

A 2-categorical version of a result mentioned by Lack on Wednesday 21 January 1998

We work in a 2-category which admits the following comma square.

$$\begin{array}{ccc}
 P & \xrightarrow{v} & B \\
 u \downarrow & \Rightarrow \lambda & \downarrow q \\
 A & \xrightarrow{p} & C
 \end{array}$$

Proposition If v has a right adjoint r with identity counit and with unit $\eta : 1_P \Rightarrow r v$ then the following is a comma square.

$$\begin{array}{ccc}
 P & \xrightarrow{v} & B \\
 u \downarrow & \Rightarrow u\eta & \downarrow u r = t \\
 A & \xrightarrow{1_A} & A
 \end{array}$$

Proof One adjunction triangle for $v \dashv r$ gives $v\eta = 1$ and hence the equality $(*)$ below.

$$(*) \quad \begin{array}{ccc}
 P & \xrightarrow{1} & P & \xrightarrow{p u} & C \\
 v \searrow \Downarrow \eta \quad \nearrow r \quad v \searrow \Downarrow \lambda \quad \nearrow q & & & & \\
 B & \xrightarrow{1} & B & \xrightarrow{q} & C
 \end{array} = \begin{array}{ccc}
 P & \xrightarrow{p u} & C \\
 v \searrow \Downarrow \lambda \quad \nearrow q & & \\
 B & \xrightarrow{q} & C
 \end{array}$$

Another consequence of $v \dashv r$ is that, for all arrows $f : X \rightarrow P$, $b : X \rightarrow B$, there is a bijection between 2-cells $\rho : f \Rightarrow r b$ and 2-cells $\beta : v f \Rightarrow b$ determined by the equations

$$\beta = v \rho, \quad \rho = r \beta \circ \eta f.$$

By the 2-cell property of the comma object P , the 2-cells $\rho : f \Rightarrow r b$ are in bijection with pairs of 2-cells $\alpha : u f \Rightarrow t b$, $\beta : v f \Rightarrow b$ such that the square $(**)$ below commutes.

$$(**)
 \begin{array}{ccc}
 & \xrightarrow{p u f} & \xrightarrow{\lambda f} & q v f \\
 & \downarrow p \alpha & & \downarrow q \beta \\
 p t b & \xrightarrow{\lambda r b} & q b
 \end{array}$$

The bijection is determined by the equations $\alpha = u \rho$, $\beta = v \rho$. It follows that, for each 2-cell $\beta : v f \Rightarrow b$, there exists a unique 2-cell $\alpha : u f \Rightarrow t b$ such that $(**)$ commutes.

Now we prove the 2-cell $u \eta$ has the claimed comma property. Take any 2-cell $\alpha : a \Rightarrow$

t b. By the comma property of λ , there exists a unique arrow $f : X \rightarrow P$ such that

$$\begin{array}{ccccc}
 X & \xrightarrow{f} & P & \xrightarrow{v} & B \\
 u \downarrow & \xrightarrow{\lambda} & \downarrow q & & \\
 A & \xrightarrow{p} & C & &
 \end{array} = \begin{array}{ccccc}
 X & \xrightarrow{b} & B & \xrightarrow{q} & C \\
 a \downarrow & \xrightarrow{\alpha} & t \downarrow & \xrightarrow{\lambda r} & \\
 A & \xrightarrow{1_A} & A & \xrightarrow{p} & C
 \end{array}$$

So α satisfies $(**)$ with $\beta = 1$. By $(*)$, the 2-cell $u \eta f$ also satisfies $(*)$ as the α with $\beta = 1$. So $\alpha = u \eta f$, as required. If $u \eta f = u \eta g$ for some g , the equality $(*)$ gives $\lambda f = \lambda g$, so, by the comma property of λ , we obtain $f = g$. So f is unique with $\alpha = u \eta f$.

The further 2-cell property required of $u \eta$ is immediate. **Q.E.D.**