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1. INTRODUCTION

Background for these notes can be found in [2, 9, 7, 12, 5, 14, 8, 10].

2. BICATEGORIES AND THEIR MORPHISMS

The basics on bicategories can be found in [2] and [13]; we review some of that. For bicategories
o/ and 2", we write Bicat(«/, Z") for the bicategory of morphisms (= lax functors), transfor-
mations (= lax natural transformations), and modifications. To be clear about directions, for a
morphism 7" : o/ — 2, we have composition and identity constraints in the directions

Gpu:TvoTu= T(vou) and ¢gA: lrs = Tly

while the data for a transformation 0 : T'= S : &/ — 2 are as displayed in (2.1).

TA—™™ . TB
GAJ/ LN leB (2.1)

We call a morphism T : o/ — 2 normal when all ¢gA are invertible. We call T' : .o/ —
homomorphism (or pseudofunctor) when all ¢,, and ¢oA are invertible. We write Hom(.e
for the full subbicategory of Bicat(«7, Z") consisting of the homomorphisms.
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A transformation 0 : T' = S is called strong (or a pseudonatural transformation) when all the
6, are invertible. We write Hom(o/, 27) for the subbicategory of Hom(.7, 2") on restricting
the morphisms to the strong transformations. Each bicategory &7 has a Yoneda homomorphism

Y. : o/ — Homy(o/°P, Cat)

taking A to o/ (—, A); it is an equivalence on hom categories. Indeed, the bicategorical Yoneda
Lemma asserts a pseudonatural equivalence

Homy(Y,A,T)~TA

taking 6 to 04(14). Morphisms of bicategories compose yielding a category of bicategories and
morphisms. However, taking transformations as 2-cells does not yield a 2-category: applying
a morphism F : 2 — % to a transformation § : T = S : o/ — 2 does not define a
transformation. That is, we do not have post-whiskering. Yet we do have pre-whiskering: for
any morphism H : ¥ — o/, we have a homomorphism

(H,1) : Bicat(«/, Z") — Bicat(¢, Z")

defined in the obvious way, taking 7" to T'H and 6 to 0g.

We write &7°P for the bicategory with the same objects as &/ while @7°P(A, B) = <7 (B, A).
We write 27 for the bicategory with the same objects as &7 while &/°(A, B) = <7/ (A, B)°P. So
we write o7 °°°P for the bicategory with the same objects as &/ while &/“°°P(A, B) = </ (B, A)°P.

Let us put

Bicat*® (o, 2°) = Bicat(/*", 2"")™ and Bicat® (e, 2°) = Bicat(e/*, 2°°)* .

Objects of Bicat®®(«7, Z") are still just the morphisms T : &/ — 2 but the morphisms of
Bicat®® (7, Z") are called optransformations (or oplaz natural transformations) T = S : of —
2. Objects of Bicat®™ (7, Z") are called comorphisms (or oplax functors) from <7 to Z .

From [13] we have

Bicat? (<7, Bicat(4, €¢')) = Bicat(%, Bicat®®(«7, %)) , (2.2)

yet we also have

Bicat® (<7, Bicat(#4, €¢)) = Bicat(4, Bicat® (<7, ¢)) . (2.3)

3. SEQUENT NOTATION

Pasting was used in the first paper [2] on bicategories. It was used extensively for 2-categories
in [7] and the volume containing it. Pasting in bicategories was put on a firm foundation in the
Appendix of [15].

We shall make use of sequent notation for pasting diagrams in a bicategory. For example, we
will write the lovely pasting diagram
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more mundanely as follows.
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botog
bohop ¢
kosop b
koroqoa

4. ADJOINTS FOR LAX NATURAL TRANSFORMATIONS

This topic was discussed in [11] and provided a basic example for doctrinal adjunction [6].
Let S,T : o/ — 2 be lax functors from the bicategory o7 to the bicategory 2 . Suppose
p: S — T is a transformation: the data are displayed as follows.

SA—" . TA
Sfl L le (4.4)

Suppose each pa has a left adjoint g4 : TA — SA in Z". Then we have a mate (in the sense
of [7])

TA— " .94
Tfl — Js,f (4.5)

to (4.4).
Proposition 4.1. The data (4.5) determine an optransformation q : T — S.

In this case we call ¢ the left adjoint of p.

5. LAX ADJOINTS FOR LAX FUNCTORS

This topic reviews work of [4], [3], and Section 1.1 of [15].

Assume .# and .4 are bicategories (although we often write as if they were 2-categories).

