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1. Introduction

Background for these notes can be found in [2, 9, 7, 12, 5, 14, 8, 10].

2. Bicategories and their morphisms

The basics on bicategories can be found in [2] and [13]; we review some of that. For bicategories
A and X , we write Bicat(A ,X ) for the bicategory of morphisms (= lax functors), transfor-
mations (= lax natural transformations), and modifications. To be clear about directions, for a
morphism T : A → X , we have composition and identity constraints in the directions

φv,u : Tv ◦ Tu⇒ T (v ◦ u) and φ0A : 1TA ⇒ T1A

while the data for a transformation θ : T ⇒ S : A → X are as displayed in (2.1).

TA

θA
��

Tu
// TB

θB
��

θu +3

SA
Su

// SB

(2.1)

We call a morphism T : A → X normal when all φ0A are invertible. We call T : A → X a
homomorphism (or pseudofunctor) when all φv,u and φ0A are invertible. We write Hom(A ,X )
for the full subbicategory of Bicat(A ,X ) consisting of the homomorphisms.
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A transformation θ : T ⇒ S is called strong (or a pseudonatural transformation) when all the
θu are invertible. We write Homs(A ,X ) for the subbicategory of Hom(A ,X ) on restricting
the morphisms to the strong transformations. Each bicategory A has a Yoneda homomorphism

YA : A −→ Homs(A
op,Cat)

taking A to A (−, A); it is an equivalence on hom categories. Indeed, the bicategorical Yoneda
Lemma asserts a pseudonatural equivalence

Homs(YAA, T ) ≃ TA

taking θ to θA(1A). Morphisms of bicategories compose yielding a category of bicategories and
morphisms. However, taking transformations as 2-cells does not yield a 2-category: applying
a morphism F : X → Z to a transformation θ : T ⇒ S : A → X does not define a
transformation. That is, we do not have post-whiskering. Yet we do have pre-whiskering: for
any morphism H : C → A , we have a homomorphism

(H, 1) : Bicat(A ,X ) −→ Bicat(C ,X )

defined in the obvious way, taking T to TH and θ to θH .
We write A op for the bicategory with the same objects as A while A op(A,B) = A (B,A).

We write A co for the bicategory with the same objects as A while A co(A,B) = A (A,B)op. So
we write A coop for the bicategory with the same objects as A while A coop(A,B) = A (B,A)op.

Let us put

Bicatop(A ,X ) = Bicat(A op,X op)op and Bicatco(A ,X ) = Bicat(A co,X co)co .

Objects of Bicatop(A ,X ) are still just the morphisms T : A → X but the morphisms of
Bicatop(A ,X ) are called optransformations (or oplax natural transformations) T ⇒ S : A →

X . Objects of Bicatco(A ,X ) are called comorphisms (or oplax functors) from A to X .
From [13] we have

Bicatop(A ,Bicat(B,C )) ∼= Bicat(B,Bicatop(A ,C )) , (2.2)

yet we also have

Bicatco(A ,Bicat(B,C )) ∼= Bicat(B,Bicatco(A ,C )) . (2.3)

3. Sequent notation

Pasting was used in the first paper [2] on bicategories. It was used extensively for 2-categories
in [7] and the volume containing it. Pasting in bicategories was put on a firm foundation in the
Appendix of [15].

We shall make use of sequent notation for pasting diagrams in a bicategory. For example, we
will write the lovely pasting diagram

A

φ
=⇒

a
//

p

  
❅❅

❅❅
❅❅

❅❅

g

��

B

α
=⇒

q
// C

r
��

D
s

//

h
��

E

k
��

F
t

// G
b

// H

β
=⇒

more mundanely as follows.
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b ◦ t ◦ g
φ

b ◦ h ◦ p
β

k ◦ s ◦ p
α

k ◦ r ◦ q ◦ a

4. Adjoints for lax natural transformations

This topic was discussed in [11] and provided a basic example for doctrinal adjunction [6].
Let S, T : A −→ X be lax functors from the bicategory A to the bicategory X . Suppose

p : S −→ T is a transformation: the data are displayed as follows.

