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Abstract
Enriched categories equipped with an abstract substitution process are defined

in this paper, and called substitudes.  They generalize both monoidal enriched
categories and operads, and are a little more general than multicategories.
They can bear braidings and symmetries.  There are two convolution processes
with distinctly different properties.    

Introduction
Substitudes slightly generalize multicategories in the sense of Lambek (see [Lk] and

[H]).  In [DS2] we called them lax procomonoidal categories as one of many related
structures.  Our purpose here is to centre attention on substitudes in the enriched
context and to further study two convolution constructions which we now call standard
and non-standard.  The standard convolution reduces to the original one defined by the
first author in [D0] when the substitudes are (pro)monoidal where it was pointed out
that the monoids are the (pro)monoidal functors; this generalizes to the present setting.
The non-standard convolution was inspired by [BDK] as was our treatment here of the
"annihilator algebra".

Substitudes generalize both monoidal categories and operads.  It is therefore natural
to define braided and symmetric substitudes which generalize braided and symmetric
monoidal categories in the sense of [EK] (and [JS1]) and the symmetric operads of Peter
May [M].  We define commutative monoids in braided substitudes and Lie algebras i n
additive braided substitudes.  Each substitude can be symmetrized in a simple way that
has no analogue for monoidal categories.          

We deal throughout with enriched categories for which the basic reference is Kelly's
book [Ky].

¤1. Substitudes
Let  V denote a symmetric closed monoidal category which is both complete and

cocomplete.  We often write as if  V were strictly associative and unital.  
A V-substitude is a V-category  A together with:

• for each integer  n ≥ 0,  a V-functor
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Pn op op

n
: . . .A A A V⊗ ⊗ ⊗  →
1 2444 3444

whose value at    ( , . . . , , )A A An1 is denoted by    P A A An n( , . . . , ; )1 ;
• for each partition1 ξ :    m m mn1 + + =. . . ,  a V-natural family of morphisms

  µξ ξ: ( ; ) ( ; ) . . . ( ; ) ( ; )P A A P A A P A A P A An m m n nn• • • ••⊗ ⊗ ⊗  →
1 1 1

in  V,  called substitution, where we use the shorthand  

  P X Xk( ; )• =    P X X Xk k( , . . . , ; )1 and  

  P X Xξ( ; )•• =    P X X X X Xm m n nmn
( , . . . , , . . . , , . . . , ; )11 1 11

;   and

• a V-natural family of morphisms

    η : ( , ) ( ; )A A B P A B → 1

in  V,  called the unit ;
subject to the commutativity of the following three diagrams involving the partitions  ξ
:   m m m mn r r nr11 1 11

+ + + + + +. . . . . . . . . = m ,  ξ ⁄⁄i :   m mi i ni1 + +. . . = m ⁄⁄i ,  ζ :   n nr1 + +. . . =
n ,  ζ ξ :   m mr1 + +. . . =  m ,    1n : 1 + . . . + 1 = n   and  ! : m = m ,  and making use of a
slight extension of the shorthand. 

≅

  
P A A P A Ar i

r
i ii

( ; ) ( ; )•
=

••⊗ ⊗
1 ξ

  
1

1
⊗ ⊗

=i

r

i
µξ

  µζ ⊗ 1

  P A Aξ ζ, ( ; )•••

µξ

µζξ

  
P A A P A A

i

r

j

n

m i j i j
i

i

i ji i iζ( ; ) ( ; )••
= =

•⊗ ⊗ ⊗
1 1

  
P A A P A A P A Ar i

r
n i i i

r

j

n

m i j i ji
i

i

i ji i i
( ; ) ( ; ) ( ; )•

=
•

= =
•⊗ ⊗⊗ ⊗ ⊗

1 1 1

  
P A A P A A P A Ar i

r
n i i j

n

m i j i ji
i

i

i ji i i
( ; ) ( ; ) ( ; )•

=
•

=
•⊗ ⊗









⊗ ⊗

1 1

  
P A A B An i

n
i i( ; ) ( ; )•

=
⊗ ⊗

1
A

  P B An( ; )•

  
P A A P B An i

n
i i( ; ) ( ; )•

=
⊗ ⊗

1 1

action

  
1

1
⊗ ⊗

=i

n
η

  µ1n

   A( , ) ( ; )A B P A Am⊗ •   P A B P A Am1( ; ) ( ; )⊗ •

  P A Bm( ; )•

  η ⊗ 1

action   µ !