Suppose P : A — A is a lax functor and Q) : # — A is an oplax functor. We write
¢ : PgoPf = P(gof)and ¢g : 1ps = P14 for the lax structure of P, and ¢ : Q(vou) = QuoQu
and ¢y : Q1x = lgx for the oplax structure of Q.

We shall define what it means for @) to be a laz left adjoint for P.

The laxz unit data are as displayed in the square (5.6).

X —" L pOX

ul — JPQu (5.6)

The lax counit data are as displayed in the square (5.7).

QPA—2 A
prJ Y lf (5.7)

QPBT)B
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There are six axioms so far for these (where a: u = v and o: f = g):

Ny o U
wov oy =(1)
PQUO’I’LX
epo QPf e
foea e
goea
77/)(—”1
PQlxony Pizo =@3)
PIQXonX
ea o Qlpa
ea0 QPly g% =)
€A 1a
Nz ovou n
PQuonyou n B
PQuo PQuony ¢u 0
P(QuoQu)ony
ec 0 Q(Pgo Pf) b
ccoQPgoQPf | _
goegoQPf e
f
gofoea

PQUO’I’LX
PQUOTLX

Ny ou
Y Ny

PQao ;

nNzovou n
PQ(vou)ony
P(Quo Qu)onx

ec o Q(Pgo PYf)
ecoQP(go f)
gofoea

€gof

The adjunction constraint data are displayed in diagram (5.8).

There are four more axioms.
1PQX onx

PeQX ONpgx ©Nx

onx QPQX PA

e N

Nex

Pegx o PQnx onx

nx

P(eQX O an) onx

PlQXOTlX PEX
eaoQlpy O
eao Q(Pesonpy)
€4 0 QP@A o} anA e,
€40€QpA©° Qnpa EPj
eaolopa

egy © Q(ny ou) On
eqy © Q(PQuony) “

GQyOQPQUOQTLX e

Quoegx o Qnx -

Qu

— (7

—®)

A PQPA
(5.8)

1PQX onx
PlQX onx

eaoQlpa ”

0
€p O 1QPA

egy © Q(ny ou)
€Qy © Q’ny o Qu

Qu

&y
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P/ B

PGBO’I’LPBOPf nps Pf na
PeBoPQPfonpA =(10) PfoPernpA
P(GBOQPf)OnPA Pef P(fOGA)O’I’LPA

P(f @) eA) oONpa
Define functors px 4 : A/ (QX,A) — # (X, PA), qxa: M (X,PA) - A (QX,A) to be the
composites

pxa: NQX,A) L . (POX, PA)INY (X, PA), (5.9)
gxa: M (X, PA) L ¥/ (QX,QPA) " (X, A) . (5.10)

Also define natural families
Er 1 qx,apx,A(f) = f and 7, u = px .aqx.a(u) (5.11)

to be the following respective composites.

eaoQ(Pfony) W U -
ea° QP foQny e Pegonpsou .
foegx o@nx Peyo PQuony
f Ex P(eAOQu)onX

Proposition 5.1. The functor px 4 (5.9) is right adjoint to qx a (5.10) with counit & and unit
7 as in (5.11).

Proof. This involves two calculations using the axioms. Here is one calculation. The other is
dual.

Pfonx
PegqonppoPfonx
PepoPQ(Pfonx)onx
PleaoQ(Pfonx))onx
PleaoQPfoQnx)onx
P(foegxoQnx)onx

Pfonx
Pfonx

nA

Npfonx

—nat

P(eA O’g[))
P(efoQnx)
P(foex)

PegonpgoPfonx

npf
Pepo PQPfonpgxonx

Nnx

Pego PQPfoPQnxonx

=¢ assoc

PesoP(QPfoQnx)onx

PleaoQPfoQnx)onx

P o
P(foegxoQnx)onx (e 0 Qnx)

Pfonx P(foex)
Pfonx
PegonpgoPfonx
PegoPQPfonpsgonx
PleaoQPf)onpaonx
P(foegx)onpaonxy
P(foegx)oPQnxonx
P(foegx oQnx)onx
Pfonx

naA

Pey =(10)

Nnx

P(foex)

PfonX
PegonppgoPfonx

nA

Npfonx
PepgoPQ(Pfonx)onx P
PesoP(QPfoQnx)onx 8 =)
PleaoQPfoQnx)onx
P(efoQnx)
P(foegx oQnx)onx P(foex)
Pfonx X
Pfonx
PegqonppoPfonx npy
Peyg o PQPfonpgx onx
Peso PQPfo PQnxonx .
PleaoQPf)oPQnx onx
PleaoQPfoQnx)onx
( JO"X PlesoQni)
P(foegx oQnx)onx
P(foex)
PfonX
P
fonx nox
PfoPeQXoanX onx
P(foegx)onpgx onx
Nnx —funct
P(foegx)oPQnxonx
P(foegxoQnx)onx
Q P(foex)