SA

Sf
��

pA
// TA

Tf
��

ks
pf

SB
pB

// TB

(4.4)

Suppose each pA has a left adjoint qA : TA −→ SA in X . Then we have a mate (in the sense
of [7])

TA

Tf
��

qA
// SA

Sf
��

qf
+3

TB
qB

// SB

(4.5)

to (4.4).

Proposition 4.1. The data (4.5) determine an optransformation q : T −→ S.

In this case we call q the left adjoint of p.

5. Lax adjoints for lax functors

This topic reviews work of [4], [3], and Section 1.1 of [15].
Assume M and N are bicategories (although we often write as if they were 2-categories).
Suppose P : N −→ M is a lax functor and Q : M −→ N is an oplax functor. We write

φ : Pg◦Pf ⇒ P (g◦f) and φ0 : 1PA ⇒ P1A for the lax structure of P , and ψ : Q(v◦u) ⇒ Qv◦Qu

and ψ0 : Q1X ⇒ 1QX for the oplax structure of Q.
We shall define what it means for Q to be a lax left adjoint for P .
The lax unit data are as displayed in the square (5.6).

X

u

��

nX
// PQX

PQu

��

nu +3

Y
nY

// PQY

(5.6)

The lax counit data are as displayed in the square (5.7).

QPA

QPf

��

eA
// A

f

��

ef
+3

QPB
eB

// B

(5.7)
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There are six axioms so far for these (where α : u⇒ v and σ : f ⇒ g):

nY ◦ u
αnY ◦ v

nv
PQv ◦ nX

=(1)

nY ◦ u
nu

PQu ◦ nX
PQα

PQv ◦ nX

;

eB ◦QPf ef
f ◦ eA σg ◦ eA

=(2)

eB ◦QPf
QPσ

eB ◦QPg egg ◦ eA

;

nX n1X
PQ1X ◦ nX

Pψ0
P1QX ◦ nX

=(3)
nX φ0
P1QX ◦ nX

;

eA ◦Q1PA
Qφ0eA ◦QP1A e1AeA

=(4)
eA ◦Q1PA

ψ0eA
;

nZ ◦ v ◦ u nv
PQv ◦ nv ◦ u nu
PQv ◦ PQu ◦ nX

φ
P (Qv ◦Qu) ◦ nX

=(5)

nZ ◦ v ◦ u
nv◦u

PQ(v ◦ u) ◦ nX
Pψ

P (Qv ◦Qu) ◦ nX

;

eC ◦Q(Pg ◦ Pf)
ψ

eC ◦QPg ◦QPf eg
g ◦ eB ◦QPf ef
g ◦ f ◦ eA

=(6)

eC ◦Q(Pg ◦ Pf)
Qφ

eC ◦QP (g ◦ f)
eg◦f

g ◦ f ◦ eA

.

The adjunction constraint data are displayed in diagram (5.8).

QX

1QX ""❊
❊❊

❊❊
❊❊

❊

QnX
// QPQX

eQX
zz✉✉
✉✉
✉✉
✉✉
✉

ks
εX

QX

PA

1PA ""❉
❉❉

❉❉
❉❉

❉❉

nPA
// PQPA

PeAzz✉✉
✉✉
✉✉
✉✉
✉ηA +3

QX

(5.8)