A V-substitude is what was called a "lax procomonoidal V-category" in [DS2]; it (or,
more pedantically, a small one) is precisely a lax monoid in  (V-Mod)⁄op.  A premonoidal
V-category in the sense of [D1], later called promonoida l, is essentially a substitude i n
which the morphisms  µξ are universal (that is, express their codomains as coends over

  A1 , . . . ,   An of their domains) and the morphisms  η are invertible.

An oplax monoidal V-category is a V-substitude for which each of the V-functors
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  P A An n( , . . . , ; )1 − :   A V →

is representable. This agrees with the terminology of [DS2] and amounts to a lax monoid
in  (V-Cat)⁄co.  If we denote the representing object of the above displayed V-functor by

  
⊗
n nA A( , . . . , )1

⁄∈ ⁄⁄A then we obtain functors  

  
⊗
n

:  
      
A A A⊗ ⊗  →. . .

n
1 244 344

and isomorphisms

  P A A An n( , . . . , ; )1 ≅ A ⁄⁄(
  
⊗
n nA A( , . . . , )1 , A)

V-natural in all the variables    A An1, . . . , and  A.  Notice that, by the Yoneda Lemma, the
substitution µξ induces a cosubstitution

δξ :  
  
⊗ ⊗ ⊗ ⊗• •  → 



m n n m m m n nmA A A A A A

n n
( , . . . , ) ( , . . . , ), . . . , ( , . . . , )1 11 1 1

1 1

and the unit  η induces a counit ε : 
  
⊗  →
1
( )A A satisfying the appropriate three

conditions.  A mono ida l V-category is essentially an oplax monoidal V-category in which
all the  δξ and  ε are invertible.  

A lax monoidal V-category is a lax monoid in  V-Cat.  This means that a lax monoid
structure on a V-category  A amounts precisely to an oplax monoidal structure on  A ⁄op.
A monoidal V-category is also essentially a lax monoidal V-category in which all the  µξ

and  η are invertible.   
A lax monoidal V-category  X is called cocomplete when it is cocomplete as a V-

category and each of the functors  
  
⊗
n

preserves colimits in each of the n variables.  

Suppose  A and  X are V-substitudes.  A V-functor  F : A aAX is called a
substitude m o r p h i s m when it is equipped with, for each integer  n ≥ 0,  a family of
morphisms

  φn :   P A A An n( , . . . , ; )1  →   P FA FA FAn n( , . . . , ; )1 ,

V-natural in all the variables    A An1, . . . , and  A,  satisfying the conditions 

    
φ µ µ φ φξ ξm n r

n
mr

o o= ⊗






⊗
=1

and           φ η η1 o o= FA B,

of compatibility with substitution and unit.  The morphisms    φn induce their mates

    
ρn n n

A
n nP A A A FA X P FA FA X: ( , . . . , ; ) ( , ) ( , . . . , ; )1 1∫ ⊗  →X .

The substitude morphism  F  is called strong when each    ρn is invertible. Oplax
monoidal V-category morph i sms are substitude morphisms; we identify    φn with the
morphism induced (Yoneda) between the representing multiple tensor products. Lax
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monoidal V-category morphisms are defined dually.
A morphism between two V-substitude structures on the same V-category  A is a

substitude morphism structure on the identity V-functor of  A ⁄⁄.  Similarly one defines
morphisms of (op)lax monoidal structures on A . 

Suppose  F  and  G : A aAX are substitude morphisms. A substitude
transformation θ : F aAG  is a natural transformation such that the following
commutes.

  P FA FA FAn n( , . . . , ; )1  P A A An n( , . . . , ; )1
  φn

  P GA GA GAn n( , . . . , ; )1

  φn

  P FA FA GAn n( , . . . , ; )1

  Pn A( , . . . , ; )1 1 θ

  Pn A An( , . . . , ; )θ θ
1

1

Write  Sstd(A ⁄⁄,⁄⁄X)  for the category of substitude morphisms and transformations.
In any monoidal bicategory it is possible to define a notion of "representation" of a

lax comonoid in a lax monoid.  Here we are concerned only with the case of a
representation F : A aAX of a V-substitude  A in a cocomplete lax monoidal V-
category  X ⁄⁄; it is a V-functor  F : A aAX together with a V-natural family of morphisms

  φn :  
  
P A A A FA FAn n n n( , . . . , ; ) ( , . . . , )1 1⊗ ⊗ aAFA 

in  X such that the following two diagrams commute.

