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The purpose of this note is to provide a gentle1 introduction to operads and other

related areas of contemporary mathematics by concentrating on an important example: the

process of parenthesising. 

The bracketing2 of a string  abcde  of entities  a, b, c, d, e  should produce a new entity

(abcde).  This example shows bracketing as an operation of arity 5.  We do not allow  ( )  or

(a).  This leads us to the following notion of universal algebra.  A parengebra is a set  A

together with, for all  n ≥ 2,  exactly one n-ary operation

bn : A⁄naAA

subject to no axioms. Let  K denote the category of parengebras and their homomorphisms.

The general associativity law implies that every semigroup is canonically a parengebra.  In

particular,  we have the parengebra  N of natural numbers under addition  

bn (m1 , . . . , mn⁄) = m1 + . . . + mn.
Write  F(X)  for the free parengebra on the set  X.  The elements of  F(X)  are built up

iteratively as follows:

(i)  each  xŒX  is in  F(X);

(ii) if  a1 , . . . , anŒF(X)  for  n ≥ 2  then  bn (a1 , . . . , an)ŒF(X).

Writing  (a1 . . . an)  for  bn (a1 , . . . , an),  we can imagine elements of  F(X)  as words in  X

(that is, elements of the free monoid  X⁄* on  X)  with brackets meaningfully inserted.  This

provides the left adjoint functor  F : Set aAK to the forgetful functor  U : K aASet  into

the category  Set  of small sets.  Let  K = U ∞ F : Set aASet  be the monad on  Set  generated

by the adjunction  F J U.  As with any forgetful functor from a category of universal

algebras,  the functor  U : KaASet  is monadic;  we have an isomorphism of categories

K @ Set⁄K,

where  Set⁄K is the category of Eilenberg-Moore K-algebras. The concepts needed here can be

found in [ML].  

Consider the functor  R : Set aASet  given by the power series  

1

1 A first course in category theory should be a sufficient prerequisite.
2 We use the word “bracket”, interchangeably with “parenthesis”, for the symbols  (  and  ); the former word

conjugates better.  For us, the symbols  [  and  ]  are “square brackets”.



  
R X X n

n

( ) .=
≥

Â
2

As with any endofunctor, an R-algebra is an object  A  of the category  (Set  in this case)

together with an arrow  b : R(A) aAA,  which in this case is the same as a parengebra.

Write  Set⁄R for the category of R-algebras; we have the trivial identification:

K =  Set⁄R .

It follows that  K  is the free (pointwise) monad on the endofunctor  R.  As such,  K  is

expressible as a power series; that is, there is a sequence  k0 , k1 , k2 , . . .   of sets and a

natural bijection

K(X)  @ k0 +  k1 ¥ X  +  k2 ¥ X⁄2 +  k3 ¥ X⁄3 +  . . .   .

We can take the set  kn to consist of meaningfully bracketed words of length  n.  More

precisely, we can find the sets  kn using the philosophy of clubs [K1].  This leads to the

expectation that the functor  K  can be recaptured from the free parengebra  k = F(1)  on the

singleton set  1  augmented by some “grounding” homomorphism.  Let  g : k aAN be the

unique parengebra homomorphism taking the element of the generating set  1  to the

natural number  1.  This gives a grading of  k  according to the number of occurrences of

the generator in the bracketed word; that is,

kn = g ⁄-1⁄⁄(n). 

For any set  X,  the iterative construction of  F(X)  given by (i), (ii) can be interpreted as

a bijection

K(X)   @ X  +  K(X)⁄2 +  K(X)⁄3 +  K(X)⁄4 +  K(X)⁄5 +  .  .  .     .

These are the components of a natural isomorphism

K  @ 1Set +  R ∞ K

between endofunctors of  Set.  Moreover, we can apply a virtual sets argument to the

bijection of the last paragraph to obtain a “formula” for the  kn as mere sets.  Put  Y = K(X)

so that the bijection becomes:

Y   @ X  +  Y⁄2 +  Y⁄3 +  Y⁄4 +  Y⁄5 +  .  .  .   @ X  +  Y⁄2 ¥ (1 – Y)⁄-1.

