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Abstract

Enriched categories equipped with an abstract substitution processare defined
in this paper, and called substitudes. They generalize both monoidal enriched
categories and operads, and are a little more general than multicategories.
They can bear braidings and symmetries. There are two convolution processes

with distinctly different properties.

Introduction

Substitudes slightly generalize multicategories in the sense of Lambek (see [Lk] and
[H]). In [DS2] we called them lax procomonoidal categories as one of many related
structures. Our purpose here is to centre attention on substitudes in the enriched
context and to further study two convolution constructions which we now call standard
and non-standard. The standard convolution reduces to the original one defined by the
first author in [D0] when the substitudes are (pro)monoidal where it was pointed out
that the monoids are the (pro)monoidal functors; this generalizes to the present setting.
The non-standard convolution was inspired by [BDK] as was our treatment here of the
"annihilator algebra".

Substitudes generalize both monoidal categories and operads. Itis therefore natural
to define braided and symmetric substitudes which generalize braided and symmetric
monoidal categories in the sense of [EK] (and [JS1]) and the symmetric operads of Peter
May [M]. We define commutative monoids in braided substitudes and Lie algebras in
additive braided substitudes. Each substitude can be symmetrized in a simple way that
has no analogue for monoidal categories.

We deal throughout with enriched categories for which the basic reference is Kelly's
book [Ky].

§1. Substitudes

Let 9 denote a symmetric closed monoidal category which is both complete and
cocomplete. We often write as if ¥ were strictly associative and unital.

A V-substitude is a V-category A together with:

e for each integer n=0, a 1L functor



P,:A%0..04%°04 M- vV

n

whose value at (A4, ...,A,,A) isdenoted by P,(Aq,...,AL;A);

e for each partition' £: m;+...+m, = m, a Vnatural family of morphisms
He :Pa(AGA)OP, (A A)D...OP, (A AL) M- Pr(ALA)
in 1V, called substitution, where we use the shorthand
P (X.;X) = P(Xy, ..., Xy X) and
Pe(Xo;X) = PrnXq1, -+ Ximy s -+ X1y - Xpm 5 X); and

* a Vnatural family of morphisms

N : A(A,B) 0 - P,(A;B)
in 1 called the unit;
subject to the commutativity of the following three diagrams involving the partitions §
PmyqFetmy, FedmgFeFme, =mo, & imyp e tmy, =m;, {ingt.+n, =
n, ({:m+...+m, =m, 1,:1+...+1=n and !:m =m, and making use of a
slight extension of the shorthand.

Pr(A.,A)D .Ijlpni( A )D D |:| P ]A(Ai]'i".Aiji)

i= i=1j,=1 1
;D/ \”ZDl
n.
A

1 |:|
P.(A.;A)0 D BP D P (A Aiji)H P
=1 Ji PZ(A"’A)DQ I:_l Pm1]~( T A1]1)
10 D Mg, \L / i=1j;=
=LY He
P(A;A) D U Py (Aiei A) ™ T Peg(AniA)
ntl
P.(A.;A)0 D ,‘ZL(BI,A )\actin A(A,B)O P, (A ;A) ——=Pi(A;B) 0P, (AL A)
10 D n ¢ P, (B.;A) M %
P (AA)D D Pi(Byi A )/u: P, (A.;B)

A T-substitude is what was called a "lax procomonoidal T+category” in [DS2]; it (or,
more pedantically, a small one) is precisely a lax monoid in (7-Mod)°P. A premonoidal

V-category in the sense of [D1], later called promonoidal, is essentially a substitude in
which the morphisms ; are universal (that is, express their codomains as coends over

Ay, ..., A, of their domains) and the morphisms n are invertible.

An oplax monoidal V-category is a V-substitude for which each of the 7-functors

* The summands in our partitions are allowed to be zero and in non-monotone order.
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P.(Ay,...,A;-): A M- VY
is representable. This agrees with the terminology of [DS2] and amounts to a lax monoid

in (7-Cat)°. If we denote the representing object of the above displayed 7-functor by
(A4, ...,A,) 04 then we obtain functors
n

and isomorphisms

P, (A,...,A;A) O0A4(UA,...,Ay), A)

Vnatural in all the variables Aj,...,A, and A. Notice that, by the Yoneda Lemma, the

n

substitution W; induces a cosubstitution
U U
62 . E(Al., ""Al’l') 0 - gggl(All, "'/Alml)""/ g (Anl’ ...,Anmn)E
and the unit n induces a counit € : J(A)0J - A satisfying the appropriate three
1

conditions. A monoidal V-category is essentially an oplax monoidal 7 category in which

all the &; and ¢ are invertible.
A lax monoidal V-category is alax monoid in T-Cat. This means that a lax monoid
structure on a V-category A amounts precisely to an oplax monoidal structure on 4°P.

