THE CANTOR-LAWVERE DIAGONAL ARGUMENT

ROSS STREET*

Let \mathscr{C} denote a category equipped with a functor $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$. A *comagma* in \mathscr{C} is an object X equipped with a morphism $\delta_X : X \to X \otimes X$. A morphism $u : X \to Y$ is a *comagma morphism* when $\delta_X \circ u = (u \otimes u) \circ \delta_Y$.

Suppose A is a comagma. The Lawvere property at an object T for a morphism $g: A \otimes A \to Y$ asserts that, for all $f: A \to Y$, there exists a morphism $x: T \to A$ such that $g \circ \delta_A \circ x = f \circ x$.

Proposition 0.1. Suppose A is a comagma in the monoidal category \mathscr{C} and $g: A \otimes A \to Y$ has the Lawvere property at T. Then, for all $t: Y \to Y$, there exists $y: T \to Y$ with $t \circ y = y$.

Proof. Apply the Lawvere property to $f = (A \xrightarrow{\delta_A} A \otimes A \xrightarrow{g} Y \xrightarrow{t} Y)$ to obtain a comagma morphism $x : T \to A$ such that $g \circ \delta_A \circ x = f \circ x$. Take $y = (T \xrightarrow{x} A \xrightarrow{\delta_A} A \otimes A \xrightarrow{g} Y)$ so that

$$y = g \circ \delta_A \circ x = f \circ x = t \circ g \circ \delta_A \circ x = t \circ y ,$$

as required.

References

 F. William Lawvere, Diagonal arguments and cartesian closed categories, *Reprints in Theory and Applications of Categories* 15 (2006) 1–13; originally published as: *Lecture Notes in Mathematics* 92 (Springer, Berlin, 1969) 134– 145.

MATHEMATICS DEPARTMENT, MACQUARIE UNIVERSITY, SYDNEY, AUSTRALIA E-mail address: <ross.street@mq.edu.au>

Date: July 18, 2023.

¹⁹⁹¹ Mathematics Subject Classification. 18M05, 18M80.

Key words and phrases. monoidal category; diagonal argument.

^{*}The author gratefully acknowledges the support of Australian Research Council Discovery Grant DP190102432.