  
P A A P A A P A A FA FAn m m n n n m m nn

n
( ; ) ( ; ) . . . ( ; ) ( ( ) , . . . , ( ))• • • • •⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

1
1

1 1 1

  
P A A A FA FAm n m n( , . . . , ; ) ( , . . . , )1 1• • • •⊗ ⊗

  
P A A P A A FA P A A FAn n m m m n n m nn

n
( ; ) ( ; ) ( ) , . . . , ( ; ) ( )• • • • •⊗ ⊗ ⊗





⊗ ⊗ ⊗
1

1
1 1 1

  
P A A FAn n
( ; ) ( )• •⊗ ⊗

FA

canon

  
1

1
⊗ ⊗

n m mn
( , . . . , )φ φ

µ µξ ξ⊗

  φm   φn

    A( , )A A FA1 1⊗ FA

  
P A A FA1 1 1 1( ; ) ( )⊗ ⊗

action

η η⊗   φ1

In the special case when  X is monoidal, so that  X is both a substitude and lax
monoidal, a representation  F : A aAX is precisely a substitude morphism.

By way of example, we conclude this section with some remarks about operads.  W e
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believe that it is more convenient to use the term operad for what is commonly called a
"non-permutative operad":  the original operads of [M] can then be called "symmetric
operads".  Accordingly, we define an operad T  i n V to be a V-substitude  ΣT  whose
underlying category is the V-category  I with one object  ∗ and with hom  I (∗ ,∗ )  equal to
the unit  I  for tensor in  V.  One writes  Tn for the object  Pn(∗ , . . . ,∗ ; ∗ )  of  V.  We call the
substitude  ΣT  the suspension of the operad  T.  A T-algebra in a V-substitude  A is
defined to be a substitude morphism  A : ΣT aAA .  On the other hand, we define a T-
algebra in a lax monoidal category  X to be a representation of  ΣT  in  X ⁄. 

In particular, there is an operad which we identify with the unit  I  in  V;  we have
In = I .  A m o n o i d in a V-substitude or in a lax monoidal V-category is defined to be an I-
algebra. 

¤2. Standard convolution
We write  [A ⁄⁄,⁄⁄X ⁄]  for the V-category of V-functors from a V-category  A to a V-

category  X (see [Ky], for example).
Suppose  A is a small V-substitude and  X is a cocomplete lax monoidal V-category.

For  V-functors    F Fn1, . . . , : A aAX ,  we define a V-functor  
  
⊗
n nF F( , . . . , )1 : A aAX by

  
⊗
n nF F( , . . . , )1 =  

  
P A A F A F An n

A A

n n n
n

( , . . . , ; ) ( , . . . , )
,... ,

1 1 1
1

− ⊗∫ ⊗ .

A substitution morphism  
  
µξ : ( ), . . . , ( ) ( , . . . , )⊗ ⊗ ⊗ ⊗• • • •







 →
n m m n m nF F F F

n1
1 1 is defined by

the composite

  
P A P A A F A P A A F An

A

n m
A

m n n
A

n nn

n
( ; ) ( ; ) , . . . , ( ; )• • • • • • •− ⊗ ⊗ ⊗





• • •

∫ ∫ ∫⊗
1

1
1 1 1 1

≅

  
P A P A A P A A F A F An

A A A
m m n n n m m n n

n

n n
( ; ) ( ; ) . . . ( ; ) ( ), . . . , ( )

, ,... ,
• • • • • • •− ⊗ ⊗ ⊗ ⊗ 





• • •

∫ ⊗ ⊗ ⊗
1

1 1
1 1 1 1

  

A A
m n m n n

n
P A A F A F A

1
1 1 1

• •

∫ • • • • • •− ⊗ ( )⊗
,... ,

( , . . . , ; ) , . . . ,

  
µ µξ ξ⊗

• •

∫
A An1 ,... ,

in which the isomorphism comes from the cocontinuity in each variable of the V-
functor  

  
⊗
n

of  X ⁄⁄.  A unit  η :   F1
aA

  
⊗
1 1( )F is defined by the composite

    
A( , )A F A

A
1 1 1

1
− ⊗∫  F1

≅
  

P A F A
A

1 1 1 1 1
1
( ; ) ( )− ⊗∫ ⊗  

η η⊗∫
A1

in which the isomorphism is that of Yoneda's Lemma.
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Proposition 2.1 [A ⁄⁄,⁄⁄X ⁄]  becomes a cocomplete lax monoidal V-category using the a b o v e
substitution and unit. 

