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The purpose of this short note is to give a categorical view of some connections
among braids, permutations and group automorphisms; it was prompted by the
interesting survey [V].

The braid group  B n of Artin has a familiar presentation in terms of generators  β1 , .

. . , βn-1 and relations  

βr βs = βs βr for  r < s–1,    and   βr βr+1 βr = βr+1 βr βr+1.

Also  B n can be identified with a subgroup of the group of automorphisms of the free

group  F n on  n  generators  x1 , . . . , xn.  The inclusion  B n ––> Aut(F n)  identifies the

generator  βr with the automorphism given by 

βr i

i

r

r r r

x
x for i r r
x for i r

x x x for i r
( )

,

.
=

≠ +

=

= +

¨

©
«

ª
«

+

+ +
−

1

1
1

1 1
1

A good reference is [B; Section 1.4].  

We write  Gp∗ for the category of pointed groups.  The objects are pairs  (A, a0)

where  A  is a group and  a0∈A.  An arrow  f : (A, a0) ––> (B, b0)  is a group homo-

morphism  f : A ––> B  such that  f (a0) = b0 .  The monoidal category  Gp of groups will

be identified with the full subcategory of  Gp∗ consisting of the objects  (A, a0)  where  a0

= 1  is the unit of  A. 
We refer now to the terminology of [JS].  There is a monoidal (= tensor) structure on

Gp∗ given by

(A, a0) ⊗ (B, b0)  =  (A + B, a0b0)

where  A+B  is the coproduct (= free product = amalgamated sum) of the groups  A, B
with  A, B  identified with subgroups of  A+B. 

Proposition 1 The monoidal category  Gp∗ admits a braiding

c c A B a b B A b aA B A a B b, ( , ),( , ) : ( , ) ( , )= + ±→± +
0 0 0 0 0 0

which takes a∈A  t o b0 a b0
–1∈B+A  a n d b∈B  t o b∈B+A.
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Proof First notice that the braiding candidate  cA, B preserves basepoints since it takes

a0b0∈A+B  to  (b0 a0 b0
–1) b0 = b0 a0∈B+A.  Invertibility and naturality of  cA, B are clear.

Looking at the effects on elements, we see that the composite

A B C A C B C A B

a a c a c

b c b c c b c

c c c

c cB C A C+ + ± →±±± + + ± →±±± + +

± →±±±±± ± →±±±

± →±±±± ± →±±

± →±±±±± ± →±±±±±

+ +

−

− −

1 1

0 0
1

0 0
1

0 0
1

, ,

is equal to  cA+B, C : A + B + C ––> C + A + B,  and that the composite

  

A B C B A C B C A

a b a b b c a c b

b b b

c c c

c cA B A C+ + ± →±±± + + ± →±±± + +

± →±±± ± →±

± →±±±± ± →±±±±

± →±±±± ± →±±±±±

+ +

− − −

, ,1 1

0 0
1

0 0 0
1

0
1

is equal to  cA, B+C : A + B + C ––> B + C + A.  Q.E.D.

Remark Instead of pointed groups we could take monoids pointed by invertible

elements.  This would give an even bigger braided monoidal category.

Recall from [JS] that the braid category  B is the free braided monoidal category

generated by a single object  1.  In the category  B the objects are natural numbers, all

arrows are endomorphisms, and the endomorphism monoid  B (n,n)  is the braid group

B n.  The tensor product is given by addition of natural numbers and addition of braids.

The braiding is determined by taking  c1, 1 : 1 + 1 ––> 1 + 1  to be the generator  β1 of  B 2.

Consider the free group  F 1 on a single generator as an object of  Gp∗ by choosing

the generator  x  to be the distinguished point.  By freeness of  B ,  there exists a strong

monoidal functor  T : B ––> Gp∗ (unique up to isomorphism) with  T1 = F 1.  It follows

that there is a canonical isomorphism  Tn ≅ F n where the distinguished point of the free

group  F n is the product  x1 . . . xn of the generators.   

Proposition 2 The functor  T : B ––> Gp∗ is faithful.
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Proof We must see that  T : B (n,n) ––> Gp∗(F n, F n)  is injective.  But it is easy to see that

the composite of this group homomorphism with the inclusion  Gp∗(F n, F n) ––> Aut(F n)

is just the above identification  B n ––> Aut(F n).  See [B; Corollary 1.8.3, page 25]. Q.E.D.

