A¡ A

.
We can either define these endomorphisms of  I,  represented by loops, as part of the
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composite of extraordinary 2-cells,  or,  restrict composition to those cases where no loops
arise.

3.  The example of extraordinary natural transformations
Let  V denote a cocomplete symmetric closed monoidal category. We remind the

reader of the autonomous monoidal bicategory  V-Mod of V-modules.  The objects are
(small) V-categories (in the sense of [EK]). The morphisms  M : A aAB  are V-functors  M :

B ⁄op⁄⁄⊗ ⁄A aAV⁄⁄.  The V-natural transformations  θ : M ⇒ N : B ⁄op⁄⁄⁄⁄⊗ ⁄⁄A aAV are the 2-cells

θ : M ⇒ N : A aAB  of  V-Mod⁄;  they are called module morphisms.  Vertical composition
of 2-cells is vertical composition of natural transformations.  The horizontal composite
N ⁄⁄⁄M : A aAC  of  M : A aAB  and  N : B aAC  is given by the coend formula

(⁄N ⁄⁄⁄M ⁄)(c⁄⁄,⁄⁄a)  =  
  
M b a N c b

b
( , ) ( , )⊗∫ ,

which is V-functorial in  M  and  N.  Each V-functor  f : A aAB  can be identified with the
module  f∗ : A aAB  having  f∗

⁄(b⁄⁄,⁄⁄a) = B⁄(b⁄⁄,⁄⁄f⁄a),  and this gives an inclusion  
V-CataAV-Mod.

(We are writing  V-Cat for the usual 2-category of small V-categories and writing  V-CAT⁄

when we drop the smallness requirement.)  Recall too that  f∗ : A aAB  has a right adjoint

f⁄∗ : B aAA  having  f∗ ⁄(a⁄⁄,⁄⁄b) = B ⁄(f⁄a⁄,⁄⁄b).  If  V is furthermore complete, for each small V-

category  B  there is a V-category  PB  and an equivalence of categories

V-CAT⁄(A⁄⁄,⁄⁄PB)     ~ V-Mod⁄⁄(A⁄⁄,⁄B).

With this we see that  V-Mod is biequivalent to the sub-2-category of  V-CAT consisting of
the objects of the form  PA  and the morphisms  PA aAPB  with right adjoints.  The
object assignments   (A⁄⁄,⁄⁄B) jAA ⁄⁄⊗ ⁄⁄B  and  A jAA ⁄op extend to pseudofunctors

⊗ : V-Mod × V-ModaAV-Mod and    ( )⁄op : V-Mod⁄op aAV-Mod.
The object  I  of  V-Mod is the unit for the tensor of  V regarded as a V-category with one
object  0.  The modules  e : A⁄⁄⊗ ⁄⁄A¡ aAI  and  n : I aAA¡⊗ ⁄A  are given by

e(0⁄⁄,⁄⁄a⁄⁄,⁄⁄b) = A(b⁄⁄,⁄⁄a)   and   n(a⁄⁄,⁄⁄b⁄⁄,⁄⁄0) = A(a⁄⁄,⁄⁄b).
This gives what is required to make  V-Mod an autonomous monoidal bicategory.  To
actually get a Gray monoid, we need to choose a skeletal category of sets, a strict monoidal
category equivalent to  V,  and use the method above to replace  V-Mod by a 2-category
(obtaining the V-Mog of [DS; Section 7]). With care, this can all be done with  V braided
rather than merely symmetric.

Let us examine what extraordinary 2-cells are in  V-Mod when the morphisms they go

between are in  V-Cat.  So, suppose  x : I aAX  and  f : A ⁄⁄⊗ ⁄⁄A¡ aAX  are V-functors; we
identify  x  with the object  x(0)  of  X.  An extraordinary 2-cell  θ from  x∗ to  f∗ is a module
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morphism  θ : x∗ e ⇒ f∗
⁄⁄.  These are in natural bijection with module morphisms  e ⇒ x∗ f∗

⁄⁄,
⁄⁄and these amount to families of morphisms ⁄⁄A(a'⁄⁄,⁄⁄a) aAX(x⁄⁄,⁄⁄f⁄⁄(a⁄⁄,⁄⁄a'))  V-natural in objects
a  and  a'  of  A.  Using the Yoneda lemma, we see that such families are in bijection with
families  x aAf⁄⁄(a⁄⁄,⁄⁄a)  extraordinarily V-natural in  the variable  a.

Next suppose  g : B¡⊗ ⁄B aAY  and  y : I aAY  are V-functors.  An extraordinary 2-cell
φ from  g∗ to  y∗ is a module morphism  φ : g∗ n ⇒ y∗ .  These are in natural bijection with

module morphisms ⁄⁄n ⇒ g∗ y∗
⁄⁄, ⁄⁄and these amount to families of morphisms ⁄⁄B(b⁄⁄,⁄⁄b')

aAY(g⁄⁄(b'⁄⁄,⁄⁄b)⁄⁄,⁄⁄y) ⁄⁄V-natural in objects  b  and  b'  of  B.  Using the Yoneda lemma, we see

that such families are in bijection with families ⁄⁄g⁄⁄(b⁄⁄,⁄⁄b) aAy ⁄⁄extraordinarily V-natural i n
the variable  b.

Similarly, in the more general case of V-functors  g : H⁄⊗ X⁄⊗ ⁄B¡⊗ ⁄B ⁄⊗ ⁄K aAY  and  f :
H⁄⊗ A ⁄⁄⊗ ⁄⁄A¡⊗ ⁄X⁄⊗ ⁄K aAY,  an extraordinary 2-cell  ψ from  g  to  f  amounts to a family of
morphisms  ψ ⁄⁄h, x, a, b, k : g(h, x, b, b, k) aAf⁄⁄(h, a, a, x, k)  in  Y  which is natural in  h, x  and
k,  and extraordinary natural in  a  and  b.  The Eilenberg-Kelly graph for this situation is

g(h, x, b, b, k)

f⁄⁄(h, a, a, x, k)

which we see precisely is the string diagram which represents the same morphism as
described above in the free right autonomous monoidal category  RAut generated by a
single object.

The bicategory  V-Mod is symmetric monoidal in the sense of [DyS] and hence pivotal.
So loops can occur.  The course of action taken in [EK1] was to forbid composition when
loops occur. The full functorial calculus of Eilenberg-Kelly can now be seen to be identical
with calculating in the free autonomous symmetric monoidal category  Autsym on a
single generating object (see [Dy2] for a construction, where autonomous symmetric
monoidal categories are called "compact closed");  a model of  Autsym was produced i n
[KL] where the morphisms are closely related to Feynman diagrams [BD].  The amazing
coincidence is that this study of  Autsym in [KL] was presumably in ignorance of its precise
relationship to the Eilenberg-Kelly calculus. 
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