Multiplying on the right by (1 – Y)⁄-1 and rearranging, we obtain the quadratic isomorphism

2 Y⁄2 –  (1 + X) ¥ Y  +  X   @ 0 .   

Solving by radicals and choosing the meaningful minus sign, we obtain

Y  @   
1
4

21 1 6
1
2( ( ) )+ - - +X X X .

Applying the binomial theorem,  we deduce a bijection

K(X)  @ X  +  X⁄2 +  3 X⁄3 +  11 X⁄4 +  45 X⁄5 +  .  .  .     .

If the reader is suspicious of virtual sets, at least this argument is valid in terms of

generating functions and so gives the cardinalities of  k0 , k1 , k2 , k3 , k4 , k5 , . . .  as  

0, 1, 1, 3, 11, 45, . . .   .
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As an example, we see that for  k4 there are the eleven bracketings occurring as in the

Stasheff pentagon K4 :

(((ab)c)d)

((ab)(cd))

(a(b(cd)))

((a(bc))d) (a((bc)d))

(abcd)

((ab)cd) (ab(cd))

((abc)d)

(a(bc)d)

(a(bcd))

From this cell complex representation, we see that it is natural to define the dimens ion of

an element  aŒF(X)  to be  n–2  where  n  is the largest natural number for which  bn occurs

in the iterative construction of  a  from elements of  X.  It is also natural to define the

boundary ∂(a)  of  aŒF(X)  to be the subset of  F(X)  consisting of those elements obtained

from  a  by meaningfully inserting precisely one further pair of brackets.  There is a partial

order on  F(X)  generated by  a £ b  if  aŒ∂(b).  The dimension  n  of  aŒF(X)  is the length of a

maximal descending chain  a > a1 > a2 > . . . > an.

The Stasheff pentagon arose in homotopy theory, specifically, in studying the structure

borne by loop spaces.  This study was further advanced by May [M] who introduced the

concept of operad.  We shall see that our sequence  k = (⁄⁄kn⁄⁄)  of sets is indeed a planar (or

non-permutative) operad.  

Given two sequences  p, q  of sets, we define their substitution product p ∞ q  to be the

sequence of sets

    
( ) . . . .

. . .

p q p q qn i m m
m m n

i

i

o = ¥ ¥ ¥
+ + =

Â 1

1

We regard a sequence  p  of sets as a functor from the discrete category  N ,  whose objects

are natural numbers, to the category  Set.  The substitution product defines a monoidal

structure on the category  Set⁄N of sequences of sets; the unit for substitution is the

sequence  u  with  u1 a singleton set and  un = ∆ for  n π 1.  

A (planar) operad t  is a monoid for the substitution product on  Set⁄N.  Notice that the

unit for such a monoid is an element  1Œt1 and the multiplication amounts to a collection

of functions

  t t t ti m m mi
¥ ¥ ¥ ¥

1 2
. . . aaA

  tm m mi1 2+ + +. . . ,

whose value at  (t ⁄, t1 ⁄, . . . , ti ⁄⁄)  is denoted by  t ⁄⁄⁄[t ⁄1 ⁄, . . . , t ⁄i ⁄⁄] ,  called the result of substituting

t1 ⁄, . . . , ti ⁄⁄ in  t,  such that
1⁄⁄⁄[t1] = t1 ,   t ⁄⁄⁄[1⁄, . . . , 1⁄⁄] = t ,

  
t t t t t t t t t t t t t t[ [ , . . . , ], . . . , [ , . . . , ]] [ , . . . , ][ , . . . , , . . . , , . . . , ]1 11 1 1 1 11 1 11 1 1j i i i j i j i i j i

= .

An operad morphism is just a monoid morphism in  Set⁄N with substitution tensor

product.
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Example 1 Let  A be a monoidal category.  Each object  A  of  A gives rise to an operad  t

= A (A),  where  tn = A (Aƒn,⁄⁄A),  and substitution

    A A A A( , ) ( , ) . . . ( , ) ( , )A A A A A A A Ai m m niƒ ƒ ƒ ƒ¥ ¥ ¥ æ Ææ1

is given by   (f⁄⁄, g1 ⁄⁄, . . . , g⁄⁄i ⁄⁄) jaAf ∞ (g1 ƒ . . . ƒ g⁄⁄i ⁄⁄).  The distinguished element of  t1 is of

course the identity arrow of  A. 