We shall call this the standard convolut ion lax monoidal structure on  [A ⁄⁄,⁄⁄X ⁄].  The
case where  X = V was the first convolution structure defined in Section 7 of [DS2].  That
case has further properties.

Proposition 2.2 Standard convolution defines an equivalence between the category o f

substitude structures on any small V-category A and the category of cocomplete lax
monoidal structures on  [A ⁄⁄,⁄⁄V⁄⁄].⁄

For cocomplete lax monoidal V-categories  Z and  X ,  write  CocLM(Z ⁄⁄,⁄⁄X)  for the
category of morphisms of lax monoidal V-categories whose underlying V-functors
preserve colimits (that is, are "cocontinuous").  The following result should be
compared with [IK]; we refrain from stating the several variable form which also holds.

Proposition 2.3 For any substitude A ⁄, the Yoneda embedding⁄ Y⁄  : A aA[A ⁄⁄,⁄⁄V⁄⁄]⁄op is a

substitude morphism w h e r e [A ⁄⁄,⁄⁄V⁄⁄]⁄op is the substitude represented by the standard
convolution structure on  [A ⁄⁄,⁄⁄V⁄⁄].   Restriction along  Y⁄  is an equivalence of categories

Sstd(A ⁄⁄,⁄⁄X ⁄op)    ~ CocLM([A ⁄⁄,⁄⁄V⁄⁄]⁄⁄,⁄⁄X)⁄op .

For substitudes  A and  B there is an obvious substitude structure on the V-category
A ⁄⁄⊗ ⁄⁄B ; take  

  P A B A B A Bn n n(( , ) , . . . , ( , ); ( , ))1 1 =    P A A A P B B Bn n n n( , . . . , ; ) ( , . . . , ; )1 1⊗

and so on.

Proposition 2.4 For V-substitudes A and B ⁄⁄,  and a cocomplete lax monoidal V-

category  X ⁄⁄, the canonical isomorphism

  
A B , X A , B , X⊗[ ] ≅ [ ][ ]

of V-categories is a morphism of lax monoidal V-categories where all three V-functor V-
categories have the standard convolution  structures.

Generalizing the observation of [D0; Section 3.1, page 72], we deduce from the last
proposition that a monoid in  [A ⁄⁄,⁄⁄X ⁄]  is precisely a substitude morphism from  A to  X
as defined in Section 1.  Hence, for any V-operad  T,  t h e V-category of T-algebras i n X is
t h e V-category of monoids in the standard convolution  [ΣT ⁄⁄,⁄⁄X ⁄].    

The final proposition of this section is a lax version of a result of [DS0].
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Proposition 2.5 Suppose J : A aAH is a strong substitude morphism with A small.

Suppose X is a cocomplete lax monoidal V-category.  Then the V-functor

  ∃ J :  [A ⁄⁄,⁄⁄X ⁄⁄]  aaA[H ⁄⁄,⁄⁄X ⁄⁄] , 

given by left Kan extension along J ,  is a strong morphism of lax monoidal V-categories.

¤3. Non-standard convolution
For any small V-substitude  A there is a V-substitude structure on the V-category

[A ⁄op⁄⁄,⁄⁄V⁄⁄]  which we described at the end of [DS2] in order to include the fundamental
"pseudo-tensor category" used in [BDK].  For V-functors    F F Fn1 , . . . , , : A ⁄op⁄ aAV,  we
put

  P F F Fn n( , . . . , ; )1 =   
  

F A F A P A A A FAn n n n
A

A An
1 1 1

1
⊗ ⊗ ⊗



∫∫ . . . , ( , . . . , ; )

, . . . ,

=   
    
A V⊗[ ] ⊗ ⊗ − ⊗



∫n op

n n
A

F F P A FA, . . . , ( ; )1 .