There are four more axioms.
1PQX ◦ nX ηQX
PeQX ◦ nPQX ◦ nX nnX
PeQX ◦ PQnX ◦ nX

φ
P (eQX ◦QnX) ◦ nX

PεXP1QX ◦ nX

=(7)
1PQX ◦ nX

φ0P1QX ◦ nX

eA ◦Q1PA
QηA

eA ◦Q(PeA ◦ nPA)
ψ

eA ◦QPeA ◦QnPA eeA
eA ◦ eQPA ◦QnPA εPA
eA ◦ 1QPA

=(8)
eA ◦Q1PA

ψ0eA ◦ 1QPA

eQY ◦Q(nY ◦ u)
Qnu

eQY ◦Q(PQu ◦ nX)
ψ

eQY ◦QPQu ◦QnX eQu
Qu ◦ eQX ◦QnX εX
Qu

=(9)

eQY ◦Q(nY ◦ u)
ψ

eQY ◦QnY ◦Qu
εY

Qu
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Pf
ηB

PeB ◦ nPB ◦ Pf nPf
PeB ◦ PQPf ◦ nPA

φ
P (eB ◦QPf) ◦ nPA

Pef
P (f ◦ eA) ◦ nPA

=(10)

Pf
ηA

Pf ◦ PeA ◦ nPA
φ

P (f ◦ eA) ◦ nPA

Define functors pX,A : N (QX,A) → M (X,PA), qX,A : M (X,PA) → N (QX,A) to be the
composites

pX,A : N (QX,A)
P

−→ M (PQX,PA)
M (nX ,1)
−→ M (X,PA) , (5.9)

qX,A : M (X,PA)
Q

−→ N (QX,QPA)
N (1,eA)
−→ N (QX,A) . (5.10)

Also define natural families

ε̃f : qX,ApX,A(f) =⇒ f and η̃u : u =⇒ pX,AqX,A(u) (5.11)

to be the following respective composites.

eA ◦Q(Pf ◦ nX)
ψ

eA ◦QPf ◦QnX ef
f ◦ eQX ◦QnX εX
f

u ηA
PeA ◦ nPA ◦ u nu
PeA ◦ PQu ◦ nX

φ
P (eA ◦Qu) ◦ nX

Proposition 5.1. The functor pX,A (5.9) is right adjoint to qX,A (5.10) with counit ε̃ and unit

η̃ as in (5.11).

Proof. This involves two calculations using the axioms. Here is one calculation. The other is
dual.

Pf ◦ nX ηA
PeA ◦ nPA ◦ Pf ◦ nX nPf◦nX

PeA ◦ PQ(Pf ◦ nX) ◦ nX
φ

P (eA ◦Q(Pf ◦ nX)) ◦ nX
P (eA ◦ ψ)

P (eA ◦QPf ◦QnX) ◦ nX
P (ef ◦QnX)

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=nat

Pf ◦ nX ηA
PeA ◦ nPA ◦ Pf ◦ nX nPf◦nX

PeA ◦ PQ(Pf ◦ nX) ◦ nX
Pψ

PeA ◦ P (QPf ◦QnX) ◦ nX
φ

P (eA ◦QPf ◦QnX) ◦ nX
P (ef ◦QnX)

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=(5)

Pf ◦ nX ηA
PeA ◦ nPA ◦ Pf ◦ nX nPf
PeA ◦ PQPf ◦ nPQX ◦ nX

nnX

PeA ◦ PQPf ◦ PQnX ◦ nX
φ

PeA ◦ P (QPf ◦QnX) ◦ nX
φ

P (eA ◦QPf ◦QnX) ◦ nX
P (ef ◦QnX)

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=φ assoc

Pf ◦ nX ηA
PeA ◦ nPA ◦ Pf ◦ nX nPf
PeA ◦ PQPf ◦ nPQX ◦ nX

nnX

PeA ◦ PQPf ◦ PQnX ◦ nX
φ

P (eA ◦QPf) ◦ PQnX ◦ nX
φ

P (eA ◦QPf ◦QnX) ◦ nX
P (ef ◦QnX)

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=nat, funct

Pf ◦ nX ηA
PeA ◦ nPA ◦ Pf ◦ nX nPf
PeA ◦ PQPf ◦ nPA ◦ nX

φ
P (eA ◦QPf) ◦ nPA ◦ nX

Pef
P (f ◦ eQX) ◦ nPA ◦ nX

nnX

P (f ◦ eQX) ◦ PQnX ◦ nX
φ

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=(10)