Example 2 Every operad  t  determines a strict monoidal category  Vt as follows.  The

objects are the natural numbers and the homsets are given by

    

Vt m m
m m m

m n t t
n

n

( , ) . . .
. . .

= ¥ ¥
+ + =

Â 1

1

.

Composition

Vt (n⁄,⁄⁄j ⁄) ¥ Vt (m⁄,⁄⁄n ⁄) aAVt (m⁄,⁄⁄j ⁄) 

takes  
  
( , . . . , , ,. . . , )t t t tn n m mj n1 1

Œ
  
t t t tn n m mj n1 1

¥ ¥ ¥ ¥ ¥. . . . . . to

  
( [ , . . . , ], [ , . . . , ], . . . , [ , . . . , ] )t t t t t t t t tn m m n m m n m mn n n n j n n nj1 1 2 1 1

1 1 1 2
+ + - +

where  m 1 + . . . + m n = m  and  n1 + . . . + n ⁄j = n.  The tensor product of  Vt is given on

objects by addition and on homsets

Vt (m⁄,⁄⁄n) ¥ Vt (i⁄,⁄⁄j) aAVt (m+i⁄,⁄⁄n+j⁄)

by  
  
(( , . . . , ),( ,. . . , ))t t t tm m i in j1 1

jaA
  
( , . . . , , ,. . . , )t t t tm m i in j1 1

.  Clearly we recapture the

original operad  t  from the object  1ŒVt by the construction of Example 1.  Furthermore,

for any strict monoidal category  A and  AŒA ,  the operad morphisms  f : t aAA (A)  are

in bijection with the strict monoidal functors  M :  Vt
aAA with  M(1) = A;  the bijection is

determined by putting  M(n) = Aƒn and taking the effect of  M  on the homsets  Vt
⁄(n⁄,⁄⁄1)

aAA (M(n),⁄⁄M(1))  to be  f n⁄.      

Each operad gives rise to a monad.  To see this, we identify each natural number  nŒN

with the set  {0, 1, . . . , n–1} and so obtain the natural sequence  nat : N aASet. Left Kan

extension along the functor  nat  gives a functor

Ser :  Set⁄N aASet⁄Set

given by  Ser(p) = P,  where

  
P X p Xn

n

n

( ) = ¥
≥

Â
0

is the power series with coefficient sets  pn , n ≥ 0.  There is a monoidal structure on the

category  Set⁄Set of endofunctors of  Set  given by composition of functors.  A standard
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calculation with power series shows that  Ser  is a strong monoidal functor; that is, it

coherently preserves the monoidal structures: 

if  P = Ser(p), Q = Ser(q)  then  P ∞ Q @ Ser(p ∞ q);  also,  

Ser(u)  is isomorphic to the identity functor. 

It follows that monoids  t  in  Set⁄N are taken to monads  T = Ser(t)  on the category  Set.  A n

algebra for the operad t  is defined to be an Eilenberg-Moore algebra for the monad  T =

Ser(t).

Besides substitution product, there are of course other useful operations on sequences

of sets. The s u m p + q  of sequences  p, q  is given pointwise by  (p + q)n = pn + qn ;  this is

the coproduct of  p, q  in the category  Set⁄N and, likewise, infinite sums can be considered.

The convolution product p * q  of  p, q  is given by  (p * q)n =
  

p qi j
i j n

¥
+ =
Â .    It is easy to see

that the functor  Ser :  Set⁄N aASet⁄Set takes sum to coproduct and convolution product to

product.  We can identify each set  z  with the sequence  z  given by  z0 = z  and  zn = 0  for

all  n > 0.  Then each sequence  p  of sets can be decomposed as a power series

p  @
  

p un
n

n

≥

*Â *
0

where    u
n* is the n-fold convolution power of the unit  u  for substitution product.

Example 3 Let  u ⁄* denote the terminal sequence of sets; that is, each set in the sequence is

a singleton.  This clearly has a unique operad structure.  The monad  Ser(u⁄*)  on  Set  is

given by the full geometric series

  
X X n

n

*

≥
= Â

0

.

The elements of  X⁄* are written as words in the alphabet X.  The algebras for the terminal

operad are the Eilenberg-Moore algebras for the geometric series monad, and so are

monoids (in  Set  with cartesian product). 

