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The purpose of this short note is to give a categorical view of some connections
among braids, permutations and group automorphisms; it was prompted by the

interesting survey [V].
The braid group B,, of Artin has a familiar presentation in terms of generators £, .

.., Pn.1 and relations

Br Bs = Bs Br for r<s-1, and Br Br+1 Br = Br+1 Br Br+l'

Also B, can be identified with a subgroup of the group of automorphisms of the free

n

group F, on n generators X;,..., X, The inclusion B,—> Aut(F,) identifies the

ne

generator 3, with the automorphism given by

X; for i=rr+1
B, (x;) = X;p1 for i=r
Xpp1XeXpyp for i=r+1

A good reference is [B; Section 1.4].

We write Gp, for the category of pointed groups. The objects are pairs (A, ag)
where A is a group and ayEA. An arrow f: (A, ag) —> (B, by) is a group homo-
morphism f: A —> B such that f (ag) =b,. The monoidal category Gp of groups will

be identified with the full subcategory of Gp, consisting of the objects (A, aj) where ag
=1 is the unit of A.

We refer now to the terminology of [JS]. There is a monoidal (= tensor) structure on
Gp, given by
(A, ag) ® (B, by) = (A + B, agby)
where A+B is the coproduct (= free product = amalgamated sum) of the groups A, B
with A, B identified with subgroups of A+B.

Proposition 1 The monoidal category Gp, admits a braiding
CA,B = C(A,ao),(B,bo) . (A + B, aobo) —— (B + A, boao)

which takes a€A to byabyl€B+A and bEB to bEB+A.



Proof First notice that the braiding candidate c, g preserves basepoints since it takes

apgbg€EA+B to (by ay by~1) by = by agEB+A. Invertibility and naturality of c, 5 are clear.

Looking at the effects on elements, we see that the composite

1+CB C+1

A+B+C < sA+C+B ‘A, C+A+B

a a —— c:oaca1

-1

b ————— ¢ybcg! ——— b

C C C

is equal to cpypc:A+B+C—>C+ A+ B, and that the composite

1 1
A+B+C—A2 L BLA+C—AC LBLC+A
a byaby! —— bycyacybyt
b b b
C C C

isequalto cp pic: A+B+C—>B+C+A. QED.

Remark Instead of pointed groups we could take monoids pointed by invertible

elements. This would give an even bigger braided monoidal category.

Recall from [JS] that the braid category B is the free braided monoidal category
generated by a single object 1. In the category B the objects are natural numbers, all
arrows are endomorphisms, and the endomorphism monoid B(n,n) is the braid group
B, The tensor product is given by addition of natural numbers and addition of braids.
The braiding is determined by taking ¢; 1:1+1—>1+1 to be the generator f; of B,.

Consider the free group F; on a single generator as an object of Gp, by choosing

the generator x to be the distinguished point. By freeness of B, there exists a strong
monoidal functor T :B —> Gp, (unique up to isomorphism) with T1 =[F. It follows
that there is a canonical isomorphism Tn = F,_ where the distinguished point of the free

group F, is the product x; ...x, of the generators.

Proposition 2 The functor T:B —> Gp, is faithful.



Proof We must see that T :B(n,n) —> Gp.(F,, F,) is injective. But it is easy to s S hat

the composite of this group homomorphism with the inclusion Gp,(F,, E,) —> Aut(F,)
is just the above identification B, —> Aut(F,). See [B; Corollary 1.8.3, page 25]. Q.E.D.

The functor T:B —> Gp, is not full. A point-preserving automorphism 6 of F,

is in the image of T if and only if there exists a permutation t© of {1,2,...,n} and
words wy, ..., w, in the generators x;,...,x, of F, such that
-1
G(Xl) = Wy X‘C(i) Wi

for i=1,...,n (see[B; Theorem 1.9, page 30]).

Let P denote the free symmetric strict monoidal category on a single generating
object 1. Again the objects are the natural numbers and every arrow is an endo-
morphism; the endomorphism monoid P(n,n) is the symmetric group &, on n
symbols; the tensor product on objects is addition of natural numbers and on arrows is
given by the canonical inclusions &, x &, —> & .., . There is a canonical braided strict
monoidal functor B —> P which is the identity on objects and forgets braid crossings.