Pf ◦ nX ηQX
Pf ◦ PeQX ◦ nPQX ◦ nX

φ
P (f ◦ eQX) ◦ nPQX ◦ nX

nnX

P (f ◦ eQX) ◦ PQnX ◦ nX
φ

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=funct



6 ROSS STREET

Pf ◦ nX ηQX
Pf ◦ PeQX ◦ nPQX ◦ nX

nnX

Pf ◦ PeQX ◦ PQnX ◦ nX
φ

P (f ◦ eQX) ◦ PQnX ◦ nX
φ

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=φ assoc

Pf ◦ nX ηQX
Pf ◦ PeQX ◦ nPQX ◦ nX

nnX

Pf ◦ PeQX ◦ PQnX ◦ nX
φ

Pf ◦ P (eQX ◦ PQnX) ◦ nX
φ

P (f ◦ eQX ◦QnX) ◦ nX
P (f ◦ εX)

Pf ◦ nX

=φ nat

Pf ◦ nX ηQX
Pf ◦ PeQX ◦ nPQX ◦ nX

nnX

Pf ◦ PeQX ◦ PQnX ◦ nX
φ

Pf ◦ P (eQX ◦ PQnX) ◦ nX
PεX

Pf ◦ P1X ◦ nX
φ

Pf ◦ nX

=(7)

Pf ◦ nX
φ0

Pf ◦ P1X ◦ nX
φ

Pf ◦ nX

=φunital
Pf ◦ nX

identity
Pf ◦ nX

�

Notice that εX and ηA can be recovered from the adjunction of Proposition 5.1 via the respec-
tive composites

eA ◦QnX
Q(φ0 ◦ nX)

eA ◦Q(P1QX ◦ nX) ε̃1QX1QX

1PA η̃1PA
P (eA ◦Q1PA) ◦ nX

P (eA ◦ ψ0)
PeA ◦ nX

Given a lax functor P : N −→ M , we obtain a lax functor P# as the composite

N
P

−→ M
YM

−→ Homs(M
op,Cat)

incl
−→ Bicatco(M op,Cat) ;

so P#A = M (−, PA). Given an oplax functor Q : M −→ N , we obtain a pseudofunctor Q#

as the composite

N
YN
−→ Homs(N

op,Cat)
(Qop,1)
−→ Bicatco(M op,Cat) ;

so Q#A = N (Q−, A). (Of course, using (2.3), we can also view these as oplax functors (comor-
phisms) M op → Bicat(N ,Cat).)

Proposition 5.2. A lax adjunction between P and Q amounts to a lax natural transformation

p : Q# ⇒ P# with a left adjoint q : P# ⇒ Q# in the sense of Section 4.

6. Skew monads

A notion of lax monad on a 2-category K was defined by Bunge [4]. There is no problem
generalizing this to a bicategory K . In any case, we will write as if our bicategory K were a 2-
category. For Bunge, the lax monad involved what we would call an oplax functor T : K → K :
so, for composable morphisms f : X → Y and g : Y → Z, we have a morphism ψ2 : T (g ◦ f) ⇒
Tg◦Tf , and for each object X , a morphism ψ0 : T1X ⇒ 1TX , subject to naturality and coherence
conditions.

A right skew monad T on K consists of an oplax functor T on K , oplax natural transforma-
tions µ : T 2 → T and η : 1K → T , and modifications as shown in diagram (6.12).

T 3 µT
//

Tµ
��

a +3

T 2

µ

��

T 2
µ

// T

T
ηT

//

1
��
❄❄

❄❄
❄❄

❄❄

ℓ +3

T 2

µ
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

T

T 2

µ
  
❆❆

❆❆
❆❆

❆❆

r +3

T

1
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

Tη
oo

T

(6.12)
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There are five axioms (6.13), (6.14), (6.15), (6.16), (6.17).