Example 4 Let  z  be any set.  Consider the sequence  z + u  of sets given by

  

( )
.

z u
z for n

for n
for n

n+ =
=
=
>

Ï
Ì
Ô

Ó
Ô

0
1 1
0 1

There is a unique operad structure on  u + z  for which the substitution  (z + u)1 ¥ (z + u)0
aA(z + u)0 is the second projection.  The monad  Ser(z + u)  takes  X  to the monic

polynomial  z + X  of degree 1.  The monad structure on  Ser(z + u)  is induced by the

canonical monoid structure on the arbitrary set  z  with respect to the coproduct as tensor

product on  Set.  The algebras for the operad  z + u  are sets  A  together with a function
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z + A aAA  whose restriction to  A  is the identity;  that is, the algebras amount to

functions  z aAA  out of  z.  The category of algebras is the category  z/Set  of sets under  z.   

Example 5 Any monad  T  on  Set  admits a distributive law [Bk] with the monad

Ser(z⁄⁄+ ⁄⁄u)  of Example 4; that is, there is a natural transformation l : Ser(z⁄⁄+ ⁄⁄u)⁄⁄∞⁄⁄T
aAT ⁄⁄∞⁄⁄Ser(z⁄⁄+ ⁄⁄u)  satisfying axioms ensuring that  T  lifts to a monad on  Ser(z⁄⁄+ ⁄⁄u)-algebras,

and that  T ⁄⁄∞⁄⁄Ser(z⁄⁄+ ⁄⁄u)  gains a monad structure whose algebras are the same as the algebras

for the lifted monad; in this case, the category of these algebras is just the category  z/Set⁄T

of T-algebras under  z.  The component  lX :  z + T(X) aAT(z + X)  of  l at  X  is constructed

from the unit of  T  at  z  and  T  of the inclusions of  z,  X  in  z + X.  Suppose now that  T =

Ser(t) ⁄⁄for some operad  t.  Then  T ⁄⁄∞⁄⁄Ser(z⁄⁄+ ⁄⁄u) = Ser(t⁄⁄∞⁄⁄(z⁄⁄+ ⁄⁄u))  for the operad  t⁄⁄∞⁄⁄(z⁄⁄+ ⁄⁄u)

calculated as follows:

    
( ( ))( ) ( )T Ser u z X t z Xn

n

n

o + = ¥ +
≥

Â
0

  
= ¥

Ê
ËÁ

ˆ
¯̃

¥
£

-

≥
ÂÂ t

n
m

z Xn
m n

n m m

n 0

  
= ¥

Ê
ËÁ

ˆ
¯̃

¥
£

-

≥
ÂÂ t

n
m

z Xn
m n

n m m

n 0

   = +Ser t z u X( ( ))( )o

where  
    
( ( ))t z u

n m
m

t zm
n

n m
no + =

+Ê
ËÁ

ˆ
¯̃

¥
£

+Â
0

.  We shall not bother explicitly describing the

substitution operation of  t⁄⁄∞⁄⁄(z⁄⁄+ ⁄⁄u)  except in the special case of the next example.

Example 6 As a particular case of Example 5, take  t = u ⁄* to be the terminal sequence as

discussed in Example 3.  Then  T⁄⁄∞⁄⁄Ser(z⁄⁄+ ⁄⁄u)  is the monad given by  

(T⁄⁄∞⁄⁄Ser(z⁄⁄+ ⁄⁄u))(X) = (z + X)⁄*.  

The operad  t⁄⁄∞⁄⁄(z⁄⁄+ ⁄⁄u) = ⁄(z⁄⁄+ ⁄⁄u)⁄* is given by taking  (z⁄⁄+ ⁄⁄u)⁄*m to consist of those elements of

the free monoid  (z + 1)⁄* which are words in elements of  z  and the symbol  0  with exactly

m  occurrences of  0.  For we have the natural bijection     

(z + X)⁄* @
  

( )z u Xm
m

m

+ ¥*

≥
Â

0

a0 x1 a1 x2 a2 . . . am-1 xmam 
SaraA ( (a0 0 a1 0 a2 . . . am-1 0 am), (x1, x2, . . . , xm) )

where the  a0, a1, . . . , amŒz⁄* and  x1, x2, . . . , xmŒX. We have the substitution functions  

  ( ) ( ) ( ) . . . ( )z u z u z u z ui m m mi+ ¥ + ¥ + ¥ ¥ +* * * *
1 2

aaA
  ( ) . . .z u m m mi+ *

+ + +1 2

(a, b1 , . . . , bi)  jaaA a0 b1 a1 b2 a2 . . . ai-1 bi ai

where  a =  a0 0 a1 0 a2 . . . ai-1 0 ai .  The distinguished element of  (z⁄⁄+ ⁄⁄u)⁄*1 is of course  0Œ1.  
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Proposition 1 Free monads on power series endofunctors o f Set  are all of the f o r m

Ser(t)  for an operad t.