Recall that by Gp we mean the usual category of groups regarded as monoidal using
coproduct (= free product of groups) as tensor product. There is a canonical symmetry on
Gp. So there exists a strong monoidal functor S:P —> Gp (unique up to isomorphism)

with S1 = F;. The following square of strong monoidal functors does not commute;

although it does commute on objects. (Note that right-hand vertical functor is the
forgetful functor — which is not braided.)
T

(;p*

B
\ .
P

Gp

S

Let N denote the free strict monoidal category on a single generating object 1; itis the
discrete category whose objects are the natural numbers; the tensor product is addition.
Form the following pushout in the category of strict monoidal categories and strict

monoidal functors; the functors N —> P, N —> B are the identity on objects.


ross
Sticky Note
This should be Gp(F_n,F_n).


N ——1]

P ————== MIBP
Since obj : Mon(Cat) —> Mon(Set) has a right adjoint, this pushout is preserved by
taking object sets. So MIBP has the natural numbers as objects. There is a (unique up to
isomorphism) strong monoidal functor R : MBP —> Gp whose restriction to P is S
and to B is UT.

It is also true that P is the free strict monoidal category containing an object bearing
an involutive Yang-Baxter operator and B 1is the free strict monoidal category
containing an object bearing a mere Yang-Baxter operator [JS]. From the universal
property of pushout, it follows that MBP is the free strict monoidal category containing
an object bearing two Yang-Baxter operators, one of which is involutive. The group
MBP(n,n) has apresentation with generators oy, ..., 0, satisfying the braid relations
plus the relations o; 0;=1 (1 =i <n) and generators f;, ..., P, satisfying the braid
relations (but no mixed relations).

Now factor the functor R: MBP —> Gp into a full bijective-on-objects functor H :
MBP —> BP followed by a faithful functor K: BPP —> Gp. It is easy to see that BP
inherits a unique strict monoidal structure such that H, K become strict, strong
monoidal functors. The group BP(nn) is the braid-permutation group BP, of [FRR]; it
is the quotient of the group MBP(n,n) obtained by imposing the mixed relations

Oy Brs1 Br = Prs1 Br Ori1 @

BrOr+10r = 0pi1 O Priq 5
the mixed relations o, 0,,; B, = P11 O, Op41 are a consequence. The elements of BP, can
be represented geometrically as welded braids [FRR].

A related structure is the free symmetric braided strict monoidal category PB. The

group P B(n,n) is the quotient of BP(n,n) obtained by imposing the further mixed

relations
BrPBri1Or = Opy1 BrBryt -
The monoidal categories N, P, B, together with appropriate substitution operations,

determine monads on the 2-category Cat of categories; see [K]and [JS]. The algebras for

4


ross
of course also 
𝜎_r β_s = β_s 𝜎_r
for |r - s| > 1  


these monads are respectively strict monoidal categories, symmetric strict monoidal

categories and braided strict monoidal categories. Similarly, PB determines a monad

on Cat; an algebrais a strict monoidal category equipped with a braiding and a
symmetry.
Finally, we should mention the reduced braid-permutation group BPn which is

the quotient of the group P B(n,n) obtained by imposing the further relations

Brorzorﬁr'

These groups are the endomorphism monoids for a category
BP
which is free symmetric braided strict monoidal in such a way that the symmetry and

braiding commute.

References

[B] J.S. Birman, Braids, Links, and Mapping Class Groups (Annals of Math Studies
Number 82, Princeton University Press 1974).

[FRR] R. Fenn, R. Rimdnyi and C. Rourke, The braid-permutation group, Topology 36
(1997) 123-135.

[JS] A.]Joyal and R. Street, Braided tensor categories, Advances in Math 102 (1993) 20-78.

[K] G.M. Kelly, An abstractapproach to coherence, Lecture Notes in Math 281 (Springer-
Verlag, 1972) 106-147.

[M] A.A. Markov, Foundations of the algebraic theory of braids, Trudy Mat. Inst.
Steklova16 (1945, Russian, English Summary).

[V] V.V. Vershinin, Braid groups and loop spaces, (Preprint, December 1997, Sobolev
Institute of Math., Novosibirsk, 630090, Russia).