T 4

Ta +3

1
//

T (µ◦Tµ)
��

T 4

ψ2
+3

µT 2

//

T (µ◦µT )
xx♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

TµT
❇❇

❇

  
❇❇

❇

T 3

µT

��

aT +3

T 2

µ

��

T 3

a +3

Tµ
oo

µT
❇❇

❇

  
❇❇

❇

T T 2
µ

oo

=

T 4 1
//

T (µ◦Tµ)

��

T 4

T 2µ

��

µT 2

// T 3

1
��

T 3 µT
//

Tµ

��

T 2

a +3 µ

��

T 3

µµ
+3

µT

��

Tµ
oo

a +3

T 2

1
// T 2

ψ2
+3

µ
// T T 2

µ
oo

(6.13)

T 2 ηT 2

//

1
  
❇❇

❇❇
❇❇

❇❇

ℓT +3

T 3

µT
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

T 2

µ

��

X

=

T 2

µ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ ηT 2

  
❇❇

❇❇
❇❇

❇❇

T

1

��

ηT
❅❅

❅

  
❅❅

❅

ηµ
+3 T 3

µT

��

Tµ
⑤⑤
⑤

~~⑤⑤
⑤

T

1
  
❆❆

❆❆
❆❆

❆❆

ℓ +3 T 2

µ

��

a +3 T 2

µ
}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

T

(6.14)

T 2
1

,,

T1T &&

T 2
T (µ◦ηT )

||

1

""

TηT

��

T 2

Tℓ +3

µ
++

T 3

ψ2
+3 rT +3

Tµ
oo

µT
//

a +3

T 2

µ
ssT

=

T 2

T1T
��

1

""

T 2

ψ0
+3

1
// T 2

µ

��

T

(6.15)

T 2

T r +3

1
//

T (µ◦Tη)
��

T 2

ψ0
+3

T1T
xx♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

1

  
❇❇

❇❇
❇❇

❇❇

T 2

µ

��

T 2
1

oo

T

=

T 2 1
//

T (µ◦Tη)

��

T 2

T 2η

��

µ
// T

1

��

T 3 µT
//

Tµ

��

T 2

a +3 µ

��

T

µη
+3

µT

��

Tη
oo

r +3

T 2
1

// T 2

ψ2
+3

µ
// T T

1
oo

(6.16)

1
η

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ η

  
❆❆

❆❆
❆❆

❆❆
ηη

+3

T ηT //

1
��

ℓ +3

T 2

µ

��

r +3

TTηoo

1
��

T
1

// T T
1

oo

= 1
η

++

η

331η�� T (6.17)

Our later work may be expressed using the bicategory K (T ) defined as follows for any endo-
pseudofunctor T on K . The objects are pairs (X, x) where x : TX → X in K . The morphisms
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(f, ξ) : (X, x) → (Y, y) are squares (6.18) in K .

TX
Tf

//

x
��

ξ
+3

TY

y

��

X
f

// Y

(6.18)

The 2-cells σ : (f, ξ) ⇒ (g, ζ) are 2-cells σ : f ⇒ g in K which are compatible with ξ, ζ in the
obvious way.

A morphism f : X → Y in K is called T -extendable when, for all x : TX → X , there exists a
left extension, denoted f̂(x) : TY → Y , of f ◦ x along Tf . In this case, we have a functor

f̂ : K (TX,X) −→ K (TY, Y ) .

A morphism f : X → Y in K is called T -liftable when, for all y : TY → Y , there exists a right
lifting, denoted f̌(y) : TX → X , of y ◦ Tf through f . In this case, we have a functor

f̌ : K (TY, Y ) −→ K (TX,X) .

When f is both, we have an adjunction f̂ ⊣ f̌ .
If a morphism f : X → Y has a right adjoint f ∗ : Y → X then it is both T -extendable and

T -liftable. Indeed, f̂(x) = f ◦ x ◦ Tf ∗ = K (Tf ∗, f)(x) and f̌(y) = f ∗
◦ y ◦ Tf = K (Tf, f ∗)(y).