This will follow from Proposition 2 which we lead in to by recalling the result of

Michael Barr (see [K3]) that the free monad on any endofunctor  P  on  Set  is the monad

generated by the underlying functor Set⁄PaASet  from the category of P-algebras and its left

adjoint.  Let  P  be a power series endofunctor of  Set  with coefficients given by the

sequence  p  of sets.  We regard the elements of  pn as n-ary operations.  A P-algebra is a set

A  together with, for each  nŒN and each  wŒpn,  a function  A ⁄n aAA  which is also

denoted by  w.  The left adjoint of underlying functor  Set⁄P aASet  can be described

iteratively as we did earlier for the case  P = R.  Then the adjunction generates the free

monad on  P.  We shall give another construction3 related to Example 6.

Consider the free monoid ⁄⁄(P(1)⁄⁄+ ⁄⁄X)⁄* ⁄⁄on the set ⁄⁄P(1)⁄⁄+ ⁄⁄X ⁄⁄and regard the set ⁄⁄Z ⁄⁄of

integers as a monoid under addition. Let ⁄ ( ) : (P(1)⁄⁄+ ⁄⁄X)⁄*aAZ ⁄⁄be the monoid hom

morphism given on generators by:

  x = –1  for all  xŒX      and       w = n–1  for all  wŒpn .

Call  aŒ(P(1)⁄⁄+ ⁄⁄X)⁄* well formed when

(i)      a = –1,   and

(ii)   a = b c   implies     c < 0.

Let  W p⁄(X)  denote the subset of  (P(1)⁄⁄+ ⁄⁄X)⁄* consisting of the well-formed words.  We can

equip  Wp⁄(X)  with the structure of P-algebra by defining

w (a1 , . . . , an) = w a1 . . . an

for all  wŒpn and  a1 , . . . , anŒW p⁄(X).  To see that  w a1 . . . an is well formed notice that

(i)      w wa a a a nn n1 1 1 1 1 1. . . . . . ( ± ) (± ) . . . (± )= + + + = + + + = - and

(ii)  if  ai = b c,  then    ca a c a a c c i ni n i n+ += + + + = + - + + - = + - <1 1 1 1 0. . . . . . ( ) . . . ( ) ( ) .

Proposition 2 W p⁄(X)  is the free P-algebra on the set X.

Proof Given a function  f : X aAA  into a P-algebra  A,  we must show that there exists a

unique extension of  f  to a P-algebra homomorphism  g : W p⁄(X) aAA.  That is, we must

show that the equations

g⁄(x) = f⁄(x)  for  xŒX,

g⁄(w a1 . . . an)  =  w ⁄⁄(g(a1), . . . g(an))   for  wŒpn and  a1 , . . . , anŒW p(X),

7

3 The criterion for when an expression in a universal algebra, written in Polish notation, is well formed I
learned from Samuel Eilenberg.  I believe it is an exercise in Bourbaki.



uniquely determine  g  satisfying the equations.  To define  g(a)  for  aŒW p⁄(X),   we use

induction on the number  r  of occurrences of elements of  P(1)  in the word  a.  By well

formedness, if  r = 0  then  aŒX  and the definition  g(a) = f⁄(a)  is forced.  Suppose  r > 0.  By

well formedness,  a  must have length  > 1;  so put  a = t b  where  tŒX+P(1).  But    b < 0 and

  t b+ = -1;  so    t > -1;  so  tŒpn for some  n = –  b and we can write  b = c1 . . . cn where

  c cn1 1= = = -. . . .  Since  a  is well formed, it follows that  c1, . . . , cnŒW p⁄(X).  Define

g⁄(a)  =  w ⁄⁄(g(c1), . . . g(cn)) 

as we are forced to, and can do since each  c⁄i has fewer than  r  occurrences of elements of

P(1).  It remains to prove that  g  is a P-algebra homomorphism, but that is a direct

inductive argument.  Q. E. D.