A monoidal Tfcategory is also essentially a lax monoidal P~category in which all the

and n are invertible.
A lax monoidal T*category X is called cocomplete when it is cocomplete as a 7+

category and each of the functors [ preserves colimits in each of the n variables.
n

Suppose A and X are P substitudes. A P functor F : 4 — X is called a
substitude morphism when it is equipped with, for each integer n = 0, a family of

morphisms
@, : Pn(All .. ,An,A) [ - Pn(FAl’ .. ,FAn,FA),
V-natural in all the variables Aq,...,A, and A, satisfying the conditions
Omobg = Meo@ D0 on g and  @ron=neFyp
of compatibility with substitution and unit. The morphisms @, induce their mates
A
Pn :J' P, (A, ..., A;A)0X(FA,X) D - P,(FA4, ..., FA;X).

The substitude morphism F is called strong when each p, is invertible. Oplax

monoidal V-category morphisms are substitude morphisms; we identify @, with the

morphism induced (Yoneda) between the representing multiple tensor products. Lax
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monoidal V-category morphisms are defined dually.

A morphism between two V:substitude structures on the same V-category 4 is a
substitude morphism structure on the identity 7 functor of 4. Similarly one defines
morphisms of (op)lax monoidal structures on A.

Suppose F and G : A — X are substitude morphisms. A substitude
transformation © : F — G is a natural transformation such that the following

commutes.

¢y
P.(Ay,...,A;A)

P,(FA,,...,FA ;FA)

08 P.(1,...,1,0,)
P (GA;,...,GA ;GA) — = P (FA;,...,FA,;GA)
Pn(eAl, ,eAn,l)

Write Sstd(A,X) for the category of substitude morphisms and transformations.
In any monoidal bicategory it is possible to define a notion of "representation” of a
lax comonoid in a lax monoid. Here we are concerned only with the case of a
representation F: A — X of a P substitude 4 in a cocomplete lax monoidal V-
category X;itisa P functor F: 4—— X together with a 9 natural family of morphisms
¢, : Py(A,..., A ;A)O E(FAI,...,FAH) — FA

in X such that the following two diagrams commute.

Pn(A.;A)DPml(Al.;Al)D...DPmn(An.;An)D U (O(FAL), ..., U(FAL))
n  my m

n
wOn

Mg D Mg P.(A.;A) OO %’ml(Al.;Al)D O(FAL), ..., Py (Ap;A,) D D(FAH.)Q

my n

ilD 9((pm1,..., (pmn)
Pm(Al- ey An.;A)D E(FA]. yeeey FAH')

\ P,(A.;A)D O (FA.)
(O /
FA o

action

-ﬂ-(All A) 0 FAl FA

EEN 4

1

In the special case when X is monoidal, so that X is both a substitude and lax

monoidal, a representation F: A4 —— X is precisely a substitude morphism.

By way of example, we conclude this section with some remarks about operads. We



believe that it is more convenient to use the term operad for what is commonly called a

"non-permutative operad": the original operads of [M] can then be called "symmetric
operads". Accordingly, we define an operad T in vV to be a V-substitude T whose
underlying category is the 7~category I with one object 0 and with hom I(JD equal to
the unit I for tensor in V. One writes T, for the object P,(J...,00 of 7. We call the
substitude XT the suspension of the operad T. A T-algebra in a T substitude A4 is
defined to be a substitude morphism A : 3T — 4. On the other hand, we define a T-
algebra in a lax monoidal category X to be a representation of T in X.

In particular, there is an operad which we identify with the unit I in 7 we have

L,=1. Amonoidin a V-substitude or in alax monoidal 7-category is defined to be an I-

algebra.

§2. Standard convolution

We write [4,X] for the T category of 7 functors from a T category 4 to a 7+
category X (see [Ky], for example).