Pfonx

—nat, funct
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Pfonx nox Pfonx nox
PfoPegxonpgx onx n PfoPegxonpgx onx
n n
PfoPegx oPQnxonx X B PfoPegx oPQnyxonx X B
P(foegx)oPQnxonx ¢ assoc PfoP(egx o PQnx)onx 4 ¢ nat
P(foegx oQnx)onx P(foegx oQnx)onx
P(foax) P(foax)
Pfonx Pfonx
P
fonx nox
PfoPegxonpgx onx n P
n
PfoPegxoPQnxonx . Lqﬁo Pfonx . .
=7 PfoPlxonx =unital ———— identity
PfoP(egx o PQnx)onx P—¢ Pfonx
Pex fonx
PfoPlxonx
Pfonx

O

Notice that ex and n4 can be recovered from the adjunction of Proposition 5.1 via the respec-
tive composites

eq 0 Qnx 1pa -

on Ui
eaoQ(Plgx onx) ?(gbo x) PleaoQlpa) ony PED; o o)
lQX lox PernX A 0

Given a lax functor P : A4~ — .#, we obtain a lax functor P# as the composite
LS Homg (.2, Cat) RLEN Bicat®(.#°?, Cat) ;

so P*A = #(—,PA). Given an oplax functor Q : .# — .4, we obtain a pseudofunctor Q4
as the composite

X Homg (AP, Cat) @7 Bicat®(.#°?, Cat) ;

s0 QuA = AN (Q—,A). (Of course, using (2.3), we can also view these as oplax functors (comor-

phisms) .#° — Bicat(./", Cat).)

Proposition 5.2. A lax adjunction between P and Q) amounts to a lax natural transformation
p: Qu = P* with a left adjoint q : P* = Qy in the sense of Section /.

6. SKEW MONADS

A notion of lax monad on a 2-category # was defined by Bunge [4]. There is no problem
generalizing this to a bicategory J#". In any case, we will write as if our bicategory £ were a 2-
category. For Bunge, the lax monad involved what we would call an oplax functor T': % — £
so, for composable morphisms f: X — Y and g: Y — Z, we have a morphism 5: T(g o f) =
TgoT f, and for each object X, a morphism ¢g: T'1x = 17x, subject to naturality and coherence
conditions.

A right skew monad T on £ consists of an oplax functor 7" on %", oplax natural transforma-
tions p: T? — T and n: 14 — T, and modifications as shown in diagram (6.12).

uT
7% ———— 1 T—" 72 T2 7T

w2 R r (612
R SN N

72— T
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There are five axioms (6.13), (6.14), (6.15), (6.16), (6.17).

T M s T, M s
T (uoT M)J La g}ﬂ 2L TL“ = ll
T (pouT) AW 1 T T
T2 = T3 uT = T(poT ) T3 ,u_) T2 # T3 (613)
K a AN J ) IJ a | a J
m T I T
l 2 7 N = = 1 = |k
T T2 T2 T2 T T2
m 1 n n
T2
T2 nT T3 / YQ
x Iy T 2 T3
- l\ / l T (6.14)
2 = 1 nT Ty I .
7|” N
i T = T2 & T2
|
X 1 i Iz
T
T2

(6.15)

3
|
3
E

T° L T2 T2 a T
T(uoTn)l Ry 2N TL" = ll
TlT \L ;LLT T77
T2 T2 - T(uoTn) T3 —=T2+——T (6.16)
1
ul l ii 71“ = \l|f = JMT
2 2
T T 1> — T e T
1
n In n
=

n
T —r=T? «1— T - 1 LT (6.17)
n

[

Our later work may be expressed using the bicategory £ (T") defined as follows for any endo-
pseudofunctor 7" on #". The objects are pairs (X, z) where x: TX — X in #. The morphisms
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(f,€): (X,2z) = (Y,y) are squares (6.18) in .

TX — 7 7y

§

3{ = ly (6.18)

XﬁY

The 2-cells o: (f,£) = (g,() are 2-cells o: f = ¢ in £ which are compatible with &, { in the
obvious way.

A morphism f: X — Y in JZ is called T-extendable when, for all z: T X — X, there exists a
left extension, denoted f(:p) TY — Y, of fox along T'f. In this case, we have a functor

[ A (TX,X) — H(TY,Y) .