The substitution    µξ ξ: ( ; ) ( ; ) . . . ( ; ) ( ; )P F F P F F P F F P F Fn m m n nn• • • ••⊗ ⊗ ⊗  →
1 1 1 is defined

by the following composite

    
A V A V⊗

•
=

⊗
•[ ] − ⊗





⊗ [ ] − ⊗





⊗ ⊗ ⊗∫ ∫n op
n n

A

r

n
m op

m m r r r
A

F P A FA F P A F Ar
r r

r
, , ( ; ) , , ( ; )

1

    

1

1
1

⊗
⊗

•
⊗

••
=

• •

⊗
= •

 → [ ] − ⊗





⊗ [ ] − ⊗








⊗ ⊗ ⊗ ⊗∫ ∫r

n

r
n op

n n
A

m op
r

n
m r n

A
F P A FA F P A F AA V A V, , ( ; ) , , ( ; )

ξ

    

comp m op
r

n
m r n

AA
F P A P A A FA

r
 → [ ] − ⊗ ⊗











⊗
••

=
•⊗ ⊗ ∫∫

•
A V, , ( ; ) ( ; )

ξ 1

    

1 1,
, , ( ; )

A
m op

A
F P A A FA

∫
 → [ ] ⊗





⊗



 ⊗

•• ••⊗ ∫
µ

ξ ξ
ξ

A V ,

while the unit  η :      A Vop F F P F F, ( , ) ( ; )[ ] →1 1 1 is the following composite.

    
A V A V A A Vop op

A
op

A
F F F A FA F P A FA

A

, ( , ) , , ( , ) , , ( ; )
,[ ] ≅ [ ] − ⊗





∫
 → [ ] − ⊗



∫ ∫

⊗





1 1
1 1

1 1
η

Proposition 3.1 For any small substitude A the Yoneda embedding Y : A aA[A ⁄op⁄⁄,⁄⁄V⁄⁄]
is a strong substitude morphism into the non-standard convolution substitude. 

Proof Using the Yoneda lemma, we have
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P A A A F P A A FAn

opA
n

A
( ; ) , , ) ( ; )(• •⊗ [ ] ≅ ⊗∫ ∫A V Y

≅
      

A V⊗
•[ ] − ⊗



⊗ ∫n op

n n
A

A P A FA, , ( ; )Y ≅        P A Fn( ; )Y • .  q.e.d.

By combining Proposition 2.5 and Proposition 3.1, we obtain the next result.

Corollary 3.2 For any small substitude A and any cocomplete lax monoidal V-

category X ⁄⁄,  left Kan extension along the Yoneda embedding  Y : A aA[A ⁄op⁄⁄,⁄⁄V⁄⁄]  is a
strong morphism

  ∃Y :  [A ⁄⁄,⁄⁄X ⁄⁄]  aaA[⁄[A ⁄op⁄⁄,⁄⁄V⁄⁄]⁄⁄,⁄⁄X ⁄⁄] 

of lax monoidal V-categories.

Let us define the K-annihilator of  F  by

AnnKF  =    ∃Y (K)(F)  =  
  
FA KA

A
⊗∫ .  

Corollary 3.2 explains the general mechanics behind the "annihilation algebra" of [BDK;
Corollary 7.1, page 45].  The case of interest in that paper is where  X = [A ⁄⁄,⁄⁄V⁄⁄]  with the
standard convolution structure, and  K  is a monoid in  [A ⁄⁄,⁄⁄X ⁄⁄]  ≅ [A ⁄⁄⁄⊗ ⁄⁄A ⁄,⁄⁄V⁄⁄];  in other
words,  K  is a substitude morphism  K : A ⁄⁄⁄⊗ ⁄⁄A aAV⁄.   Then  AnnK : ⁄[A ⁄op⁄⁄,⁄⁄V⁄⁄] aA[A ⁄⁄,⁄⁄V⁄⁄]
is a morphism between the non-standard and the standard structures.

¤4. Braided and symmetric substitudes
We begin by reviewing a few facts about some categories that involve braids.  W e

write  B for the monoidal category of braids [JS1];  the objects are the natural numbers,
all morphisms are automorphisms, the hom      B( , )n n is the Artin braid group  Bn on  n
strings, and the tensor product is defined to be addition of natural numbers and
horizontal stacking of braids.  We write  P for the monoidal category defined similarly
using the permutation groups  Pn rather than the braid groups.  Each braid  β on  n
strings has an underlying permutation  β :  i jAβ(i)  of the set  n = {1, . . . , n};  this
defines a braided strict monoidal functor  B aAP which is the identity on objects and
full. For each finite sequence    ( , . . . , )A An1 of objects in any braided monoidal category
V,  we obtain a canonical isomorphism    cβ :   A A nβ β( ) ( ). . .1 ⊗ ⊗ aA

  A An1 ⊗ ⊗. . . which
is defined to be

  1 1 1 1
1 1 1 2A A A A A Ai i i i n

c⊗ ⊗ ⊗ ⊗ ⊗ ⊗
− + +

. . . . . .,

when  β the braid that crosses the i-th string over the (i+1)-th string, the identity when
β is the identity braid, and  

    c c cβ β β= ′ ′′o when    β β β= ′′ ′o .  
The algebraic simplicial category  ∆∆∆∆ has objects the natural numbers and has hom
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  ∆∆( , )m n consisting of the order-preserving functions  ξ : m aAn ; composition is that of
functions.  Moreover,  ∆∆∆∆ becomes monoidal under addition of natural numbers and
ordinal sum of order-preserving functions.  