Suppose A4 is a small T-substitude and X is a cocomplete lax monoidal V-category.

For V-functors F,...,F,: 44— X, we define a -functor O(Fy,...,F,): 44— X by
n

O(Fy ... Fo) = [ "P(Ay,..., Ay ) O O(FAy - FrAy).

A substitution morphism Mg ] %D (F.), ..., U (Fn.)g 0 - U(Fq., ..., F,.) is defined by
n m1 mn m

the composite

A, Al' Ap. 0 |:|
I Pn(Ao; _) |:| |£| % Pml(Aln; Al) DFloAlc/ .. -/I Pmn (Anc; An) DFnoAn-D —_—

A, Ay, AL 0 0

I P.(A.;-) O Pml(Al.,' A)O...O Pmn(An.; A, DO ] ED (Fi.AL), ..., O] (Fn-An-)E
n [Jm, m,
Ay, AL

A | P, (An,...,A.; ) O E(Fl.Al.,...,Fn.An.)

I Mg U Mg

in which the isomorphism comes from the cocontinuity in each variable of the 7~

functor U of X. Awunit n: F,— U (F;) is defined by the composite
n 1
Ay
A ntn Aq

in which the isomorphism is that of Yoneda's Lemma.



Proposition 2.1 [4, X] becomes a cocomplete lax monoidal V-category using the above

substitution and unit.

We shall call this the standard convolutionlax monoidal structure on [4,X]. The

case where X = v was the first convolution structure defined in Section 7 of [DS2]. That

case has further properties.

Proposition 2.2 Standard convolution defines an equivalence between the category of
substitude structures on any small V-category A and the category of cocomplete lax

monoidal structures on [4, V]

For cocomplete lax monoidal P*categories Z and X, write CocLM(Z,X) for the

category of morphisms of lax monoidal 7 categories whose underlying 7*functors
preserve colimits (that is, are "cocontinuous"). The following result should be

compared with [IK]; we refrain from stating the several variable form which also holds.

Proposition 2.3 For any substitude A,the Yoneda embedding Y' : A —[A,V]P is a
substitude morphism where [A,V]P is the substitude represented by the standard

convolution structure on [4,V]. Restriction along Y' is an equivalence of categories

Sstd(A4, X°P) =~ CocLM(A, V], X)°P.

For substitudes 4 and B there is an obvious substitude structure on the 7-category

A0 B; take
P,((A4,By),..., (A,,B,);(A,B) = P,(Ay,...,A;A)OP,(B;,...,B,;B)

and so on.

Proposition 2.4 For V-substitudes A and ‘B, and a cocomplete lax monoidal V-
category X, the canonical isomorphism

[a08,x]0[a,[3,X]]

of V-categories is a morphism of lax monoidal V-categories where all three V-functor V-

categories have the standard convolution structures.

Generalizing the observation of [DO0; Section 3.1, page 72], we deduce from the last
proposition that a monoid in [4,.X] is precisely a substitude morphism from A4 to X
as defined in Section 1. Hence, for any Toperad T, the V-category of T-algebras in X is
the V-category of monoids in the standard convolution [ET,X].

The final proposition of this section is a lax version of a result of [DSO0].



Proposition 2.5 Suppose J: A—— H is a strong substitude morphism with A small.
Suppose X is a cocomplete lax monoidal V-category. Then the V-functor
O« [A,X] —— 7, X1,

given by left Kan extension along J, is a strong morphism of lax monoidal V-categories.

§3. Non-standard convolution

For any small 7 substitude A4 there is a ¥ substitude structure on the 7category
[A°P, 9] which we described at the end of [DS2] in order to include the fundamental
"pseudo-tensor category” used in [BDK]. For V-functors F,,...,E,,F: 4% — 1, we

put

[]

P.(F,...,E;F) = IA £

A
R é:lAl 0. OF Ay [ Pa(Ay .. Ay A)OFA

- [/anoP,‘V] %1 0...0 Fn,J'APn(—;A)D FAE

The substitution g : Py(F;F)0Py, (F;F)O... 0P, (F,.;E,) M - Py(F.;F) is defined

by the following composite

. A n A, O
[ﬂ nop,ry]%pﬂf Pn(—;A)DFAEJEl ﬂumrop,q/] @FI P (=i A) DA

10 @1 A 0 A, n 0
00 M- [ﬂD“OP,‘V] @F [ Pal=iA)DFAGD [ﬂDmOP,‘V] @;FJ’ 0 Py (=540 QF.A.H

08 [ﬂljmop,q/] @F,,,J’A' @1Pmr(—;Ar)DIAPn(A.;A)DFAQ

, AUgl]lD mo A . 0
0 é d e [ﬂD P,fV] E{]FI PE(A..,A)DFAH,

while the unit n : [ﬁloP,’V] (F;, F) 0 - P (F; F) is the following composite.