7. The Galois connection

Consider bicategories C and K and lax morphisms S, T : C → K . Consider an oplax natural
transformation θ : S ⇒ T and an object A of K .

Write θ▽A when, for all objects X ∈ X and f : SX → A, the left extension

SX
θX

//

f
!!❈

❈❈
❈❈

❈❈
❈

κθ +3

TX

lanθX f}}④④
④④
④④
④④

A

(7.19)

of f along θX exists, and, for all u : Y → X in C , the diagram

SY
θY

//

Su
��

θu +3

TY

Tu
��

SX
θX

//

f
!!❈

❈❈
❈❈

❈❈
❈

κθ +3

TX

lanθX f}}④④
④④
④④
④④

A

(7.20)

exhibits (lanθXf) ◦ Tu as lanθY (f ◦ Su).
The condition θ▽A might be considered a cocompleteness condition on A given θ, or an

exactness condition on θ given A.

Example 7.1. If the oplax natural transformation θ : S ⇒ T has a right adjoint (in the sense
of Section 4) which is a pseudonatural transformation then θ▽A for every object A.
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8. A skew monoidal category

Suppose T is a right skew monad on a bicategory K and X is an object of K .
We write T▽X when µ▽X and η▽X .
We define a left skew bicategory coKT called the coKleisli bicategory of T. The objects are

those objects X of K such that T▽X . The hom categories are defined by

coKT(Y,X) = K (TY,X) .

The composite of y : TZ → Y and x : TY → X , denoted by x ⋄ y, is defined by x ⋄ y =
lanµZ(x ◦ Ty). A candidate jX for skew identity is defined by jX = lanηX1X .

T 2Z
µZ

//

Ty
��

κµ
+3

TZ

x⋄y

��

TY
x

// X

X
ηX

//

1X   
❆❆

❆❆
❆❆

❆❆
κη

+3

TX

jX}}③③
③③
③③
③③

X

(8.21)

Using µ▽X , we see that the pasted composite 2-cell

T 3X
µTX

//

T 2z
��

µTz+3

T 2X

Tz
��

µX

##❋
❋❋

❋❋
❋❋

❋❋

T 2X
µX

//

Ty
��

κµ
+3

TX

x⋄y

��

κµ
+3 TX

(x⋄y)⋄z
{{✇✇
✇✇
✇✇
✇✇
✇

TX
x

// X

(8.22)

exhibits (x ⋄ y) ⋄ z as a left extension of x ◦ Ty ◦ T 2z along µX ◦ µTX . Therefore, by the left
extension property, there is a unique 2-cell

αx,y,z : (x ⋄ y) ⋄ z =⇒ x ⋄ (y ⋄ z) (8.23)

which pastes onto (8.22) to yield the pasted 2-cell (8.24).

T 3X

TµX

●●
●

##●
●●

µTX
//

T 2z
��

a +3

T 2X
µX

##❋
❋❋

❋❋
❋❋

❋❋

T 2X

Ty
��

Tκµ
+3 T 2X

T (y⋄z)
✈✈
✈

{{✈✈
✈

µX
// TX

x⋄(y⋄z)
{{✇✇
✇✇
✇✇
✇✇
✇

TX
x

//

κµ
+3

X

(8.24)

Using η▽X , we see that the pasted composite 2-cell

TX
ηTX

//

x

��

ηx
+3

T 2X

Tx
��

µX

##●
●●

●●
●●

●●

X
ηX

//

1
��

κη
+3

TX

j
��

κµ
+3 TX

j⋄x
{{✇✇
✇✇
✇✇
✇✇
✇

X
1

// X

(8.25)



10 ROSS STREET

exhibits j ⋄ x as a left extension of x along µX ◦ ηTX . Therefore, by the left extension property,
there is a unique 2-cell

λx : j ⋄ x =⇒ x (8.26)

which pastes onto (8.25) to yield the pasted 2-cell (8.27).