To construct the operad from  W p⁄,  notice that  N becomes a P-algebra by taking each

n-ary operation to be n-fold addition.  Then we obtain a P-algebra homomorphism

g :  Wp⁄(1)  aAN

which restricts to the function  1 aAN whose value at the one element  0  of  1  is  1ŒN .

So  g (a)  is the number of occurrences of the element  0  of  1  in the word  a.  Let  tn = g ⁄-1⁄⁄(n)

be the fibre of  g over  n.   If we put  z = P(1) = p0 + p1 + p2 + . . . we see that  W p⁄ is a

submonad of the monad  Ser(z⁄⁄+ ⁄⁄u)⁄* described in Example 6.  Furthermore, the gradings

are respected so that  t  is a suboperad of  (z⁄⁄+ ⁄⁄u)⁄*. 

Corollary 1 The operad t  is free on the sequence p  of sets.  The m o n a d T = Ser(t)  is

free on the endofunctor P.

Proof Suppose  o  is an operad and  qn : pn
aAon are functions for all  n ≥ 0.  We can

make  
  

om
m≥
Â

0

into a P-algebra by defining, for each  wŒpn,  a function

w :   
  
( ) . . .

, . . . ,

o o om
m

n
m m

m m
n

n≥
Â Â= ¥ ¥

0
1

1

aaA

  
om

m≥
Â

0

by  w(u 1, . . . , u n) = qn(w)[u 1, . . . , u n].  By Proposition 2, there is a unique P-algebra homo-

morphism  f : W p(1) aA

  
om

m≥
Â

0

determined by  f (0) = 1Œu1.  This clearly respects the

gradings and so gives functions  f n : tn
aAon .  Since  f is a P-algebra homomorphism, the

functions  f n⁄⁄, nŒN ,  commute with the substitution operations and  f 1 preserves the

distinguished object.  So  (f n)  is the unique operad morphism extending  (qn). 

The free monad on the endofunctor  P  on  Set  is the monad generated by the

underlying functor Set⁄P aASet  and its left adjoint.  By Proposition 2, this left adjoint is
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provided by  W p
⁄.  It is easily seen that the monad structure transports across our

isomorphism  Wp @ Ser(t)  to the monad structure induced by the operad  t. Q. E. D.

In particular, taking the sequence  r  of sets given by   rn = 0  for  n = 0, 1  and  rn = 1  for

n ≥ 2,  so that the power series endofunctor  Ser(r)  is  R,  we obtain a parengebra

isomorphism

W r ⁄⁄(X)  @ F(X),

an operad structure on  k  producing the monad structure on  K = Ser(k).  (A topological

version of  k  is the Stasheff A•-operad.)

We shall make a connection with free monoidal categories on certain4 tensor schemes

[JS].  Take  pŒSet⁄N. Consider the tensor scheme  Dp with one object  D  and one arrow

w :  Dƒn aAD
for each natural number  n  and each  wŒpn.  We represent the arrow  w by a planar string

diagram where there are  n  input strings above the node  w and  1  output string below5.    

w

∑ ∑ ∑

Let  Dp
⁄* denote the free strict monoidal category on the tensor scheme  Dp :  the objects are

of the form  Dƒn for  nŒN and the arrows can be identified with the deformation classes of

planar string diagrams generated by those representing arrows of  D.  Write  Mon(Dp
⁄*, Set)

for the category of (strong) monoidal functors from the monoidal category  Dp
⁄* to  Set

with its cartesian monoidal structure.  Clearly there is an equivalence of categories

Set⁄P ahAMon(Dp
⁄*, Set).  

Corollary 2 If t  is the free operad on the sequence p  of sets then there is a mono ida l

i somorph i sm

Dp
⁄* akAVt

taking D  t o 1  and w : DƒnaAD  t o w0 . . . 0Œtn = Vt (n⁄,⁄⁄1)  f or wŒpn. 

