

Braids among the groups

Ross Street

Macquarie University, N. S. W. 2109 AUSTRALIA
email: street@mpce.mq.edu.au

Dedicated to Dieter Pumplün

The purpose of this short note is to give a categorical view of some connections among braids, permutations and group automorphisms; it was prompted by the interesting survey [V].

The braid group \mathbb{B}_n of Artin has a familiar presentation in terms of generators $\beta_1, \dots, \beta_{n-1}$ and relations

$$\beta_r \beta_s = \beta_s \beta_r \text{ for } r < s-1, \text{ and } \beta_r \beta_{r+1} \beta_r = \beta_{r+1} \beta_r \beta_{r+1}.$$

Also \mathbb{B}_n can be identified with a subgroup of the group of automorphisms of the free group \mathbb{F}_n on n generators x_1, \dots, x_n . The inclusion $\mathbb{B}_n \rightarrow \text{Aut}(\mathbb{F}_n)$ identifies the generator β_r with the automorphism given by

$$\beta_r(x_i) = \begin{cases} x_i & \text{for } i \neq r, r+1 \\ x_{r+1} & \text{for } i = r \\ x_{r+1} x_r x_{r+1}^{-1} & \text{for } i = r+1 \end{cases}.$$

A good reference is [B; Section 1.4].

We write Gp_* for the category of pointed groups. The objects are pairs (A, a_0) where A is a group and $a_0 \in A$. An arrow $f : (A, a_0) \rightarrow (B, b_0)$ is a group homomorphism $f : A \rightarrow B$ such that $f(a_0) = b_0$. The monoidal category Gp of groups will be identified with the full subcategory of Gp_* consisting of the objects (A, a_0) where $a_0 = 1$ is the unit of A .

We refer now to the terminology of [JS]. There is a monoidal (= tensor) structure on Gp_* given by

$$(A, a_0) \otimes (B, b_0) = (A + B, a_0 b_0)$$

where $A + B$ is the coproduct (= free product = amalgamated sum) of the groups A, B with A, B identified with subgroups of $A + B$.

Proposition 1 *The monoidal category Gp_* admits a braiding*

$$c_{A,B} = c_{(A,a_0),(B,b_0)} : (A + B, a_0 b_0) \longrightarrow (B + A, b_0 a_0)$$

which takes $a \in A$ to $b_0 a b_0^{-1} \in B + A$ and $b \in B$ to $b \in B + A$.

Proof First notice that the braiding candidate $c_{A, B}$ preserves basepoints since it takes $a_0 b_0 \in A+B$ to $(b_0 a_0 b_0^{-1}) b_0 = b_0 a_0 \in B+A$. Invertibility and naturality of $c_{A, B}$ are clear. Looking at the effects on elements, we see that the composite

$$\begin{array}{ccccc}
 A + B + C & \xrightarrow{1+c_{B,C}} & A + C + B & \xrightarrow{c_{A,C}+1} & C + A + B \\
 a & \longrightarrow & a & \longrightarrow & c_0 a c_0^{-1} \\
 b & \longrightarrow & c_0 b c_0^{-1} & \longrightarrow & c_0 b c_0^{-1} \\
 c & \longrightarrow & c & \longrightarrow & c
 \end{array}$$

is equal to $c_{A+B, C} : A + B + C \rightarrow C + A + B$, and that the composite

$$\begin{array}{ccccc}
 A + B + C & \xrightarrow{c_{A,B}+1} & B + A + C & \xrightarrow{1+c_{A,C}} & B + C + A \\
 a & \longrightarrow & b_0 a b_0^{-1} & \longrightarrow & b_0 c_0 a c_0^{-1} b_0^{-1} \\
 b & \longrightarrow & b & \longrightarrow & b \\
 c & \longrightarrow & c & \longrightarrow & c
 \end{array}$$

is equal to $c_{A, B+C} : A + B + C \rightarrow B + C + A$. **Q.E.D.**

Remark Instead of pointed groups we could take monoids pointed by invertible elements. This would give an even bigger braided monoidal category.