(2, v, F) 0 [, %l,J’Aﬂ(—,A) 0 FAED %’Iénmmﬁgﬁ [0, ] é:l,IApl(—;A) O FAE

Proposition 3.1 For any small substitude A the Yoneda embedding Y: A— [A°P, V]

is a strong substitude morphism into the non-standard convolution substitude.

Proof Using the Yoneda lemma, we have



IAPH(A. ;A)D[ﬂloP,‘V](YA,F) 0 IAPH(A. :A)0 FA

0 [ﬂDnop,q/]ggYA.,J’APn(—;A)DFAD 0 P,(YA.;F).

[ q.e.d.

By combining Proposition 2.5 and Proposition 3.1, we obtain the next result.

Corollary 3.2 For any small substitude A and any cocomplete lax monoidal V-
category X, left Kan extension along the Yoneda embedding Y: A — [A°P, V] is a

strong morphism

Oy : [4,X] ——[[A°P, V], X]

of lax monoidal V-categories.

Let us define the K-annihilator of F by

AnngF = O, (K)(F) = J’ FAOKA.

Corollary 3.2 explains the general mechanics behind the "annihilation algebra" of [BDK;
Corollary 7.1, page 45]. The case of interest in that paper is where X =[4, V] with the
standard convolution structure, and K is a monoid in [4,X] O [40 4, V]; in other
words, K is asubstitude morphism K: 404 —— 7. Then Anng: [A°P,V]— [4, V]

is a morphism between the non-standard and the standard structures.

§4. Braided and symmetric substitudes

We begin by reviewing a few facts about some categories that involve braids. We
write B for the monoidal category of braids [JS1]; the objects are the natural numbers,
all morphisms are automorphisms, the hom B(n,n) is the Artin braid group B, on n
strings, and the tensor product is defined to be addition of natural numbers and
horizontal stacking of braids. We write P for the monoidal category defined similarly
using the permutation groups P, rather than the braid groups. Each braid f on n
strings has an underlying permutation B:ir— B(i) of the set n={1,..., n}; this
defines a braided strict monoidal functor B — P which is the identity on objects and
full. For each finite sequence (Aq,..., A,) of objects in any braided monoidal category
VY, we obtain a canonical isomorphism g App U...OApy — A;0...0A, which
is defined to be

1o, 001y Ocpa, 01y 0.0l

when [ the braid that crosses the i-th string over the (i+1)-th string, the identity when
B is the identity braid, and cg = cg © cg» when B = "0 '

The algebraic simplicial category A has objects the natural numbers and has hom
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A(m,n) consisting of the order-preserving functions & :m —— n ; composition is that of
functions. Moreover, A becomes monoidal under addition of natural numbers and
ordinal sum of order-preserving functions.

With respect to strict monoidal functors, B is the free braided strict monoidal
category generated by a single object, P is the free symmetric strict monoidal category
generated by a single object, and A is the free strict monoidal category containing a
monoid. First we need to recall from [JS1] and [JS2] the description of the free braided
strict monoidal category BfA on any category A. The objects of BfA are finite
sequences (Aq,..., A,) of objects of A. Morphisms only occur between sequences of
the same length; a morphism

(o;f,..., ) (A, ...,Ay) —— (By,...,B,)

consists of a OB, and f; : A;— By in A. Such amorphism can be viewed as the

braid a labelled by f;,...,f, as, for example:

Composition of labelled braids is performed by composing the labels on each string of

the composite braid. The operation of addition of braids extends in the obvious way to

labelled braids yielding a tensor structure on BfA. There is an obvious braiding on BfA4
obtained from the braiding on B by labelling the strings with identity morphisms. We
have an inclusion functor i : 4 —— BfA4 identifying A with the labelled braids with a
single string.