The functor  T : B ––> Gp∗ is not full.  A point-preserving automorphism  θ of  F n

is in the image of  T  if and only if there exists a permutation  τ of  {1, 2, . . . , n}  and

words  w1 , . . . , wn in the generators  x1 , . . . , xn of  F n such that

  θ τ( ) ( )x w x wi i i i= −1

for  i = 1, . . . , n  (see [B; Theorem 1.9, page 30]).

Let  P denote the free symmetric strict monoidal category on a single generating

object  1.  Again the objects are the natural numbers and every arrow is an endo-

morphism;  the endomorphism monoid  P(n,n)  is the symmetric group  n on n

symbols; the tensor product on objects is addition of natural numbers and on arrows is

given by the canonical inclusions  m× n ––> m+n .  There is a canonical braided strict

monoidal functor  B ––> P which is the identity on objects and forgets braid crossings.   

Recall that by  Gp we mean the usual category of groups regarded as monoidal using
coproduct (= free product of groups) as tensor product.  There is a canonical symmetry on

Gp.  So there exists a strong monoidal functor  S : P ––> Gp (unique up to isomorphism)

with  S1 = F 1.  The following square of strong monoidal functors does not commute;

although it does commute on objects. (Note that right-hand vertical functor is the
forgetful functor – which is not braided.)

 B

 P

Gp∗

Gp

 T 

 S 

U

Let  N denote the free strict monoidal category on a single generating object  1;  it is the

discrete category whose objects are the natural numbers; the tensor product is addition.
Form the following pushout in the category of strict monoidal categories and strict

monoidal functors;  the functors  N ––> P,  N ––> B are the identity on objects.
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This should be Gp(F_n,F_n).



 N 

 P

 B

 MBP 

Since  obj : Mon(Cat) ––> Mon(Set)  has a right adjoint,  this pushout is preserved by

taking object sets.  So  M B P has the natural numbers as objects.  There is a (unique up to

isomorphism) strong monoidal functor  R :  M B P ––> Gp whose restriction to  P is  S

and to  B is  UT.  

It is also true that  P is the free strict monoidal category containing an object bearing

an involutive Yang-Baxter operator and  B is the free strict monoidal category

containing an object bearing a mere Yang-Baxter operator [JS]. From the universal

property of pushout, it follows that  M B P is the free strict monoidal category containing

an object bearing two Yang-Baxter operators, one of which is involutive. The group

M B P(n,n)  has a presentation with generators  σ1 , . . . , σn-1 satisfying the braid relations

plus the relations  σi σi = 1  (1 ≤ i <n)  and generators  β1 , . . . , βn-1 satisfying the braid

relations (but no mixed relations).    

Now factor the functor  R :  M B P ––> Gp into a full bijective-on-objects functor  H :

M B P ––> B P followed by a faithful functor  K :  B P ––> Gp.  It is easy to see that  B P

inherits a unique strict monoidal structure such that  H, K  become strict, strong

monoidal functors.  The group  B P(n,n)  is the braid-permutation group BPn of [FRR]; it

is the quotient of the group  M B P(n,n)  obtained by imposing the mixed relations

σr βr+1 βr = βr+1 βr σr+1

βr σr+1 σr = σr+1 σr βr+1 ;

the mixed relations  σr σr+1 βr = βr+1 σr σr+1 are a consequence.  The elements of  BPn can

be represented geometrically as welded braids [FRR].

A related structure is the free symmetric braided strict monoidal category  P B.  The

group  P B(n,n) is the quotient of  B P(n,n)  obtained by imposing the further mixed

relations

βr βr+1 σr = σr+1 βr βr+1 .    

The monoidal categories N , P, B , together with appropriate substitution operations,

determine monads on the 2-category  Cat of categories; see [K] and [JS].  The algebras for

4

ross
of course also 
𝜎_r β_s = β_s 𝜎_r
for |r - s| > 1  



these monads are respectively strict monoidal categories, symmetric strict monoidal

categories and braided strict monoidal categories.  Similarly,  P B determines a monad

on  Cat;  an algebra is a strict monoidal category equipped with a braiding and a
symmetry.  

Finally, we should mention the reduced braid-permutation group   BPn which is

the quotient of the group  P B(n,n)  obtained by imposing the further relations

βr σr = σr βr .

These groups are the endomorphism monoids for a category 

 BP 

which is free symmetric braided strict monoidal in such a way that the symmetry and
braiding commute. 
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