Recall from [JS] that the braid category \mathbb{B} is the free braided monoidal category generated by a single object 1 . In the category \mathbb{B} the objects are natural numbers, all arrows are endomorphisms, and the endomorphism monoid $\mathbb{B}(n,n)$ is the braid group \mathbb{B}_n . The tensor product is given by addition of natural numbers and addition of braids. The braiding is determined by taking $c_{1,1} : 1+1 \rightarrow 1+1$ to be the generator β_1 of \mathbb{B}_2 .

Consider the free group \mathbb{F}_1 on a single generator as an object of Gp_* by choosing the generator x to be the distinguished point. By freeness of \mathbb{B} , there exists a strong monoidal functor $T : \mathbb{B} \rightarrow Gp_*$ (unique up to isomorphism) with $T1 = \mathbb{F}_1$. It follows that there is a canonical isomorphism $Tn \cong \mathbb{F}_n$ where the distinguished point of the free group \mathbb{F}_n is the product $x_1 \dots x_n$ of the generators.

Proposition 2 *The functor $T : \mathbb{B} \rightarrow Gp_*$ is faithful.*

Proof We must see that $T : \mathbb{B}(n,n) \rightarrow Gp_*(\mathbb{F}_n, \mathbb{F}_n)$ is injective. But it is easy to see that the composite of this group homomorphism with the inclusion $Gp_*(\mathbb{F}_n, \mathbb{F}_n) \rightarrow \text{Aut}(\mathbb{F}_n)$ is just the above identification $\mathbb{B}_n \rightarrow \text{Aut}(\mathbb{F}_n)$. See [B; Corollary 1.8.3, page 25]. **Q.E.D.**

The functor $T : \mathbb{B} \rightarrow Gp_*$ is not full. A point-preserving automorphism θ of \mathbb{F}_n is in the image of T if and only if there exists a permutation τ of $\{1, 2, \dots, n\}$ and words w_1, \dots, w_n in the generators x_1, \dots, x_n of \mathbb{F}_n such that

$$\theta(x_i) = w_i x_{\tau(i)} w_i^{-1}$$

for $i = 1, \dots, n$ (see [B; Theorem 1.9, page 30]).

Let \mathbb{P} denote the free symmetric strict monoidal category on a single generating object 1. Again the objects are the natural numbers and every arrow is an endomorphism; the endomorphism monoid $\mathbb{P}(n,n)$ is the symmetric group \mathfrak{S}_n on n symbols; the tensor product on objects is addition of natural numbers and on arrows is given by the canonical inclusions $\mathfrak{S}_m \times \mathfrak{S}_n \rightarrow \mathfrak{S}_{m+n}$. There is a canonical braided strict monoidal functor $\mathbb{B} \rightarrow \mathbb{P}$ which is the identity on objects and forgets braid crossings.

Recall that by Gp we mean the usual category of groups regarded as monoidal using coproduct (= free product of groups) as tensor product. There is a canonical symmetry on Gp . So there exists a strong monoidal functor $S : \mathbb{P} \rightarrow Gp$ (unique up to isomorphism) with $S1 = \mathbb{F}_1$. The following square of strong monoidal functors does not commute; although it does commute on objects. (Note that right-hand vertical functor is the forgetful functor – which is not braided.)

$$\begin{array}{ccc} \mathbb{B} & \xrightarrow{T} & Gp_* \\ \downarrow & & \downarrow U \\ \mathbb{P} & \xrightarrow{S} & Gp \end{array}$$

Let \mathbb{N} denote the free strict monoidal category on a single generating object 1; it is the discrete category whose objects are the natural numbers; the tensor product is addition. Form the following pushout in the category of strict monoidal categories and strict monoidal functors; the functors $\mathbb{N} \rightarrow \mathbb{P}$, $\mathbb{N} \rightarrow \mathbb{B}$ are the identity on objects.

$$\begin{array}{ccc}
 \mathbb{N} & \longrightarrow & \mathbb{B} \\
 \downarrow & & \downarrow \\
 \mathbb{P} & \longrightarrow & \mathbb{MBP}
 \end{array}$$

Since $\text{obj} : \text{Mon}(\text{Cat}) \rightarrow \text{Mon}(\text{Set})$ has a right adjoint, this pushout is preserved by taking object sets. So \mathbb{MBP} has the natural numbers as objects. There is a (unique up to isomorphism) strong monoidal functor $R : \mathbb{MBP} \rightarrow \mathcal{Gp}$ whose restriction to \mathbb{P} is S and to \mathbb{B} is UT .