A morphism f: X — Y in J is called T-liftable when, for all y: TY — Y, there exists a right
lifting, denoted f(y): TX — X, of y o T'f through f. In this case, we have a functor

f: 2 (TY)Y) — #(TX,X) .

When f is both, we have an adjunction f—| f.
If a morphism f: X — Y has a right adjoint f*: Y — X then it is both T-extendable and
T-liftable. Indeed, f(z) = foxoT f* = (Tf* f)(x) and f(y) = ffoyoTf = (Tf, f*)(y).

7. THE GALOIS CONNECTION

Consider bicategories ¢ and .# and lax morphisms S,T: ¢ — # . Consider an oplax natural
transformation #: .S = T and an object A of £ .
Write #V A when, for all objects X € 2" and f: SX — A, the left extension

SX — X 7x
\ / (7.19)
langX

of f along fx exists, and, for all u: Y — X in €, the diagram

sy — % 1y

0y,
SuJ = JTu

SX — ™ 7x (7.20)
\ Axf

exhibits (lang, f) o T'u as lang, (f o Su).
The condition §VA might be considered a cocompleteness condition on A given 6, or an
exactness condition on 6 given A.

Example 7.1. If the oplax natural transformation : S = T has a right adjoint (in the sense
of Section 4) which is a pseudonatural transformation then VA for every object A.
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8. A SKEW MONOIDAL CATEGORY

Suppose T is a right skew monad on a bicategory -# and X is an object of ¢ .

We write TVX when pvX and nv.X.

We define a left skew bicategory co#t called the coKleisli bicategory of T. The objects are
those objects X of # such that TV.X. The hom categories are defined by

cokr(Y,X)=#(TY,X) .

The composite of y: TZ — Y and z: TY — X, denoted by = ¢y, is defined by z oy =
lan,, (z o Ty). A candidate jx for skew identity is defined by jx = lan, 1x.

27 —Y2 17 Y™y
Tyl & lxoy \ &y (8.21)
1x Jx
Ty ——— X X

Using uV.X, we see that the pasted composite 2-cell

T3X X T2 )

KTz KX
T2 = Tz
T°X 27X 2 TX (8.22)
Fu
TyJ = Jx y (zoy)oz
TX —— X

exhibits (z o y) ¢ z as a left extension of z o Ty o T?z along uy o urx. Therefore, by the left
extension property, there is a unique 2-cell

Ayt (TOoYy) oz =10 (yo2) (8.23)
which pastes onto (8.22) to yield the pasted 2-cell (8.24).
T3X 5 12X

T?ZJ xMx\ éy

X =y MXUTXx (8.24)
TyJ T(y<>§=>
e zo(yoz)
TX — X

Using nV X, we see that the pasted composite 2-cell

TX X 12X
l Nz rx
T = Tx
X2 ,7rx £ TX (8.25)
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exhibits 7 ¢ x as a left extension of x along ux o nrx. Therefore, by the left extension property,
there is a unique 2-cell

Ae: jor =1 (8.26)

which pastes onto (8.25) to yield the pasted 2-cell (8.27).

nrx T2X
X =N TX L TX (8.27)

Define the 2-cell
Po: T =10] (8.28)

to be the pasted composite (8.29).

TX
%|\
= Tnx =

TX ¢ T2X ——— TX (8.29)

Proposition 8.1. For any right skew monad T on J and any object X € & satisfying TVX,
the tensor product ¢ and skew unit j (8.21) equipped with constraints (8.23), (8.26), (8.28),
define a left skew monoidal structure on the category & (T X, X). If T is left normal then so is
H(TX,X).

9. LAX ALGEBRAS

Lax algebras for 2-monads were defined in Section 2 of [12]. Those appearing here are a
generalization to skew monads as occurring in [1].

Suppose T is a right skew monad on the bicategory J#. A laz T-algebra structure on X € &
consists of 2-cells

I N (9.30)
X
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subject to equations (9.31), (9.32) and (9.33).

TSX TS X
/TMX\ / \
Tx K r2x A 72y T2 X

N

TX=>TX=>TX

S A NP

T nrx
T2X
\ / X L 72X
. Y Tz lﬂx (9.32)

% X 47X & 7Tx

1 X 1
ﬁ%x

TX — T?X — o —IX = TX ﬂxlDi X (9.33)
5 /
St
Proposition 9.1. The category of lax T-algebra structures on X € & s isomorphic to the
category of monoids in the skew monoidal category & (T X, X) of Proposition 8.1. If f: X =Y

is T-extendable then f H(TX,X) — H(TY,Y) is opmonoidal. If f: X — Y is T-liftable
then f: 2 (TY,Y) — A (TX,X) is monoidal.
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