With respect to strict monoidal functors,  B is the free braided strict monoidal
category generated by a single object,  P is the free symmetric strict monoidal category
generated by a single object,  and  ∆∆∆∆ is the free strict monoidal category containing a
monoid. First we need to recall from [JS1] and [JS2] the description of the free braided
strict monoidal category  B∫A on any category  A .  The objects of  B∫A are finite
sequences    ( , . . . , )A An1 of objects of  A .  Morphisms only occur between sequences of
the same length; a morphism

  ( ; , . . . , )α f fn1 :    ( , . . . , )A An1
aaA

  ( , . . . , )B Bn1

consists of  α ∈ Bn and    fi :   Ai
aA

  B iα( ) in  A .  Such a morphism can be viewed as the
braid  α labelled by    f fn1, . . . , as, for example: 

  A A A A A1 2 3 4 5
• • • • •

  B B B B B1 2 3 4 5

• • • • •

  f1

  f2   f3
  f4

  f5

 . 

Composition of labelled braids is performed by composing the labels on each string of
the composite braid.  The operation of addition of braids extends in the obvious way to
labelled braids yielding a tensor structure on  B∫A .  There is an obvious braiding on  B∫A
obtained from the braiding on  B  by labelling the strings with identity morphisms. W e
have an inclusion functor  i  :  A aAB∫A identifying  A with the labelled braids with a
single string.  

If  V is braided monoidal, there is a "substitution" operation ⊗ : B∫V aAV whose
composite with  i : V aAB∫V is isomorphic to the identity functor; explicitly, it takes

  ( , . . . , )A An1 to  
  
⊗
n nA A( , . . . , )1 =   A An1 ⊗ ⊗. . . (bracketed from the left, say)  and takes

  ( ; , . . . , )α f fn1 to the morphism

  α[ , . . . , ]f fn1 :     A An1 ⊗ ⊗. . . aA

  B Bn1 ⊗ ⊗. . .
obtained by composing    f fn1 ⊗ ⊗. . . with the canonical isomorphism 

  cα :    B B nα α( ) ( ). . .1 ⊗ ⊗ aA

  B Bn1 ⊗ ⊗. . . .

9



In particular, we are interested in the case  V =  B.  We can identify an object

  ( , . . . , )m mn1 of  B∫B with the order-preserving function  ξ : m aAn whose fibre over

i ∈ n has cardinality    mi .  For any braid  α ∈ Bn we write  ξ α : m aAn for the order-

preserving function determined by the object    ( , . . . , )( ) ( )m m nα α1 of  B∫B .  Then we have
the morphism

  α αξ = [ , . . . , ]1 1
1m mn

:  m aAm

in  B.  In other words, we have defined a function

  ∆∆( , )m n ×     B( , )n n aaA

    B( , )m m ×   ∆∆( , )m n
that takes the pair  (ξ , α)  to the pair  ( αξ , ξ α );  we call this the distributive law for ∆∆∆∆
over  B.  We can visualise this process as follows.

 ξ 

• • • •

• • • • • •

• • • •

 α 

=

• • • • • •

• • • • • •

• • • •

ξ α

αξ

There is also a distributive law

  ∆∆( , )m n ×     P( , )n n aaA

    P( , )m m ×   ∆∆( , )m n
for ∆∆∆∆ over  P which we can obtain similarly, or from the braid case by means of the
quotient homomorphisms  Bn

aAPn and  Bm
aAPm. 