Proof We must prove that, given a strict monoidal category  A ,  an object  A  of  A ,  and

9
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5 Here we take the progressive direction to be downward which is opposite to [JS] but the same as [S].



an arrow  fw : Aƒn aAA  for each  wŒpn,  there exists a unique strict monoidal functor  M :

Vt
aAA with  M(1) = A  and  M(w0 . . . 0) = fw.   Since  t  is the free operad on  p,  there is a

unique operad morphism  f : t aAA (A)  (see Example 1)  whose restriction to  p  is given

by  w jAfw.  By Example 2,  this operad morphism determines a strict monoidal functor  M

as required. Q. E. D.

The arrows of  Dp
⁄* can be identified with p-labelled (planar) forests. To see this, recall

from [JS] how the general string diagrams are built from the generators in  Dp.  We take

some arrows from  Dp and some identity strings and tensor them; this amounts to placing

the representing string diagrams next to each other.  Here are two examples.

Next we stack such diagrams vertically splicing each lower loose string of one diagram with

precisely one upper loose string of the diagram below.  The two example diagrams are

composable and the composite is represented as follows.

But such a planar diagram can be replaced by a more combinatorial structure. We can
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represent this last composite by a diagram

where we have removed the bottom loose strings, put square nodes on the top loose

strings, and shortened the strings so that they connect nodes of consecutive height. W e

must remember that, although we have omitted it from the diagram, each round node

with  n  strings attached at top is labelled by an element of  pn.  The structure that arises i n

this way is precisely a planar forest; that is, a functor  f  :  [k]⁄op aAD where  D is the

category whose objects are the linearly ordered sets  [k] = {0, 1, . . . , k}6 and whose arrows are

order-preserving functions.  Such a functor gives linearly ordered sets  f⁄(i)  for  0 £ i £ k

(whose elements are called vertices of  f⁄ of height i ⁄)  and order-preserving functions  f⁄i ⁄ :

f⁄(i+1) aAf⁄(i)  for  0 £ i < k.  In our example,  f⁄(0) = [5],  f⁄(1) = [6],  f⁄(2) = [7],  f⁄0 ⁄(0) = f⁄0 ⁄(1) = 1,

f⁄0 ⁄(2) = f⁄0 ⁄(3) = f⁄0 ⁄(4) = 3,  f⁄0 ⁄(5) = f⁄0 ⁄(6) = 5,  f⁄1 ⁄(0) = f⁄1 ⁄(1) = f⁄1 ⁄(2) = 0,  f⁄1 ⁄(3) = f⁄1 ⁄(4) = 3,  f⁄1 ⁄(5) = f⁄1 ⁄(6)

= f⁄1 ⁄(7) = 6.  A forest  f : [k]⁄op aAD is called a tree when  f⁄(0) = [0].  Each forest can be

identified with a linearly ordered set of component trees: the number of component trees is

n  where  f⁄(0) = [n–1]. 

For a forest  f  :  [k]⁄op aAD of height k,  a vertex  v Œf⁄(i)  is called a leaf when the fibre

of  f⁄i ⁄ over  v  is empty.  Notice in our example that the square nodes are all leaves; but

there are also two round nodes that are leaves.  Let  p  be a sequence of sets.  A labelling of a

forest  f  in  p  assigns to each vertex  v Œf⁄(i),  which is not a leaf, an element  w(v)Œpn

where  n > 0  is the cardinality of the fibre of  f⁄i ⁄ over  v,  and assigns to some leaves  v Œf⁄(i),

which are not of height  k,  an element  w(v)Œp0.  A leaf which is not labelled will be called

fallen; so all leaves of height  k  are fallen.  A forest together with a labelling in  p  will be

called a  p-forest.

This leads to our new view of the strict monoidal category7 Dp
⁄*.  We see that the

arrows   DƒmaADƒn can be identified with p-forests having  m  fallen leaves and  n

vertices of height  0.  The tensor product of two p-forests is given by placing them next to

each other in the plane; we shall not describe it combinatorially.  Composition is given by

grafting: we shall just give an example.  Let us take the following example of two

11
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composable p-forests.

h

a b g d

e z q

bl

q

m

Their composite is the following p-forest in which the component trees of the top forest are

grafted on at the fallen leaves of the bottom forest.

bl

q

mh

a

b

g d

e

z

q

From this, we deduce another view of the free operad  t  on  p  in which elements of  t⁄n are

identified with p-trees with n fallen leaves.