If v is braided monoidal, there is a "substitution" operation [ : Bff/— 7 whose
composite with i: ¥—— Bf¥ is isomorphic to the identity functor; explicitly, it takes

(Ay,...,A,) to LJ(A,...,A,))=A;0...0A, (bracketed from the left, say) and takes
n

(a;fy, ..., f,) to the morphism
alfy,...,f.]: A,0...0A, ——B,0...0B,

obtained by composing f; O...0f, with the canonical isomorphism
Cq - BG(I)DDBG(n) - B1DDBH

9



In particular, we are interested in the case 7 = B. We can identify an object
(mq,...,m,) of BfB with the order-preserving function & :m —— n whose fibre over
i On has cardinality m;. For any braid o 0 B, we write {,: m — n for the order-
preserving function determined by the object (mgj),..., my(,)) of B/B. Then we have
the morphism

at=afly ..., 1y 1
in B. In other words, we have defined a function

A(m,n) x B(n,n) —— B(m,m) x A(m,n)

that takes the pair (§, o) to the pair (af, o), we call this the distributive law for A

over B. We can visualise this process as follows.

o -
“ /’/\Q/ : >

There is also a distributive law

A(m,n) x P(n,n) —— P(m,m) x A(m,n)

for A over P which we can obtain similarly, or from the braid case by means of the
quotient homomorphisms B, — P, and B, — P,,.

We can use this discussion to define monoidal categories BA and PA which are
the free braided and symmetric (respectively) strict monoidal categories containing a
monoid. In other terminology, PA is the PROP for monoids (a description occurs in
[MT; Construction 4.1, page 215] although there is a misprint® in which the outside
product should be a sum). To be explicit, the objects of BA and PA are the natural
numbers. A morphism (a,&):m — n in BA consists of a braid a 0 B, and an order-

preserving function &:m —— n. The composite of (a,&):m —n and (B, ) :n—p
is defined to be (BE o, o EB): m — p. There is a faithful functor B — BA taking « :

m —m to (a,l,):m — m, and a faithful functor A—— BA taking &: m —n to
(14, & : m — n; both functors are the identity on objects and we identify morphisms in
B and A with their image in BA . So we may write (a,§) = §oa and note that the
morphisms of B are precisely the invertible morphisms of BA. There is a braided strict

monoidal structure on BA for which B—— BA is a braided strict monoidal functor and

? This misprint was pointed out to us by Teimuraz Pirashvili.
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A — BA is strict monoidal. The symmetric strict monoidal category PA is defined
similarly; in fact, PA is equivalent to the category whose objects are finite sets and
whose morphisms are functions with the structure of linear order on each fibre’.

Recall from [DS2]that lax monoids in a Gray monoid M amount to strict-monoidal
lax functors M : A—— M. A braided lax monoid in a braided (see [DS1]) Gray monoid M
is a braided strict-monoidal lax functor M : BA — M whose composition constraints

Ko o M@) M(6) — M(e 6

are identities whenever 6 is invertible. In particular, this last condition implies that
the composite of M with B—— BA is a 2-functor. Of course the composite of M with
the strict-monoidal functor A—— BA is the underlying lax monoid of M; we say that

M provides a braiding for the underlying lax monoid.

Similarly, a symmetric lax monoid in a sylleptic (see [DS1]) Gray monoid M is a
sylleptic strict-monoidal lax functor M : PA — M whose composition constraints

Mg o1 M(@) M(6) — M(o 9

are identities whenever 6 is invertible.

A braided [respectively, symmetric] V-substitude is a braided [respectively,
symmetric] lax monoid in (7*Mod)°P.

More explicitly, a braiding for a substitude A assigns to each natural number n

and each braid a on n strings, a 7*natural family of isomorphisms
Ya - Pn(Alf .- '/An;X) — Pn(AOl(l)’ . "AG(H); X)’

such that yg oYy = Yqq and the following two diagrams commute.

n ”’Ea
P(Age);A) D Elea(i).(Aq(i),;Aa(i)) ———>= P;_(Ag().;A)
Yq U C&l ¢ Tyai
n UE
P.(A;A)OL P, (AL;A) = P(A..;A)
i=1 !
n Mg
P (A.;A)0 'Dlei(Ai.;Ai) = P(A..;A)
1=
1[' |;| yai l y(x1+...+an
He

Pm(Alql(o)/ ceey Anqn(o))

i

n
P.(A.;A)O _DlPai(mi)(Aw ) A}
1=

The braiding is a symmetry when yyyq =1 if a isthe basicleft-over-right cross-over

of two strings.