We can use this discussion to define monoidal categories  B∆∆∆∆ and  P∆∆∆∆    which are
the free braided and symmetric (respectively) strict monoidal categories containing a
monoid.  In other terminology,  P∆∆∆∆ is the PROP for monoids (a description occurs i n
[MT; Construction 4.1, page 215] although there is a misprint2 in which the outside
product should be a sum).  To be explicit, the objects of  B∆∆∆∆ and  P∆∆∆∆ are the natural
numbers.  A morphism  (α , ξ) : m aAn  in  B∆∆∆∆ consists of a braid  α ∈ Bm and an order-
preserving function  ξ : m aAn.  The composite of  (α , ξ) : m aAn  and  (β , ζ) : n aAp

is defined to be  
    ( , )β α ζ ξξ

βo o : m aAp.  There is a faithful functor  B aAB∆∆∆∆ taking  α :

m aAm  to  (α ,  1m ) : m aAm,  and a faithful functor  ∆∆∆∆ aAB∆∆∆∆ taking  ξ : m aAn  to
(  1m , ξ) : m aAn;  both functors are the identity on objects and we identify morphisms i n
B and  ∆∆∆∆ with their image in  B∆∆∆∆    .  So we may write  (α , ξ)  =    ξ αo and note that the
morphisms of  B are precisely the invertible morphisms of  B∆∆∆∆.  There is a braided strict
monoidal structure on  B∆∆∆∆ for which  BaAB∆∆∆∆ is a braided strict monoidal functor and

10

2 This misprint was pointed out to us by Teimuraz Pirashvili.



∆∆∆∆ aAB∆∆∆∆ is strict monoidal. The symmetric strict monoidal category  P∆∆∆∆ is defined
similarly; in fact,  P∆∆∆∆ is equivalent to the category whose objects are finite sets and
whose morphisms are functions with the structure of linear order on each fibre3. 

Recall from [DS2] that lax monoids in a Gray monoid  M amount to strict-monoidal
lax functors  M : ∆∆∆∆ aAM.  A braided lax monoid in a braided (see [DS1]) Gray monoid  M
is a braided strict-monoidal lax functor  M : B∆∆∆∆ aAM whose composition constraints

µ θ, φ :  M(φ) M(θ)  aAM(φ θ)

are identities whenever  θ is invertible.  In particular, this last condition implies that
the composite of  M  with  BaAB∆∆∆∆ is a 2-functor.  Of course the composite of  M  with
the strict-monoidal functor  ∆∆∆∆ aAB∆∆∆∆ is the underlying lax m o n o i d of  M;  we say that
M  provides a braiding for the underlying lax monoid.

Similarly, a symmetric lax monoid in a sylleptic (see [DS1]) Gray monoid  M is a
sylleptic strict-monoidal lax functor  M : P∆∆∆∆ aAM whose composition constraints

µ θ, φ :  M(φ) M(θ)  aAM(φ θ)

are identities whenever  θ is invertible.  
A braided [respectively, symmetric] V-substitude is a braided [respectively,

symmetric]  lax monoid in  (V-Mod)⁄op.
More explicitly, a braiding for a substitude  A assigns to each natural number  n

and each braid  α on  n  strings, a V-natural family of isomorphisms
γ α :    P A A Xn n( , . . . , ; )1

akA

  P A A Xn n( , . . . , ; )( ) ( )α α1 , 
such that    γ γ γα α α α′ ′=o and the following two diagrams commute.

  
P A A P A An i

n
m i ii

( ; ) ( ; )•
=

•⊗ ⊗
1   P A Aξ( ; )••

µξ

  
P A A P A An i

n
m i ii

( ; ) ( ; )( ) ( ) ( )( )α α αα•
=

•⊗ ⊗
•1   P A Aξ αα

( ; )( )• •
µξα

  γ α α⊗ −c 1 γ
αξ

  
P A A P A An i

n
m i ii

( ; ) ( ; )•
=

•⊗ ⊗
1   P A Aξ( ; )••

µξ

µξ

  
P A A P A An i

n
m i ii i i

( ; ) ( ; )( ) ( )•
=

•⊗ ⊗
1 α α   P A Am n n

( , . . . , )( ) ( )1 1α α• •

  
γ

α α1 + +. . . n  
1⊗ ⊗

i i
γ α

The braiding is a symmetry when    γ γα α = 1 if  α is the basic left-over-right cross-over
of two strings.
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configuration".



A V-operad  T  is braided [symmetric] when the V-substitude  ΣT  is equipped with a
braiding [symmetry].  Symmetric operads are the original operads of May [M]. Braided
operads have been used for example by Fiedorowicz [F] and Tamarkin [T].