TX
1

##●
●●

●●
●●

●●

ηTX
//

x

��

ℓ +3

T 2X
µX

##●
●●

●●
●●

●●

X

1
��

1 +3 TX

x
{{✇✇
✇✇
✇✇
✇✇
✇

1
// TX

x
{{✇✇
✇✇
✇✇
✇✇
✇

X
1

//

1 +3

X

(8.27)

Define the 2-cell

ρx : x =⇒ x ⋄ j (8.28)

to be the pasted composite (8.29).

TX
1

{{

1

##

TηX
��

Tκη
+3 r +3

TX

x
++

T 2X
Tj

oo
µX

//

κµ
+3

TX

x⋄j
ssX

(8.29)

Proposition 8.1. For any right skew monad T on K and any object X ∈ K satisfying T▽X,

the tensor product ⋄ and skew unit j (8.21) equipped with constraints (8.23), (8.26), (8.28),
define a left skew monoidal structure on the category K (TX,X). If T is left normal then so is

K (TX,X).

9. Lax algebras

Lax algebras for 2-monads were defined in Section 2 of [12]. Those appearing here are a
generalization to skew monads as occurring in [1].

Suppose T is a right skew monad on the bicategory K . A lax T-algebra structure on X ∈ K

consists of 2-cells

T 2X
µX

//

Tx
��

ξ
+3

TX

x

��

TX
x

// X

X
ηX

//

1X   
❆❆

❆❆
❆❆

❆❆

υ +3

TX

x
}}③③
③③
③③
③③

X

(9.30)
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subject to equations (9.31), (9.32) and (9.33).

T 3X
T 2x

{{✇✇
✇✇
✇✇
✇✇
✇

TµX
��

µTX

##●
●●

●●
●●

●●

T 2X

Tx

��

Tξ
+3 T 2X

Tx
{{✈✈
✈✈
✈✈
✈✈
✈

µX
##❍

❍❍
❍❍

❍❍
❍❍

a +3 T 2X

µX

��

TX
ξ
+3

x
$$❍

❍❍
❍❍

❍❍
❍❍

❍ TX

x
zz✈✈
✈✈
✈✈
✈✈
✈✈

X

=

T 3X
T 2x

{{✇✇
✇✇
✇✇
✇✇
✇

µTX

##●
●●

●●
●●

●●

T 2X

Tx

��

µX

##❍
❍❍

❍❍
❍❍

❍❍

µx
+3 T 2X

µX

��

Tx

{{✈✈
✈✈
✈✈
✈✈
✈

TX

x
$$❍

❍❍
❍❍

❍❍
❍❍

❍

ξ
+3 TX

x

��

ξ
+3 TX

x
zz✈✈
✈✈
✈✈
✈✈
✈✈

X

(9.31)

TX
ηTX

//

1
""❋

❋❋
❋❋

❋❋
❋

ℓ +3

T 2X

µX
{{✇✇
✇✇
✇✇
✇✇
✇

TX

x

��

X

=

TX
x

}}④④
④④
④④
④④ ηTX

##●
●●

●●
●●

●

X

1
��

ηX

!!❈
❈❈

❈❈
❈❈

❈

ηx
+3 T 2X

µX

��

Tx

{{✇✇
✇✇
✇✇
✇✇
✇

X

1
!!❉

❉❉
❉❉

❉❉
❉

υ +3 TX

x

��

ξ
+3 TX

x
{{✇✇
✇✇
✇✇
✇✇
✇

X

(9.32)

TX
1

{{

1

##

TηX
��

Tυ +3 r +3

TX

x
++

T 2X
Tx

oo
µX

//

ξ
+3

TX

x
ssX

= TX
x

++

x

331x�� X (9.33)

Proposition 9.1. The category of lax T-algebra structures on X ∈ K is isomorphic to the

category of monoids in the skew monoidal category K (TX,X) of Proposition 8.1. If f : X → Y

is T -extendable then f̂ : K (TX,X) → K (TY, Y ) is opmonoidal. If f : X → Y is T -liftable

then f̌ : K (TY, Y ) → K (TX,X) is monoidal.
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