It is also true that \mathbb{P} is the free strict monoidal category containing an object bearing an involutive Yang-Baxter operator and \mathbb{B} is the free strict monoidal category containing an object bearing a mere Yang-Baxter operator [JS]. From the universal property of pushout, it follows that \mathbb{MBP} is the free strict monoidal category containing an object bearing two Yang-Baxter operators, one of which is involutive. The group $\mathbb{MBP}(n,n)$ has a presentation with generators $\sigma_1, \dots, \sigma_{n-1}$ satisfying the braid relations plus the relations $\sigma_i \sigma_i = 1$ ($1 \leq i < n$) and generators $\beta_1, \dots, \beta_{n-1}$ satisfying the braid relations (but no mixed relations).

Now factor the functor $R : \mathbb{MBP} \rightarrow \mathcal{Gp}$ into a full bijective-on-objects functor $H : \mathbb{MBP} \rightarrow \mathbb{BP}$ followed by a faithful functor $K : \mathbb{BP} \rightarrow \mathcal{Gp}$. It is easy to see that \mathbb{BP} inherits a unique strict monoidal structure such that H, K become strict, strong monoidal functors. The group $\mathbb{BP}(n,n)$ is the *braid-permutation group* BP_n of [FRR]; it is the quotient of the group $\mathbb{MBP}(n,n)$ obtained by imposing the mixed relations

$$\sigma_r \beta_{r+1} \beta_r = \beta_{r+1} \beta_r \sigma_{r+1}$$

$$\beta_r \sigma_{r+1} \sigma_r = \sigma_{r+1} \sigma_r \beta_{r+1} ;$$

the mixed relations $\sigma_r \sigma_{r+1} \beta_r = \beta_{r+1} \sigma_r \sigma_{r+1}$ are a consequence. The elements of BP_n can be represented geometrically as *welded braids* [FRR].

A related structure is the free symmetric braided strict monoidal category \mathbb{PB} . The group $\mathbb{PB}(n,n)$ is the quotient of $\mathbb{BP}(n,n)$ obtained by imposing the further mixed relations

$$\beta_r \beta_{r+1} \sigma_r = \sigma_{r+1} \beta_r \beta_{r+1} .$$

The monoidal categories \mathbb{N} , \mathbb{P} , \mathbb{B} , together with appropriate substitution operations, determine monads on the 2-category Cat of categories; see [K] and [JS]. The algebras for

these monads are respectively strict monoidal categories, symmetric strict monoidal categories and braided strict monoidal categories. Similarly, \mathbb{PB} determines a monad on \mathbf{Cat} ; an algebra is a strict monoidal category equipped with a braiding and a symmetry.

Finally, we should mention the *reduced braid-permutation group* $\overline{\mathbb{BP}}_n$ which is the quotient of the group $\mathbb{PB}(n,n)$ obtained by imposing the further relations

$$\beta_r \sigma_r = \sigma_r \beta_r.$$

These groups are the endomorphism monoids for a category

$$\overline{\mathbb{BP}}$$

which is free symmetric braided strict monoidal in such a way that the symmetry and braiding commute.

References

- [B] J.S. Birman, *Braids, Links, and Mapping Class Groups* (Annals of Math Studies Number 82, Princeton University Press 1974).
- [FRR] R. Fenn, R. Rimányi and C. Rourke, The braid-permutation group, *Topology* 36 (1997) 123-135.
- [JS] A. Joyal and R. Street, Braided tensor categories, *Advances in Math* 102 (1993) 20-78.
- [K] G.M. Kelly, An abstract approach to coherence, *Lecture Notes in Math* 281 (Springer-Verlag, 1972) 106-147.
- [M] A.A. Markov, Foundations of the algebraic theory of braids, *Trudy Mat. Inst. Steklova* 16 (1945, Russian, English Summary).
- [V] V.V. Vershinin, Braid groups and loop spaces, (Preprint, December 1997, Sobolev Institute of Math., Novosibirsk, 630090, Russia).