Proposition 4.1 Suppose A is a small braided [symmetric] V-substitude and X is a

cocomplete braided [symmetric] lax monoidal V-category.  Then the standard
convolut ion [A ⁄⁄,⁄⁄X] has a canonical braiding [symmetry] induced on coends by t h e
following isomorphisms.

  
P A A F A F A P A A F A F An n n n n

c
n n n n n( , . . . , ; ) ( , . . . , ) ( , . . . , ; ) ( , . . . , )( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1− ⊗  → − ⊗⊗ ⊗

⊗γ
α α α α α α

α α

Proposition 4.2 Suppose A is a small braided [symmetric] V-substitude.  Then t h e

non-standard convolut ion [Aop, V⁄⁄] has a canonical braiding [symmetry] induced o n⁄

ends by the following isomorphisms.

  
F A F A P A A A FA F A F A P A A A FAn n n n

A c
n n n n

A
1 1 1

1
1 1 1⊗ ⊗ ⊗





 → ⊗ ⊗ ⊗



∫ ∫

⊗∫[ ]. . . , ( , . . . , ; ) . . . , ( , . . . , ; )
,

( ) ( ) ( ) ( ) ( ) ( )
α αγ

α α α α α α

We conclude this section with a construction in the case where  V is cartesian
closed.  

Each substitude  A can be symmetrized. Explicitly, we define a new substitude
structure  Q  =  sym(P)  on the same underlying category  A by

  Q A A An n( , . . . , ; )1 =   
    

P A A An n
n

( , . . . , ; )( ) ( )σ σ
σ

1
∈
∑
P

.

To define the substitution operation we define its composite with the coprojection from

  
P A A A P A A An n m r r m r

r

n

r r r r
( , . . . , ; ) ( , . . . , ; )( ) ( ) ( ) ( )σ σ σ σ1 1

0
×

=
∏

to  

  
Q A A A Q A A An n m r rn r

r

n

r
( , . . . , ; ) ( , . . . , ; )1 1

0
×

=
∏ ,      for  σ ∈ Pn and      σr mr

∈P ,

to be the composite of the canonical isomorphism  
  
1 1× −cσ into

  
P A A A P A A An n m r r m r

r

n

r r r r
( , . . . , ; ) ( , . . . , ; )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )σ σ σ σ σ σ σσ σ σ σ1 1

0
×

=
∏ , 

the substitution  µξσ
,  and the coprojection into    Q A A Am nmn

( , . . . , ; )11 for the
permutation     σ σ

σ σm m n( ) ( )
. . .

1
+ + of     m m nσ σ( ) ( ). . .1 + + =  m .   Noting that  

  Q A A1 1( ; ) =    P A A1 1( ; ) ,
we take the same unit as before.  The three substitude axioms can be verified.  Moreover,
we have a natural isomorphism

γ τ :    Q A A An n( , . . . , ; )1
akA

  Q A A An n( , . . . , ; )( ) ( )τ τ1
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whose composite with the coprojection from    P A A An n( , . . . , ; )( ) ( )σ σ1 for  σ ∈     Pn is the
coprojection for  τ σ ∈     Pn .  The three axioms for a symmetry can be verified.

¤5. Braided substitude morphisms
Suppose  A and  X are braided V-substitudes.  A V-substitude morphism  F : A

aAX is called braided when the following square commutes for all objects    A An1, . . . ,

and  A  of  A ,  and all braids  α .

  P FA FA FAn n( , . . . , ; )1

  P A A An n( , . . . , ; )( ) ( )α α1  P A A An n( , . . . , ; )1

  P FA FA FAn n( , . . . , ; )( ) ( )α α1

γ α

γ α

  φn   φn

If  T  is a braided [symmetric] V-operad then a T-algebra in  A is defined to be a

braided [symmetric] V-substitude morphism  A : ΣT aAA .  For example, when  T  is the
symmetric operad  I,  an I-algebra in  A is called a commutative monoid in  A .  The
commutative monoids in the standard convolution  [A ⁄⁄,⁄⁄X]  are braided substitude
morphisms.

In the case where  V is the category of complex vector spaces, there is a symmetric
V-operad  lie whose algebras in  V are complex Lie algebras.  We define a Lie algebra i n
a V-substitude A to be a lie-algebra in  A .  Lie algebras in the non-standard convolution

structure  [Hop, V]  for a symmetric finite-dimensional Hopf algebra  H  were extensively
studied in [BDK].  Another connection between  lie and substitudes will be addressed i n
[DvS].  
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