*In the late 1980s, André Joyal pointed out this description of PA to the second author. He also
remarked that there is a corresponding fact for BA whereby "linear order" is replaced by "plane
configuration".
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A T-operad T is braided [symmetric] when the T-substitude 2T isequipped with a
braiding [symmetry]. Symmetric operads are the original operads of May [M]. Braided

operads have been used for example by Fiedorowicz [F] and Tamarkin [T].

Proposition 4.1 Suppose A is a small braided [symmetric] V-substitude and X is a
cocomplete braided [symmetric] lax monoidal V-category. Then the standard
convolution [A,X] has a canonical braiding [symmetry] induced on coends by the

following isomorphisms.

Vo Oc
Pn(Al""’An; _) O E(FlAl""’FI‘IAn) O ﬂ D]j —»Pn(Aa(l),...,Aa(n); ) O D( 1)""’FG(I’1)A(X(I’1))

Proposition 4.2 Suppose A is a small braided [symmetric] V-substitude. Then the

non-standard convolution [A°P, V] has a canonical braiding [symmetry] induced on

ends by the following isomorphisms.

A 0 [CET,hVaDm] A 0
g:lAl 0o...0 FnAn ,I Pn(Al ..... An;A) O FAED g, g:a(l)Aa(l) a...Oo Fa(n)AG(n)’I Pn (Ad(l) ..... A(X(n);A) 0 FAE

We conclude this section with a construction in the case where 7/ is cartesian
closed.
Each substitude A can be symmetrized. Explicitly, we define a new substitude

structure Q = sym(P) on the same underlying category A by

Qn(Alf""An;A) = Z Pn(AG(l)""’AO(n);A)'
o P,

To define the substitution operation we define its composite with the coprojection from

n
Pn(AG(l)’ ceey Ac(n);A) X |_| Pmr (Aror(l)r ceey Ar (m ),A )
=0

to
n

Qu(Aq, ..., A ;A)x Her(Arl,...,Am;Ar), for 0 OP, and o, OP,, ,
r=0

to be the composite of the canonical isomorphism 1xc_.; into
Po(Agqy, - s Ag(n) A) X |_| o) (o(r) 0oy (1) - 7 A1) Og ey (M)t Aolr))s

the substitution W , and the coprojection into  Qu(Ayy,..., Ay, ;A)  for the
permutation Omgmy T Omgy of mgq) +...+mg,) = m. Noting that

Qi(A;A) = Pi(A;A),
we take the same unit as before. The three substitude axioms can be verified. Moreover,

we have a natural isomorphism
1 . Qn(All .. /An/A) Qn( (1)’ A‘[(n)/ A)
12



whose composite with the coprojection from P, (Ag), ..., Agn);A) for o O P, is the

coprojection for T 0 O P,. The three axioms for a symmetry can be verified.

§5. Braided substitude morphisms
Suppose A4 and X are braided 7‘substitudes. A P substitude morphism F: 4
— X is called braided when the following square commutes for all objects Aj,..., A

and A of A4, and all braids a.

n

y
Po(Ay, o AgiA) = P (A, - Aginy; A)

n)’s
o] 0
PH(PAlf ce ,FAH,FA)T Pn(FAG(l)’ .. "FAG(H); FA)

If T is a braided [symmetric] P~operad then a T-algebra in A is defined to be a
braided [symmetric] 1/ substitude morphism A :3T — 4. For example, when T is the
symmetric operad I, an I-algebrain A is called a commutative monoid in A. The
commutative monoids in the standard convolution [4,X] are braided substitude
morphisms.

In the case where 7/ is the category of complex vector spaces, there is a symmetric
V-operad lie whose algebrasin 7/ are complex Lie algebras. We define a Lie algebra in
a V-substitude A to be a lie-algebrain 4. Lie algebras in the non-standard convolution
structure [HOP, 9] for a symmetric finite-dimensional Hopf algebra H were extensively
studied in [BDK]. Another connection between lie and substitudes will be addressed in
[DvS].
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