A view of  Dp
⁄* that even a computer can understand can be obtained using rewrite

systems [S].  The basic p-forest
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  •    •    •  

l  fallen leaves

w

  •    •    •  

m  fallen leaves

  •    •    •  

 r  fallen leaves

can be identified with triplets  (l , w , r)  where  l, m, r  are natural numbers and  wŒpm .

Consider the directed graph  Gp whose vertices are natural numbers and whose edges are

the expressions

(w , r) :  a aAb

where  a, b, r  are natural numbers such that  r < b £ a + 1  and  wŒpm where  m = a – b + 1.

The idea is that each  wŒpm is regarded as the name of a (first-order) rewrite rule and  (w , r)

:  a aAb  represents an allowable application of the rule;  l = b – 1 – r  and  r  are the left and

right “whiskers”, respectively.  We introduce some (second-order) rewrite rules on directed

paths in the graph  Gp.    

  

a
r

b
r

c

a
r a b

a b c
r

c
for r r

( , ) ( ©, ©)

( ©, © ) ( , )
©.

w w

w w
æ Ææ æ æ Ææ ææ

+ -æ Ææ æ æ æ ææ - + æ Ææ æ
<

It is easy to see that the p-forests corresponding to the top and bottom of this rewrite rule

are equal.  Two directed paths in  Gp with same source and target are said to be equivalent

when there is a sequence of applications of the (second-order) rewrite rules which takes

one path to the other.  A directed path

  a
r

a
r r

a
n n

n0
1 1

1
2 2

( , ) ( , )
. . .

( , )w w w
æ Ææ ææ æ Ææ ææ æ Ææ ææ

is said to be in normal f o r m when  r⁄i ≥ r⁄i+⁄1 for  1£ i < n.  Each directed path is equivalent to

a unique path in normal form; indeed, the normal form can be achieved by directed

applications of the (second-order) rewrite rules (the proof of confluence and termination is

similar to the case considered in [S]).

In this way, we obtain a strict monoidal category isomorphic to  Dp
⁄*.  The objects are

natural numbers and the arrows are equivalence classes of directed paths in  Gp.  The

composition is induced on equivalence classes by concatenation of paths.  The tensor

product  a ƒ b  is given on objects  a, b  by addition  a + b  of natural numbers.  The functor

c ƒ –  is given on arrows by    
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c ƒ [(w ⁄n, r⁄⁄n) ∞ . . .  ∞ (w1, r1)]  =  [(w ⁄n, r⁄⁄n) ∞ . . .  ∞ (w1, r1)]

and the functor  – ƒ d  is given on arrows by

[(w ⁄n, r⁄⁄n) ∞ . . .  ∞ (w1, r1)] ƒ d  =  [(w ⁄⁄n, r⁄⁄n + d) ∞ . . .  ∞ (w1, r1 + d)];

the tensor product   p ƒ r :  a ƒ c aAb ƒ d  of two arrows  p : a aAb,  r : c aAd  is then

given by either route around the following square, the commutativity of which is precisely

what we have achieved by our equivalence relation on paths.   

a ƒ c b ƒ c

b ƒ da ƒ d

 p ƒ c

p ƒ d

b ƒ ra ƒ r

We now want to define an order inspired by the order on  F(X)  coming from the

Stasheff polytopes.  Suppose the sequence  p  of sets is equipped with a “substitution into

the i-th position” operation  

subi : pm ¥ pn
aA pm + n – 1

for  1 £ i £ m,  written  subi(w ⁄⁄,⁄⁄t) = w Ÿit ⁄⁄.  This allows us to define an order on the sets

W p(X).  Let  £  be the smallest reflexive transitive relation such that  awbtc £ a(w Ÿit)bc

whenever  w, tŒP(1)  and  b  is a product of  i ⁄⁄– ⁄⁄1  well-formed elements of the monoid

(P(1)⁄⁄+ ⁄⁄X)⁄*.  Notice that, under these conditions,  awbtc  is well formed iff  a(w Ÿit)bc  is well

formed.  Also, the order is antisymmetric and satisfies the ascending chain condition (since

the length of the word  a(w Ÿit)bc  is one less than the length of  awbtc).  The number of

elements of  X  occurring  in the word  awbtc  is the same as in  a(w Ÿit)bc;  so the order

respects the grading  g :  W p⁄(1)  aAN ,  yielding a sequence  t  of partially ordered sets  tn ,

n ≥ 0.        
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